Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Катионы, разделение при качественном анализе

    Примеры отделения, разделения и идентификации катионов и анионов рассмотрены при изучении качественного анализа. Ниже приведено несколько других примеров применения ионообменной хроматографии в количественном анализе. [c.361]

    Рис, 16.9. Схема качественного анализа с разделением распространенных катионов на группы. [c.135]

    Изложены общие теоретические основы аналитической химии и качес1 венный анализ. Рассмотрены гетерогенные (осадок — раствор), протолитические, окислительно-восстановительные равновесия, процессы комплексообразования, применение органических реагентов в аналитической химии, методы разделения и концентрирования, экстракция, некоторые хроматографические методы, качественный химический анализ катионов и анионов, использование физических и физико-химических методов в качественном анализе. Охарактеризованы методики аналитических реакций катионов и анионов, нх идентификация по ИК-спектрам поглощения. Приведены примеры и задачи. [c.2]


    Некоторые анионы, например фосфат, борат и оксалат, мешают разделению катионов в качественном анализе. Для удаления этих анионов известно много методов. В полумикроанализе часто используют ионный обмен. Теория и практика этого метода рассмотрены в разд. [c.33]

    Ряд катионов, например Zn , Fe", Мп", АГ", Сг ", Ni и Со", не осаждается ионом S" в кислой среде, а только в слабощелочной катионы других металлов дают осадок в кислой среде на этом свойстве основан классический метод разделения катионов в качественном анализе. [c.276]

    Разделение катионов при качественном анализе. Одним из методов систематического качественного анализа на катионы металлов в лабораторных условиях давно является метод с применением сероводорода. Прежде всего предполагающиеся в смеси катионы делят на 6 групп (табл. 5.12), а затем для выяснения присутствия ионов каждой группы исследуют реакции осаждения и окрашивания. Если в процессе разделения при добавлении к водному раствору образца реактива I образуется осадок, его отфильтровывают и исследуют образование осадка при добавлении к отфильтрованному раствору реактива III. Таким образом, разделение проводят, последовательно используя разные реактивы. Основным реактивом для разделения катионов служит сероводород, для которого в водном растворе характерно следующее равновесие (р/( = 7,02, p/(2 = 14,00, 20 °С). [c.299]

    Переломным этапом в истории химии явилось открытие Д. И. Менделеевым периодического закона (1868 г.). Это открытие наложило глубокий отпечаток на все смежные области науки. В качественном анализе классификация групп катионов при систематическом ходе анализа тесно связана с периодической системой Д. И. Менделеева. В количественном анализе нередко используются те же принципиальные схемы разделения, те же свойства сульфидов, окислов и других соединений, что и в качественном анализе. [c.12]

    Качественный анализ катионов в этой системе производят по общеизвестному сероводородному методу, в котором для разделения и обнаружения катионов широко применяется сероводород. [c.3]

    ТЕХНИКА РАЗДЕЛЕНИЯ И ИДЕНТИФИКАЦИИ КАТИОНОВ В ПОЛУМИКРОМЕТОДЕ КАЧЕСТВЕННОГО АНАЛИЗА [c.12]

    Применение колоночной ионообменной хроматографии в качественном анализе позволило весьма эффективно решать задачи отделения мешающих анализу анионов (фосфат-, оксалат-, сульфат-ионов и др.) и разделение катионов. [c.140]


    Сопоставляя полученные хроматограммы между собой, можно произвести полный качественный анализ смеси катионов, не прибегая к предварительному их разделению [c.208]

    Классификация катионов. Не всякий ион можно обнаружить в присутствии других ионов. Поэтому в качественном анализе пользуются систематическим ходом анализа. В этом случае, как уже отмечалось ранее, ионы обнаруживаются в определенной последовательности после разделения их и предварительного удаления из раствора мешающих ионов. [c.275]

