Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Нафталин и далее

    Что же касается ароматических углеводородов, то свободная энергия в расчете на один атом углерода возрастает только от бензола к нафталину. Далее величина ее постепенно уменьшается и для графита снижается до нулевого значения. [c.46]

    Опыты с парафином и нафталином дали изменения температуры плавления в зависимости от давления, приведенные в табл. 31. [c.103]

    Рентгенографические измерения длины связей в нафталине дали следующие значения (А)  [c.469]


    В работах автора были определены условия фракционирования ноли-этиленов различных типов. Осаждение полимера из раствора в нафталине дало лучшие результаты, чем другие способы. Причины этого следующие  [c.371]

    Получение нафталина. Главным источником получения нафталина служит каменноугольный деготь, содержащий 4—10 нафталина. При фракционировании каменноугольного дегтя нафталин переходит вместе с фенолами во фракцию карболового масла, а также тяжелого масла. Фенолы отделяют от нафталина при помощи щелочей, растворяющих фенолы. Нафталин далее очищают перегонкой под вакуумом и возгонкой. [c.355]

    На рис. XIX, 11 представлены изотермы адсорбции нафталина, бензола, толуола, циклогексена, гептена-1, циклогексана и метилциклогексана иа гидроксилированной поверхности кремнезема (крупнопористого силикагеля) из их бинарных растворов в предельном углеводороде. Из рисунка видно, что в ряду молекул углеводородов, обладаюш,их тг-электронными связями (ароматических и непредельных), адсорбция уменьшает ся прн переходе от нафталина (пример многоядерного ароматического углеводорода) к одноядерному бензолу, при введении алифатического заместителя (толуол) и далее при переходе к олефинам. Наконец, адсорбция цикланов (молекулы которых не имеют п- [c.536]

    Для определения термодинамических функций кокса состава СНа используем интерполяцию данных для графита (СНо) и полициклических ароматических углеводородов. С этой целью по известным величинам С°р, 5°, АН°о , АО°об для графита и твердых полициклических углеводородов (нафталина, антрацена, трифенилметана) найдем термодинамическую функцию Ф, отнесенную к группе СНа, и далее ее зависимость от а. Соответствующие величины приведены в табл. 54. [c.228]

    Нафталин 500 100 Мо 83 8 WOз + S Окисление фракций, выкипающих до 120 и 120 —140 С, дало только бензойную кислоту 73 [c.248]

    Головной погон колонны У, содержащий около 60% нафталина, поступает в кристаллизатор 9. Кристаллы нафталина отделяют на центрифуге 10 и плавят в емкости 11, плав поступает в колонну 12 для повышения температуры плавления нафталина до требуемой. Маточный раствор, выделенный в центрифуге, направляется в колонну 13 и далее используется в качестве рециркулирующего потока. По описанной схеме установки процесс гидродеалкилирования можно проводить в присутствии алюмокобальтмолибденового катализатора в сравнительно мягких температурных условиях со значительным коэффициентом рециркуляции непревращенного сырья. [c.306]

    Нафталин может быть также сырьем в синтезе антрахинона. Разработанный непрерывный технологический процесс включает три стадии вначале нафталин в газовой фазе над катализатором окисляется до нафтохинона, далее нафтохинон (без его предварительного выделения из продуктов реакции и очистки) подвергается конденсации с бутадиеном и образовавшийся тетрагидро-антрахинон на третьей стадии дегидрируется до антрахинона. Новая технология обладает существенными преимуществами перед другими методами получения антрахинона, особенно с экологической точки зрения. Первая промышленная установка по производству 15 тыс. т в год антрахинона из нафталина должна войти в эксплуатацию в 1980 г. [143]. [c.99]


