Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Механизм передачи энергии реакций радикальный

    Вопрос о подвижности частиц в жидкой фазе имеет важное значение для кинетики химических реакций как радикальных, так и ионных, протекающих в жидкой фазе. Это — вопрос о механизме переноса вещества, о границах диффузионной кинетики, роль которой наиболее существенна в конденсированных фазах. Кроме того, он имеет большое значение при исследовании процессов передачи энергии возбуждения в системе. Подвижность частиц и ее характер — вращательный или трансляционный — определяют роль диффузионно-резонансного механизма в передаче энергии в конденсированных фазах. [c.146]


    Твердые соединения включения имеют упорядоченную решетку из молекул основного вещества, в пустоты которой включены молекулы других веществ. Соединения включения я вляются удобными объектами для изучения особенностей радикальных реакций в твердой фазе. От обычных двойных и тройных твердых растворов соединения включения отличаются тем, что они имеют высокоорганизованную кристаллическую структуру. Это делает их особенно привлекательными для изучения процессов передачи энергии в твердых телах и механизма вторичных реакций активных частиц, образующихся при действии излучений. [c.60]

    О механизме радиационно-химических реакций [17]. Значительная часть исследований в области радиационной химии имеет целью выяснение механизма поглощения энергии излучения химической системой и установление элементарных реакций нестабильных промежуточных частиц (возбужденных молекул, ионов, радикалов). В механизме радиационнохимических реакций, вообще говоря, играют роль следующие процессы ионизация, образование возбужденных электронных состояний, передача электронного возбуждения от одной молекулы к другой, диссоциация колебательно-возбужденных молекул, захват электрона, нейтрализация, радикальные реакции .  [c.127]

    Благодаря высокой энергии связи углерод—фтор предотвращается возможность возникновения реакций, связанных с отщеплением атома фтора в процессе полимеризации. Маловероятным является и прекращение роста макрорадикалов в результате передачи цепи через макромолекулу. Поэтому макромолекулы политетрафторэтилена имеют преимущественно линейное строение. Отсутствие разнотипных заместителей в звеньях полимера исключает и образование стереоизомеров. Такое строение полимерной цепи политетрафторэтилена определяет возможность образования кристаллитов. По степени кристалличности политетрафторэтилен можно сравнить с полиметиленом, несмотря на то, что образование его происходит по механизму радикальной полимеризации. Степень кристалличности различных образцов политетрафторэтилена (как и полиэтилена) можно характеризовать величиной плотности. Его плотность в аморфном состоянии со- [c.256]

    Благодаря высокой энергии связи углерод— фтор предотвращается возможность протекания реакций, связанных с отщеплением атома фтора в процессе полимеризации. Маловероятным является и прекращение роста макрорадикалов в результате передачи цепи через макромолекулу. Поэтому макромолекулы политетрафторэтилена должны иметь преимущественно линейное строение. Отсутствие разнотипных заместителей в звеньях полимера исключает и образование стереоизомеров. Такое строение полимерной цепи политетрафторэтилена определяет возможность образования кристаллитов. По степени кристалличности политетрафторэтилен можно сравнить с полиметиленом, несмотря на то, что образование его происходит по механизму радикальной полимеризации. Степень кристалличности различных образцов политетрафторэтилена (как и полиэтилена) можно характеризовать величиной плотности. Его плотность в аморфном состоянии составляет 2,05 см , что значительно выше плотности большинства органических полимеров. Полимер тетрафторэтилена, состоящий только из кристаллической фазы, должен иметь еще более высокую плотность. Плотность образцов технического политетрафторэтилена колеблется от 2,1 до 2,3 г см (рис. 74). [c.297]