    Zn(0H)2 — амфотерными свойствами, что используется в качественном анализе для разделения катионов III группы на две подгруппы. К первой подгруппе относят катионы Fe +, Fe +, Мп +, ко второй — катионы А1 +, Сг +, 2п +. [c.289]

    Буферными смесями в качественном анализе пользуются для разделения гидроокисей, сульфидов, карбонатов, выделения сульфида цинка, осаждения хромата бария ( 66, 67, 74, 81, 60). Их применяют в гравиметрическом анализе для разделения катионов и анионов ( 114) в титриметрическом ( 135, 156), экстракционном анализе, в инструментальных методах анализа ( 165, 174). [c.59]

    Эту бумагу употребляют для качественного анализа смесей катионов. Ее можно еще пропитать 5%-ным раствором 8-оксихинолина в 10%-ной уксусной кислоте. Для разделения катионов, например железа (III) и меди (И), при pH 2 на бумагу наносят последовательно три капли анализируемого раствора и 10 капель воды. После этого бумагу погружают в 2%-ныи раствор 8-оксихинолина в 5%-ной уксусной кислоте. На хроматографической бумаге наблюдается разделение катионов внутри — темно-серая полоса железа (III), снаружи — желто-зеленая полоса меди (II). Можно также бумагу пропитывать золями гидроокиси кремния, гидроокиси хрома. [c.145]

    Систематический ход анализа анионов нельзя проводить подобно систематическому анализу катионов, потому что растворимость серебряных, бариевых, свинцовых и ртутных солей с анионами различных кислот не так четко различается при изменении кислотности среды, как растворимость сульфидов катионов разных металлов. При осаждении серебряных, бариевых и свинцовых солей сильно сказываются изоморфизм ( 22) и сорбция ( 24), которые обусловливают соосаждение ряда анионов и делают невозможным их четкое разделение по ходу качественного анализа анионов ( 108). [c.244]

    Реакции образования труднорастворимых соединений— осадков — применяют в аналитической химии для разделения ионов, а также для их обнаружения в качественном анализе и для гравиметрического и титриметрического осадительного определения в количественном анализе. Процессы осаждения и растворения соединений являются сложными физико-химическими процессами и имеют большое значение не только в химическом анализе, но и для разделения и выделения различных веществ в химической технологии. Способность к осаждению зависит от многих факторов свойств катионов и анионов, входящих в состав труднорастворимого соединения, концентрационных условий, в которых проводят процесс осаждения, pH раствора, температуры, ионной силы раствора, состава и содержания других веществ в растворе, которые не должны принимать прямого участия в образовании осадка, однако могут соосаждаться с ним или, наоборот, препятствовать осаждению. Все это необходимо учитывать при проведении реакции осаждения. [c.158]

    Качественный анализ. Различия в значениях произведений растворимости солей лежат в основе схем качественного анализа смесей ионов методом разделения катионов этих солей. Например, добавление хлороводородной кислоты к раствору, содержащему различные катионы металлов, сопровождается осаждением только тех хлоридов, значения произведений растворимости которых мало  [c.299]

    Методы кольцевой бани. Для разделения и обнаружения ЗЬ(1П) Аз(П1) и Зп(П) используют метод кольцевой бани, в котором указанные элементы разделяют на бумаге Ватман № 1 в виде тартратных комплексов с применением 60%-ного этанола в качестве проявителя [1524]. Описана [973, 1100] схема качественного анализа 20 катионов в одной капле раствора с использованием метода кольцевой бани. С применением соответствующих растворителей на бумажном фильтре получают 8 колец. В шестом кольце, содержащем ЗЬ, Аз и В1, разделяют эти элементы на зоны в виде диэтилдитиокарбаминатов с применением ацетилацетона в качестве проявителя. В другой схеме качественного анализа 26 катионов [917] их разделяют с помощью групповых реагентов (Н2З, НС1) на три группы, затем методом кольцевой бани каждую группу катионов разделяют на отдельные элементы и идентифицируют. Метод обеспечивает четкое разделение и идентификацию всех катионов при их содержании в капле > 2 мкг. [c.26]