    Если ректификации подвергать сырье, освобожденное от фенолов, оснований и тяжелого остатка — пека, удается сосредоточить отдельные компоненты в узкие фракции. С этой целью были предложены схемы [51, 52], в которых вначале смола разделяется на широкий дистиллят (170—360°С) и пек. Возможен и вариант, предусматривающий, отбор широкого дистиллята с пределами кипения 170—280 °С, антраценовой фракции и пека, причем в широком дистилляте концентрируются наиболее ценные в настоящее время химические продукты нафталин и его гомологи, низкокипящие фенолы и основания. Этот дистиллят промывается растворами щелочи и кислоты для извлечения фенолов и оснований. Далее нейтральная часть дистиллята, а также выделенные из растворов соответствующих солей фенолы и основания подвергаются порознь четкой ректификации с получением чистых и технических продуктов (рис. 31). [c.165]

    Образующиеся при сульфировании нафталина сульфокислоты частично остаются в отработанной кислоте, содержание органических примесей в которой составляет —60 г (в 1 дм ). Кроме того, сульфокислоты растворяются в промывных водах, где их содержание достигает 60% [23]. Таким образом, недостатком сернокислотной очистки оказывается образова)Ние значительных количеств нафталинсульфокислот, утилизация которых практически невозможна. Многочисленные патентные разработки, предполагающие их использование для лолучения нафтолов, изомеризацию 1-нафталинсульфокислоты (составляющей большую часть un-разующихся сульфокислот) в 2-нафталинсульфокислоту и далее [c.289]

    Образование нефтяного кокса является процессом, в результате которого появляется новая фаза процесс распадается на стадии возникновения зародышей и последующего их агрегирования. При этом система постепенно переходит из одного состояния в другое. Переход компонентов нефтяных остатков в карбоиды, а далее в графит термодинамически вполне закономерен, так как он сопровождается снижением уровня свободной энергии. В ряду бензол— -нафталин— -антрацен— -пирен— -графит запас свободной энергии в калориях на один атом углерода уменьшается в следующем порядке 4930—>-4741— -4496— -4015— -О [60]. [c.89]

    Далее изучалось изменение температуры и энтальпии плавления нафталина при [c.149]

    Учебник Введение к полному изучению органической химии открывается главой Общие понятия , в которой автор прежде всего подводит читателя к определению предмета органической химии. А. М. Бутлеров показывает при этом несостоятельность виталистических представлений, обосновывавших выделение органической химии особым происхождением органических веществ. Он отмечает далее, что отличительным признаком органических веществ не может служить и их легкая изменяемость органическое вещество нафталин устойчиво при температуре красного каления, а неорганическая перекись водорода пли бертолетова соль ра зла-гаются при небольшом повышении температуры. Между органическими и неорганическими веществами нельзя провести и резкой грани в составе хотя чаще всего в органических соединениях встречаются углерод, водород, кислород, азот, но в них можно встретить также галогены, серу, фосфор, мышьяк, ртуть, олово, свинец. Такие факты заставляют предполагать, — пишет А. М. Бутлеров, — что все элементы способны находиться в составе органических веществ . В этих его словах содержится предвидение грядущего бурного развития химии элементоорганических соединений. Рассмотрев и отбросив критерии происхождения, свойств и состава, А. М. Бутлеров логически подводит читателя к выводу, что органическая химия — это химия углеродистых соединений. [c.19]

    Гидрофильными являются все тела, в к-рых интенсивность молекулярных (атомных, ионных) взаимодействий достаточно велика (корунд, карборунд, алмаз и др.). Особенно резко выраженной гидрофильностью обладают минералы с ионными кристаллич. решетками (окислы и их гидраты, карбонаты, силикаты, сульфаты, фосфаты, галогениды, глины, а также стекла). Металлы, полупроводники, а также срганич. вещества, особенно с преобладанием углеводородных групп в молекуле, гидрофобны (парафин, нафталин, далее жиры, воски, битумы идр.). При переходе от щелочных и щелочноземельных катионов к легко поляризующимся катионам (тяжелых металлов и др.), а также в лиотропных рядах ионов с уменьшением их радиуса гидрофильность возрастает. Понятие гидрофильности применимо не только к телам (фазам), у к-рых оно является свойством поверхности, но и к отдельным молекулам, их группам, атомам и ионам. Все полярные группы, входящие в состав поверхностно-активных веществ, обладающие дипольным моментом (—ОН —СООН, —NH2 и др.), являются 1 идрофиль-ными. Именно они увеличивают растворимость в воде, тогда как химически связанные с ними углеводородные радикалы понижают ее. Результатом такого гидрофобно-гидрофильного баланса и является итоговая растворимость вещества в воде. Гидрофильные (в общем случае — лиофильные) тела самопроизвольно образуют коллоиднуле р-ры в воде или в другой жидкости — КО.ИЛОИДЫ, являющиеся предельно высоко-дисперсными термодинамически устойчивыми двухфазными снстема.ми. [c.469]