    Наблюдаемую бимолекулярную константу скорости роста анионной полимеризации интерпретировали как константу скорости роста живущих полимеров [73]. Этот вывод вызывает сомнения, так как реакция включает передачу цепи. К сожалению, нет четких экспериментов для выяснения механизма передачи цепи. Не ясно, происходит ли перенос атома или группы атомов от мономера к растущей частице или наоборот. Это наиболее общий механизм передачи цепи в радикальной полимеризации, но он маловероятен для анионной полимеризации 9-винилантрацена. Оказалось, что в этом процессе образуется заснувщий полимер, который в конце концов инициирует новые цепи. Если это так, то найденная константа кр— не истинная константа скорости роста, так как только небольшая доля растущих молекул участвует в реакции в каждый момент времени. Такой вывод может объяснить кажущуюся высокую энергию активации роста. При повышении температуры увеличивается не только константа скорости роста, но и доля активных макромолекул. [c.453]

    Полимеризация хлористого винила, как и всех галоидпроизводных этилена, протекает по радикальному механизму. Скорость полимеризации хлористого винила в присутствии перекиспого инициатора постепенио нарастает до превращения 30—40% мономера в полимер, после чего становится постоянной. В конце процесса при степени превращения выше 75—80% скорость полимеризации заметно снижается. Это объясняется тем, что полихлорвинил не растворим в своем мономере. Осаждающиеся мельчайшие частицы полимера адсорбируют часть мономера, и дальнейшая полимеризация протекает в набухших частицах полимера. Прекращение роста макромолекул полихлорвинила происходит преимущественно передачей энергии возбуждения макромолекулы мономеру или полимеру. Во втором случае образуются разветвленные макромолекулы. Средний молекулярный вес полимера зависит от метода полимеризации, количества инициатора и температуры реакции. [c.800]

    МЕХАНИЗМ РЕАКЦИИ. Понятие используется в осн. в двух смыслах. Для сложных реакций, состоящих из неск. стадий, М. р. -это совок>иность стадий, в результате к-рых исходные в-ва превращаются в продукты. Для простой р-ции (элементарной р-ции, элементарной стадии), к-рая не может быть разложена на более простые хим. акты, выяснение М. р. означает идентифицирование физ. процессов, составляющих сущность хим. превращения. Для одной частицы (молекула в основном или возбужденном состоянии, ион, радикал, диффузионная пара, синглетная или триплетная радикальная пара, комплекс) или двух (редко трех) частиц (молекул, ионов, радикалов, ион-радикалов и т. п.), находящихся в определенных квантовых состояниях, изменения в положениях атомных ядер и состояниях электронов составляют суть их превращений в другие частицы с присущими этим частицам квантовыми состояниями. В рассматриваемые фнз. процессы часто включают в явном виде акты передачи энергии от частицы к частице. Для элементарных реакций в растворе М. р. включает изменения в ближней сольватной оболочке превращающихся частиц. [c.74]

    При термодеструкции полистирола летучие продукты реакции образуются в молярных количествах, соответствующих соотношению мономер димер тример тетрамер приблизительно 40 10 8 1. В соответствии с механизмом внутримолекулярной передачи цепи (раздел Б-2,б) переходные состояния для образования димера, тримера и тетрамера должны представлять собой соответственно четырех-, шести- и восьмичленные циклы. На основании этого можно предположить, что тример долн ен был бы образовываться при деполимеризации в гораздо большем количестве, чем димер или тетрамер. Однако факт большего содержания димера в летучих продуктах термодеструкции но сравнению с содержанием тримера может рассматриваться как доказательство того, что основным фактором, ускоряющим протекание процессов внутримолекулярной передачи цени, является расстояние радикального конца цепи от того центра, у которого происходит передача цепи. Иначе говоря, чем ближе к концу макромолекулы, на котором образуется радикал, находится та часть этой же молекулы, у которой происходит передача цепи, тем больше возможность передачи энергии между образующимися и разрывающимися связями, поэтому энергетические требования, выполнение которых необходимо для того, чтобы могла осуществиться такая реакция, гораздо меньше, чем требования, необходимые для протекания межмолекулярного процесса. [c.44]