    Приступая к работе по качественному анализу, студент вначале практически знакомится с наиболее важными и типичными реакциями катионов первой группы. Когда свойства ионов и образуемых ими соединений будут хорошо изучены, студент сам готовит смесь ионов этой группы и производит их осаждение групповым реактивом, а затем производит их разделение и обнаружение по приводимой ниже схеме. [c.57]


    Своеобразие качественного анализа неорганических соединений связано с очень большим числом определяемых элементов. Разработано несколько схем качественного анализа, которые, независимо от деталей, основаны на переведении вещества в раствор, последовательном разделении смеси посредством осаждения определенных групп ионов и в конечном счете определении отдельных ионов посредством характерных реакций. Во всех схемах определяемые катионы и анионы делятся на аналитические группы, обычно именуемые по групповому реагенту. Группы отделяют друг от друга, пользуясь различной растворимостью их простых или комплексных солей с разными противоионами при различной кислотности среды. [c.450]

    В большинстве бессероводородных методов качественного анализа принята следующая схема разделения. Сначала выделяют катионы подгруппы серебра соляной кислотой, затем катионы щелочноземельных металлов серной кислотой [1303]. Для полноты выделения сульфатов щелочноземельных металлов рекомендуется добавление этанола ]1377]. [c.14]

    В первой книге описываются макро-, микро-, полумикрометоды, а также хроматографические, люминесцентный и некоторые другие методы анализа. Наряду с описанием реакций катионов и анионов, которые обычно рассматриваются в учебниках по качественному анализу, приводится описание реакций и методов разделения наиболее важных редких и рассеянных элементов (лития, рубидия, цезия, бериллия, титана, циркония, тория, урана, германия, ванадия, вольфрама, молибдена и др.), которые изучаются студентами только некоторых специальностей. Однако материал учебника расположен таким образом, что при необходимости описание упомянутых элементов может быть выпущено без особого ущерба для изложения основного курса. [c.11]

    Основными недостатками сероводородного метода с позиций токсикологической химии являются 1) несовершенство осаждения и разделения катионов 2) длительность анализа 3) ядовитость газообразного сероводорода и 4) невозможность совместить качественный анализ с количественным при исследовании одной навески объекта. Как правило, после качественного анализа необходимо подвергать исследованию новую порцию объекта для количественного определения обнаруженного элемента. [c.290]

    Разделение гексаметилентетрамином и мочевиной. Для гидролитического осаждения было предложено применять уротропин [562, 987, 1219, 1220, 1384]. Он медленно реагирует с водо-родны.ми ионами раствора и постепенно снижает их концентрацию. Однако наблюдается значительная адсорбция осадком гидроокисей ионов кобальта и других двухвалентных металлов, поэто.му для количественного разделения необходимо переосаж-дение. Уротропин применяется для разделения катионов в качественном анализе [146]. Для этой же цели предложено [416] применять мочевину. [c.65]

    В процессе развития аналитической химии была разработана определенная техника качественного анализа. Каждый аккуратно работающий аналитик иопользует эту технику, так как она гарантирует получение надежных результатов наиболее быстрым способом. Однако это не означает, что нужно слепо вошроизводить все прописи анализа и процессы) разделения, Каждую операцию нужно хорошо продумать и делать необходимые выводы из результатов опыто1В. Качественный анализ включает следующие этапы а) отбор пробы б) описание внешнего вида пробы в) предварительные испытания (мюкрым или сухим путем) г) растворение пробы д) обнаружение анионов е) обнаружение катионов ж) анализ нерас- творенного остатка. [c.34]

    Работа завершается обобщением предложенных методов классификации катиоиов и их разделение группами или по отдельности осаждением при помощи различных растворов созданием методики качественного анализа катионов. [c.254]