    В оптимальных условиях окисления нафталин дал 88—92,2 вес. % фталевого ангидрида с т. пл. 129,5—130 °, а-метилнафталин — 30, 8% ангидрида, что совпадает с выходами, полученными Кинней и Пинкус 5] и Гофтманом и Голуб [ 6]. Этим была доказана высокая активность примененного катализатора И правильность выбора оптимальных условий окисления. [c.185]


    Т1ие исключительных по качеству смазочных масел. В качестве парафинового компонента они применяли в первую очередь когазин [20] и нашли, что с увеличением степени хлорировапности когазина вязкость смазочного масла растет, вязкостно-температурные свойства ухудшаются, коксовое число увеличивается. Чем длиннее цепь парафинового компонента, тем лучше вязкостно-температурные свойства и тем больше выход масла. Они нашли далее, что выход масла тем больше, чем выше в реакции отношение нафталина к хлорированному компоненту. [c.123]

    Из фракции 165—195° получен пикрат, который после нескольких перекристаллизаций пз этилового спирта дал два пикрата один — иголкообразные кристаллы оранжевожелтого цвета с т. пл. 141°, что соответствует т. пл. пикрата а-метилнафталина, по литературным данным [6], т. пл. пикрата а-метилнафталина 141° второй — желтого цвета кристаллы, плавится при 149"- и соответствует т. пл. пикрата нафталина, в литературе для пикрата нафталина дается т. гл. 149,5° [7]. [c.86]

    Диспропорционирование метильных групп в ароматических углеводородах. Метильные группы могут смещаться от одной ароматической молекулы к другой также при нагревании в контакте с катализаторами кислотного типа. Так, Натансон и Каган [28] наблюдали диспропорционирование метильных групп, пропуская толуол над алюмосиликатным катализатором при 430° С. Полученный нродукт содержал 15,2% бензола, 62,5% толуола и 13,4% ксилолов. Гансфорд, Мейерс и Саханен [18] получили толуол, пропуская над алюмосиликатным катализатором при 540° С смесь бензола и мета-ксилола, а леета-ксилол сам по себе дал толуол и триметилбензолы. Интересно отметить, что при нагревании а-метилнафталина с бензолом переход метильной группы к бензолу не происходил, в то время как при нагревании одного метилнафталина были получены нафталин и диметилнафта-лин. Псевдокумол превращался в толуол, ксилол и полиметилбензолы. Гринсфельдер и др. [14] нашли, что при пропускании пара-ксилола над алюмо-циркониево-кремниевым катализатором при 550° С превращению подвергались 53% продукта. Кроме 24% толуола, были получены [c.110]

    Ароматические углеводороды.. Основными реакциями в гидрировании ароматических углеводородов являются конверсия ароматических колец в циклогексановые и распад углерод-углерод-ных связей внутри боковых алкильных цепей. Многоядерные ароматические углеводороды легче атакуются, чем соединения с простыми кольцами реакция протекает ступенчато — одно из колец сначала насыщается, а затем происходит разрыв угле-род-углеродных связей. Далее следует распад, который укорачивает получившиеся боковые алкильные цепи [186—195]. Например, над молибденовым окисло-сульфидным катализатором при 350—500° С под давлением водорода 105 кПсм (191, 192] нафталин гидрокрекируется следующим способом  [c.93]