    II др.), а также методы измерения активности антиокислителей и катализаторов кинетики расиада и э( )-фективности инициаторов радикальной полимеризации и окисления. Измерения X. нсиользуют и в исследованиях механизма и кинетики различных процессов (обнаружение промежуточных продуктов, определение скоростей химпч. превращения, относительных и абсолютных концентраций атомов и свободных радикалов, относительных и абсолютных значении констант скорости элементарных реакций, изучение процессов передачи энергии). Корреляцию между интенсивностью X. и скоростью реакции можно использовать в целях контроля промышленных химико-тех-нологич. процессов. [c.312]


    Предполагается, что механизм несенсибилизированной изомеризации в твердой фазе обусловлен как прямым, так и непрямым возбуждением я-электронов двойных связей в результате столкновений молекул полимера с электронами больших энергий, генерируемых под влиянием у-лу-чей. Значительная часть энергии, приобретаемой метиленовыми группами полимера, передается двойным связям внутри молекулы. Такой процесс имеет место и в растворах, однако в этом случае он играет менее важную роль по сравнению с межмолекулярной передачей энергии от возбужденных или ионизированных молекул растворителя к двойным связям молекулы полимера. Двойная связь возбуждается до более высокого энергетического уровня, при котором я-электроны перестают участвовать в образовании связи (разрыхляющее, или антисвязывающее, состояние), тем самым обусловливая возможность свободного вращения вокруг остающейся одиночной 0-связи, соединяющей атомы углерода, между которыми ранее имелась двойная связь. Когда разрыхляющее состояние переходит в основное состояние с выделением энергии возбуждения, двойные связи образуются вновь, принимая, однако, главным образом ттгракс-конфигу-рацию, хотя количественно в меньшей степени, чем при сенсибилизированной изомеризации. Поэтому механизмы этих двух типов изомеризации принципиально отличаются между собой в том отношении, что в сенсибилизированных реакциях участвуют промежуточные радикальные аддук-ты, тогда как несенсибилизированная изомеризация осуществляется за счет возбужденного состояния двойных связей полимера. Этим различием в механизмах можно объяснить тот факт, что предельное соотношение цис-VI тракс-форм при несенсибилизированной изомеризации (33/67) выше соответствующего соотношения для сенсибилизированной реакции (20/80). В последнем случае величина этого соотношения должна определяться термодинамическими соображениями, тогда как в первом случае конечная величина соотношения цис- и транс-форм, по-видимому, обусловливается относительным числом цис- и тракс-звеньев с повышенными энергетическими уровнями [44]. Таким образом, в то время как в условиях термодинамического равновесия преобладает образование наиболее устойчивой формы, условия протекания реакции в системе, подвергающейся интенсивному облучению, часто благоприятствуют образованию менее устойчивой формы [45]. Классическим примером системы, характеризующейся таким различием в соотношениях цис- и тракс-форм при термодинамическом и фотохимическом равновесии, служит взаимопревращение малеиновой и фумаровой кислот [46, 47]. Вполне возможно, что такое же положение справедливо и для термодинамического и радиационно-химического равновесия при изомеризации нолибутадиена. [c.112]

    Значительные успехи были достигнуты и в регулировании реакции роста цепи при полимеризащ-1и диенов [8] и различных полярных мономеров, В результате проведенных опытов было показано, что стереоспецифическая полимеризация олефинов может быть проведена также и в гомогенной системе. При анионной или катионной гомополимеризации с управляемой реакцией роста цепи несомненно важную роль играет промежуточный комплекс мономера с противоионом. При таком методе получения стереорегуляр-ных полимеров удается снизить свободную энергию активации реакции роста цепи, ведущую к образованию полимера с определенной степенью тактичности. К сожалению, этот метод трудноосуществим при полимеризации неполярных, высоколетучих мономеров, какими являются, в частности, этилен и пропилен. Реакцию полимеризации этилена в высокомолекулярный разветвленный продукт долгое время осуществляли только по радикальному механизму при высоких давлении и температуре. Аналогичные опыты по радикальной полимеризации пропилена не имели успеха, так как на третнчном атоме углерода легко происходит передача цепн, вследствие чего образуется полимер небольшого молекулярного веса, который не может быть использован для получения пластмасс. Высокомолекулярные линейные полимеры этилена и пропилена можно синтезировать при низком давлении только при наличии твердой фазы катализатора. Мономер и металлорганический компонент сорбируются на поверхности твердой фазы, чем достигается ориентация каждой молекулы мономера перед ее присоединением к растущей полимерной цепи. [c.10]