    В пособии описаны бессероводородные методы качественного полумикроанализа методы анализа катионов — аммиачно-фосфатный, кислотно-основный, бифталатный, сульфидно-щелочной, тиоацета-мидный, методы анализа анионов и физико-химические методы качественного анализа — полярографический, хроматографический,, спектральный, лкаминесцентный. Приводятся методы разделения и концентрации с помощью осаждения, соосаждения, экстракции, хроматографии и электрохимические. Первое издание вышло в )971 г. Предназначено для студентов нехимических специальностей вузос. [c.295]

    Установление сорбционных рядов неорганических ионов на оксиде алюминия дало возможность К. М. Оль-шановой разработать ионообменно-хроматографический метод качественного анализа катионов, основанный на разделении целого ряда веществ при помощи этого сорбента [71, 83—85]. [c.142]

    Перспективным направлением для качественного анализа является комбинированное использование осадочной хроматографии в сочетании с распределительной. Идея такого рода комбинации в хроматографическом методе разделения смесей заключается в следующем. Вначале получают первичную осадочную хроматограмму ионов на бумаге, пропитанной органическим осадителем, а затем промывают ее не водой, а органическим растворителем, способным частично растворять осадки и переносить их с различной скоростью. Например, можно получить осадочную хроматограмму путем нанесения раствора, содержащего смесь катионов меди, кобальта и никеля (двухвалентных) на бумагу, предварительно обработанную рубеановодород-ной кислотой и парами аммиака, а потом разогнать образовавшиеся зоны осадков водно-бутаноловым и водно-про-паноловым растворителями [161]. [c.209]

    Успешная попытка систематизировать многочисленные аналитические реакции с участием соединений металлов по определенной логической схеме была осуществлена немецким химиком Генрихом Розе (1795—1864) и описана в 1829 г. в его книге Руководство по аналитической химии . Разработанная им общая схема систематического качественного анализа металлов (катионов металлов — на современном языке) основана на определенной последовательности действия химических реагентов (хлороводородная кислота, сероводород, азотная кислота, раствор аммиака и др.) на анализируемый раствор и про укты реакций компонентов этого раствора с прибавляемыми реагентами. При этом исходный анализируемый раствор в схеме Г. Розе содержал соединения многих известных к тому времени металлов серебро, рт>ть, свинец золото, сурьма, олово, мышьяк кадмий, висмут медь, железо, никель, кобальт, цинк, марганец, алюминий барий, стронций, кальций, магний. Здесь химические элементы перечислены в последовательности их разделения или открытия по схеме Г. Розе. [c.35]

    Многие реакции в качественном анализе и титриметрическом методе осаждения (аргентометрия, меркурометрия) основаны на образовании мало растворимых соединений ( 19, 21). Повышенная растворимость галогенидов щелочных металлов объясняется ослаблением сил взаимодействия между ионами в кристаллической решетке. С этим связано отсутствие группового реагента на щелочные металлы. Вещества со слоистыми или молекулярными решетками растворяются лучше, чем вещества с решеткой координационной структуры. Это используют в химическом анализе для разделения катионов подгруппы соляной кислоты от катионов подгруппы сероводорода. Катионы серебра и свинца (II) образуют хлориды, имеющие решетки координационной структуры и поэтому менее растворимы. Хлориды СиС и СсЮЦ имеют слоистые решетки и поэтому хорошо растворимы, как и близкий к ним по строению решетки 2пС 2. Растворимость солеи связана также с радиусами их ионов. Соли с большими катионами и малыми анионами хорошо растворимы, а соли с малыми катионами и большими анионами — плохо (Яцимирский). Растворимость вещества зависит от соотношения полярностей растворенного вещества и растворителя. Установлено также, что растворимость солей зависит от их химической природы, например, для гидроокисей, сульфатов, хлоридов, фторидов элементов 1-й и 2-й групп периодической системы  [c.69]