    Особый интерес представляют смазки, получавшиеся синтетическим путем в Германии в условиях военного времени [55, 56]. Этилен и олефины с более длинной цепью полимеризовали (катализатор — хлористый алюминий), получая с хорошим выходом масла, которые обладают неплохими вязкостно-температурными свойствами. Парафинистый газойль, полученный синтезом по Фишеру — Тропшу, хлорировали продукт синтеза конденсировали с нафталином, что дало масло сравнительно невысокого-качества. В качестве смазочных масел использовались эфиры адипиновой кислоты, но себацинаты широкого распространения не получили. [c.501]

    Около 70% нафталина были превращены в бензольные углеводороды. Каталитическое действие гл1гнозема и кремнекиолоты на гидрирование фенолов было ими также прослежено весьма детально. Фенол, нагретый в присутствии глинозема при 460° в течение) 4 час. и под давлением 70—80 ат водорода, дал 40% легких маоел,, на 72% состоявший из бензола. [c.444]

    Чувствительность катализаторов к воздействию высоких температур связана с рядом различных явлений. Прежде всего повышение температуры размораживает дефекты решетки катализаторов (как полупроводниковых, так и металлических), приближая систему к равновесию. Такое изменение дефектного состояния решетки неизбежно приводит к изменению активности катализатора в большинстве случаев к ее понижению [47 ]. Далее, повышение температуры и приближение ее к температуре плавления материала вызывает значительное ускорение самодиффузии в твердом веществе и, как следствие этого, — яв.чение спекания, приводящее к уменьшению поверхности катализатора. Как указывалось ранее, это во многих случаях приводит к понижению активности катализатора. Примеров такого рода явлений описано очень много можно указать на работу Борескова с сотрудниками но катализатору парофазного гидролиза хлорбензола [48 ] и работу Битенаж по алюмосиликатным катализаторам [49]. Еще одним следствием повышения температуры может быть превращение каталитически активных соединений в неактивные. Например, при температуре выше 500° С в смешанном катализаторе окисления нафталина во фталевый ангидрид происходит взаимодействие сульфата калия с сульфатом ванадия и образуется каталитически неактивный ванадат калия. Кро е указанных явлений, при высоких температурах может происходить растрескивание или расплавление всей массы катализатора, или носителя. [c.199]

    Приведена предпроектная проработка завода по переработке угля. Головным процессом является H- oul гидрогенизат (средние фракции) экстрагируется, рафинат гидроочшцается, далее риформинг, экстракция ароматических соединений, пиролиз. Мощность завода 32 тыс. т угля в сутки или 8,4 млн. т/год (ОМУ). Продукция (в тыс. т/год) этилен — 508, пропилен — 127, бутадиен — 254, бутены — 51, бензол — 7, толуол — 8,8, ксилолы — 13,5, ароматические углеводороды (С,) — 70, нафталин — 227, фенолы — 74,5, сера — 160, аммиак — 91. Срок окупаемости [c.25]

    Нафталин, тетралин, а- и р-метилнафта-лины, 2,6-диметил-нафталин 450-500 100-120 (1ЧН4)2Мо54 на активированном угле. Этилбензол, бутилбензол, 1-метил-З-этилбензол, метилтетралины. Окисление дало только бензойную кислоту, а в случае метилнафталинов— изофталевую кислоту 74, 79 [c.248]

    Сложность использования полициклических ароматических углеводородов заключается в следующем. Во-первых, получить индивидуальные вещества с высокой селективностью затруднительно. Монозамещенные полициклических ароматических углеводородов, например, представляют собой сложные смеси изомеров, которые очень трудно разделить. Пр0из 0дные фенантрена, флуорена и антрацена легче и с большим выходом синтезируются из производных бензола, чем из соответствующих полициклических углеводородов. Кроме того, фенантрен в газовой фазе, например, окисляется по двум, обладающим близкой реакционной способностью участкам (положения атомов углерода 9—10 и 1—4). Таким образом образуется сложная смесь промежуточных продуктов окисления, которые далее с высокой скоростью окисляются до фталевого и малеинового ангидридов и продуктов полного сгорания [128, с. 70]. Фталевого ангидрида в этом случае получается гораздо меньше, а расход углеводорода тепловыделение много больше, чем при окислении нафталина и о-ксилола, что подтверждается следующими цифрами  [c.101]