    Реакции в жидкостях и твердых телах. Частицы, реагирующие друг с другом в жидкости или в твердом теле, сильно взаимод. с окружением, поэтому ф-ция распределения их по энергии является, как правило, максвелл-больц-мановской, а кинетика Б. р.-равновесной. Лимитирующая стадия таких р-ций-собственно хим. взаимод. при контакте реагирующих частиц или диффузионное сближение частиц. В последнем случае скорость р-ции контролируется диффузией, и энергия активации р-ции совпадает с энергией активации диффузии. В твердых телах диффузионное перемещение частиц замедляется настолько, что сближение реакционных центров осуществляется по недиффузионным механизмам посредством миграции своб. валентности-эстафетной передачей атома Н (в радикальных р-циях), эстафетным переносом протона или электрона, миграцией экси-тона (в р-циях электронно-возбужденных частиц). Низкая молекулярная подвижность в конденсированной фазе обеспечивает также относительно большое время жизни парт-неров-частиц в состоянии контакта и более высокую вероятность р-ции по сравнению с соответствующими газофазными р-циями (см. Клетки эффект). [c.286]

    Некоторые авторы считают, что поскольку трифторхлорэти-лен обычно полимеризуется только по радикальному механизму и радиационная полимеризация ингибируется гидрохиноном, отрицательная величина общей энергии активации (Е) не связана с ионным механизмом процесса и обусловлена, вероятно, тем, что в результате передачи цепи через мономер образуются менее реакционноспособные радикалы, чем полимерные, и доля этой реакции возрастает с повышением температуры. Разность проста — передачи 4—7 ккал/моль. В присутствии пентахлорэтана Е положительна, что, по мнению авторов, обусловлено преобладанием реакции передачи через молекулы пентахлорэтана с образованием достаточно реакционноспособных радикалов. Показатель степени в уравнении v = fe/" (/ — мощность дозы) увеличивается с повышением температуры 2 > 2э. [c.81]

    Разрыв связей при механической деструкции большинства полимеров происходит по свободнорадикальному механизму. Первичные радикалы в момент своего образования обладают избыточной энергией, которая выделяется в результате сокращения участков упруго напряженной цепи после разрыва, Из-бьпочной энергии достаточно, чтобы вызвать распад активных радикалов с образованием низкомолекулярных соединений, главным образом,. мономеров, а также летучих продуктов. При механической деструкции могут протекать и радикальные реакции передачи атома водорода и распада вторичных радикалов. Первичные и вторичные радикалы могут легко присоединять молекулу кислорода и переходить в пероксидную форму. [c.61]

    Кинетика полимеризации в жидкой фазе линейна в твердой фазе отмечено запределивание на уровне 1% Д-тя —78, —94 и —126° С, 0,6% для —158° С и 0,3% для —196° С. Энергия активации 35 ккал1моль в жидкой фазе и —0,2 л /са -г/люль в твердой в интервале от —160 до —196° С. Радиационно-химический выход полимера 240 при комнатной температуре и облучении электронами [11]. По другим данным, в этих условиях мономер не полимеризуется [119]. Прн действии улучей (140° С) G 10 [13]. Степень полимеризации очень мала, что указывает на значительную роль реакции передачи цепи. В жидкой фазе процесс ингибируется бензохиноном и, следовательно, механизм радикальный. [c.181]


Смотреть страницы где упоминается термин Механизм передачи энергии реакций радикальный: [c.332]    [c.216]    [c.16]   
Кинетика и механизм газофазных реакций (1974) -- [ c.25 ]




ПОИСК





Смотрите так же термины и статьи:

Механизм передачи энергии

Радикальные реакции

Реакции энергия реакций



© 2025 chem21.info Реклама на сайте