    При промывании осадки, полученные по ходу качественного анализа, частично проходят через фильтр. Это объясняется тем, что ионы электролита, захваченные при осаждении, растворяясь в воде, пепти-зируют осадок. Для предупреждения пептизации в промывную воду добавляют заметное количество H2S, НС1 или KNO3 (ионы К" и N0 не мешают исследованию осадка). Осадки гидроокисей металлов промывают водой, содержащей гидроокись и хлорид аммония. Образование золей нежелательно, так как оно препятствует полному разделению катионов. Однако иногда специально получают золи с яркой окраской, чтобы обнаружить следы некоторых ионов. Например, малое количество железа можно обнаружить по ярко-голубой окраске коллоидных растворов берлинской лазури (чувствительность г мл), меди — по яркой красно-коричневой окраске железистосинеродистой меди, кадмия — по желтой окраске сульфида кадмия, алюминия — по интенсивной красной окраске золя с алюминоном (лака) (чувствительность 10 г мл). [c.88]

    Тиоспирты и их производные. Исследованы реакции солей кобальта с тиоглицерином [527], толуол-3,4-дитиолом [577—579 З-меркапто-4-окситолуолом [102], меркапто-бензтиазолом [955 Толуол-3,4-дитиол и З-меркапто-4-окситолуол могут быть использованы как общие реагенты для качественного анализа, посредством которых можно проводить разделение смесн катионов на группы. Толуол-3,4-дитиол был также использован для обнаружения кобальта. Соли кобальта дают с реагентом в водно-пиридиновом или изоамилацетатном растворах соединения ярко-синего цвета. Для обнаружения кобальта в осадке сульфидов кобальта и никеля на смесь последних действуют пиридиновым раствором реагента, сульфид кобальта при этом растворяется, образуя соединение си-него цвета [579], а сульфид никеля остается нерастворенным. [c.52]

    Осадители. В качестве осадителей для разделения н выделения отдельных компонентов анализируемых смесей применяют разнообразные химические соединения. Главнейшими из них являются сероводород, осаждающий в виде сульфидов ионы V, IV и частично III аналитических групп (см. Книга I, Качественный анализ, гл. VI—VIII), а также разлагающий при опред еленных значениях pH анионы АзОз , АзО , VOз, М0О4 , 04 и др. (см. Книга I, Качественный анализ, гл. XII) водный раствор аммиака, осаждающий катионы бериллия, железа (III), алюминия, таллия, галлия, индия, ниобия, тантала, урана, редкоземельных металлов и др. фосфаты щелочных металлов и аммония ацетат натрия едкие щелочи сульфид аммония и т. д. [c.354]

    Проблемы этого раздела аналитической химии — обоснование метода определения качественного состава анализируемой пробы (вещества или смеси веществ) по аналитическому сигналу. Качественный анализ может использоваться для идентификации в исследуемом объекте атомов (элементный анализ), молекул (молекулярный анализ), простых или сложных веществ (вещественный анализ), фаз гетерогенной системы (фазовый анализ). Задача качественного неорганического анализа обычно сводится к обнаружению катионов и анионов, присутствуюнщх в анализируемой пробе. Качественный анализ необходим для обоснования выбора метода количественного анализа того или иного материала или способа разделения смеси веществ. [c.104]

    Разносторонние исследования возможностей применения этого ионита в качественном анализе проведены K.M. Ольшановой. В частности, ею предложен оригинальный метод разделения катионов на группы с помощью хроматографирующего оксида алюминия, который используют также для концентрирования ионов в количественном анализе. [c.424]


Смотреть страницы где упоминается термин Катионы, разделение при качественном анализе: [c.343]    [c.9]    [c.257]    [c.32]    [c.68]    [c.84]    [c.555]    [c.614]    [c.501]   
Химия и периодическая таблица (1982) -- [ c.299 , c.301 ]




ПОИСК





Смотрите так же термины и статьи:

Анализ катионов

Анализ катионов качественный

Анализ качественный



© 2025 chem21.info Реклама на сайте