    Содержание общей серы в сыром бензоле, а также в нафталине по ГОСТ 6263—69 определяется сжиганием навески продукта в токе воздуха. Полученный диоксид серы окисляют пероксидом водорода до триоксида, а образовавшуюся серную кислоту определяют объемным методом [43, с. 281]. Сероуглерод в отечественной промышленности определяют по ГОСТ 2706.4—74. Методика основана на взаимодействии сероуглерода, содержащегося в бензоле, с днэтиламином и ацетатом меди с образованием растворимого в толуоле желто-коричневого или светло-желтого диэтилдитиокарбамината меди. Далее измеряется оптическая плотность раствора, а содержание сероуглерода находят по градуировочному графику. Чувствительность метода 0,00002%. [c.140]

    Взаимодействием нафталина с этилбензолом или с этиленом в присутствии л(-ксилола и хлорида алюминия можно получать 2-этилнафталин и далее 2-винилнафталин [107]. Полимеры 2-ви-нилнафталина и сополимеры со стиролом имеют достаточно высокую механическую прочность и теплостойкость, 2-винилнафталин применяется также в производстве ионообменных смол. Окислением 2,6-диметилнафталина получают 2,6-нафталиндикарбоно-вую кислоту — сырье для полиэфирных волокон более термо- и водостойких, чем полиэтилентерефталат [108]. Алкилированием нафталина хлоралканами производятся парафлоу — депрессоры, понижающие температуру застывания смазочных масел. Нафталин может использоваться также в качестве сырья для синтеза антра-хинона [109]. [c.339]

    Из натриевой соли -бензолдисульфокислоты получены лишь следы -фенилендиамина [406а], а из фенол-л-сульфокислоты получить аминофенол [4066] не удалось. Значительно лучшие результаты получаются в нафталиновом ряду. Натриевая соль 2-нафталин-сульфокислоты дала с натрийамидом лишь 32%-пый выход [c.247]

    Природные нефтяные продукты состоят из парафиновых, нафтеновых н ароматических углеводородов. Нафтеновые и ароматические углеводороды различаются также по количеству циклов. При одном и том же молекулярном весе в порядке уменьшения константы скорости крекинга на первом месте стоят парафиновые углеводороды, затем следуют гомологи бензола, далее гомологи нафталина и т. д. Гомологи нафтеновых углеводородов ио скорости крекинга приближаются к. аналогично построенным ароматическим углеводородам. Вкачестве примера приводим константы скорости крекинга при 425° С углеводородов с одинаковым числом углеродных атомов додекана, изоамилтолуола и 1,6 — диметилнафталина (табл. 183). [c.223]

    Дегидрирование холестерина в присутствии иалладированного угля привело к хризену перегонка с цинковой пылью дала хризен и нафталин при дегидрировании с помощью селена был получен метил-1,2-цик-лопентенофенантрен (И) (Дильс), выделение которого сыграло большую роль прн выяснении строения холестерина. [c.863]

    Нафталин — ароматическое соединение, в котором я-электрон-ную систему образуют, согласно формуле Хюккеля Ап + 2), 10 электронов. Доказательством строения нафталина является способность присоединять — на катализаторе (N1) два, четыре и далее — десять атомов водорода с образованием соответственно 1,4-дигидронафталина а), тетралина (б) и декалина (в)  [c.274]


Смотреть страницы где упоминается термин Нафталин и далее: [c.99]    [c.120]    [c.469]    [c.129]    [c.400]    [c.449]    [c.396]    [c.423]    [c.13]    [c.181]    [c.87]    [c.279]    [c.424]    [c.58]   
Лабораторный практикум по промежуточным продуктам и красителям (1965) -- [ c.0 ]

Лабораторный практикум по промежуточным продуктам и красителям Издание 2 (1965) -- [ c.0 ]




ПОИСК







© 2025 chem21.info Реклама на сайте