Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Адсорбция ингибиторов поверхностно-активных веществ

    На основании результатов исследований кинетики изменения краевых углов смачивания на границе ме талл- электролит—углеводород при введении водо- и углеводородорастворимых поверхностно-активных веществ — ингибиторов коррозии сделан вывод, что при адсорбции катионных поверхностно-активных веществ из углеводородной среды на поверхности стали образуется адсорбционный слой, аналогичный по строению пластинчатой мицелле. [c.93]


    Иногда при достижении определенной скорости растворения ингибирующее действие органического вещества на анодное растворение металла исчезает. Это связано с тем, что при значительных анодных токах адсорбированные частицы удаляются с поверхности вместе с атомами растворяющегося металла настолько быстро, что адсорбция ингибитора не успевает происходить. Механизм влияния поверхностно-активных органических веществ на скорость электрохимических реакций в значительной мере зависит от природы лимитирующей стадии. В условиях диффузионной кинетики поверхностно-активные вещества не влияют на электрохимическую кинетику. Исключение составляют системы, в которых снижение предельного диффузионного тока в присутствии поверхностно-активного вещества может быть обусловлено уменьшением числа участвующих в реакции электронов. В условиях возникновения полярографических максимумов 3-го рода неравномерная адсорбция некоторых поверхностно-активных веществ на поверхности ртутного капельного электрода вызывает перемешивание раствора и, следовательно, увеличение скорости электрохимической реакции (см. 38). Снижение тока ниже вызванное добавками поверхностно-активных веществ, означает, что стадия разряда-ионизации замедляется в такой степени, что становится лимитирующей стадией всего процесса. Ингибирование стадии разряда — ионизации [c.376]

    Однако применение ингибиторов коррозии для защиты оборудования в системе подготовки нефти имеет свои специфические особенности и недостатки. Введение ингибитора в жидкость не обеспечивает защиты поверхности оборудования в газопаровой фазе на эффективность защитного действия ингибиторов существенное влияние может оказать изменение физико-химических характеристик сред. При наличии в двухфазной среде одновременно неионогенного поверхностно-активного вещества и ингибитора происходит их совместная адсорбция на межфазной поверхности капель углеводорода. При этом адсорбционно-активные полярные группы ингибитора блокируются более активными в водной среде [c.151]

    Эго объясняется тем, что пленка поверхностно-активного вещества изменяет ток обмена электродного процесса, а также затрудняет подход вещества к электроду. Поверхностно-активные вещества, которые, адсорбируясь на поверхности металла, затрудняют их растворение в кислотах, называются ингибиторами. Адсорбция электро-активных веществ (исходных веществ или продуктов электрохимической реакции) на поверхности электрода также влияет на кинетику электродных реакций. [c.401]


    Продукты коррозии металлов постепенно накапливаются на стенках резервуаров, оседают на дно и откладываются на трубопроводах, фильтрах. Для уменьшения скорости коррозии в нефтепродукты добавляют ингибиторы. Они могут действовать как поверхностно-активные вещества с образованием защитной пленки на металле вследствие адсорбции полярных групп, оказывать нейтрализующее действие на кислые агрессивные продукты, химически взаимодействовать с металлом, образуя на его поверхности защитную (оксидную) пленку. [c.39]

    Учитывая преимущественно электростатический характер влияния деформации на адсорбируемость компонентов среды, можно было предположить, что в случае присутствия в среде поверхностно-активных веществ, обладающих выраженными хемосорбционными свойствами (ингибиторов коррозии), емкость будет слабо зависеть или вообще не зависеть от деформации. Небольшое увеличение адсорбции органических катионов на пластически деформированном железе (несмотря на увеличение положительного заряда поверхности) может быть обусловлено рассеянием [c.157]

    Под влиянием деэмульгатора изменяются адсорбция ингибитора на металле и его коллоидные свойства. Как упоминалось выше, присутствующие в электролите углеводороды выступают в роли переносчиков нерастворимого в воде ингибитора, молекулы которого ориентированы на поверхности углеводородных мицелл углеводородной цепочкой в их внутреннюю часть, а полярной группой — в объем электролита. Если в электролите присутствует другое поверхностно-активное вещество, например деэмульгатор, то происходит адсорбция его молекул на поверхности раздела фаз. В результате взаимодействия полярных групп ингибитора и адсорбированных молекул деэмульгатора происходит блокирование ингибитора и он теряет возможность адсорбции на поверхности корродирующего металла. [c.346]

    Адсорбция ПАВ из кислой среды. Введение в травящую кислоту поверхностно-активных веществ ведет к существенному снижению емкости двойного электрического слоя, что указывает на внедрение ПАВ в двойной электрический слой, т. е. на адсорбцию их на металле. Вместе с тем, скорость растворения формных сплавов в азотной кислоте после добавления в нее ПАВ уменьшается всего на 40—60%, т. е. адсорбирующиеся при эмульсионном травлении ПАВ не являются достаточно эффективными ингибиторами растворения формных сплавов. Этот вывод подтверждается также непосредственными испытаниями в травильной машине. [c.114]

    Сказанное относится и к процессам адсорбции поверхностно-активных веществ, конвективной диффузии кислорода, где знание механизма этих процессов значительно облегчает подбор ингибиторов коррозии и разработку ускоренных методов испытания. [c.5]

    Процессы смачивания металлических поверхностей электролитами, играющие большую роль в развитии коррозии, а также процессы обезжиривания, широко применяемые в технологии противокоррозионной защиты, тоже зависят от строения двойного ионного слоя. Смачивание оказывается наименьшим при потенциале нулевого заряда. Изменением потенциала металла в отрицательную или положительную сторону можно изменить смачиваемость поверхности. Метод катодного обезжиривания металлов использует эффект воздействия поля двойного ионного слоя на адсорбционные процессы. Изменение скачка потенциала в диффузной части двойного слоя с помощью поверхностно-активных веществ, облегчающее адсорбцию органических катионов, и комбинированная защита металлов с помощью катодной поляризации и ингибиторов в ряде случаев связаны с -изменением потенциала нулевого заряда. [c.127]

    Поскольку эффективность катодного процесса зависит от высоты поднятия пленки электролита в углеводородную фазу, а форма мениска на твердой поверхности в системе двух несмешивающихся жидкостей оиределяется смачивающей способностью этих жидкостей, представляется возможным изменить межфазное натяжение, а тем самым и форму мениска. Согласно взглядам, развитым академиком Ребиндером, адсорбция углеводородорастворимых поверхностно-акти вных веществ на твердой поверхности может значительно повысить смачивание поверхности металла углеводородом. Поэтому, если ввести в углеводородную фазу поверхностно-активные вещества (ПАВ), можно в предельном случае так повысить избирательную смачиваемость электрода углеводородом, что не будет вогнутого мениска и пленки электролита в углеводородной фазе. В качестве ПАВ нами были изучены анионоактивное вещество олеат магния и катионоактивное — соль дициклогексиламина. В согласии с теоретическими предсказаниями в присутствии этих ПАВ ток, генерирующийся в зоне мениска, резко падал, и при 0,1% ПАВ катодные кривые получались такими же, как и в объеме электролита, т. е. вогнутый мениск исчезал. Результаты, полученные при изучении электрохимической кинетики, хорошо согласовались с непосредственными коррозионными опытами. Изменяя с помощью ингибиторов смачиваемость металла углеводородом (топливом ТС-1), нам удалось подавить коррозионный процесс и добиться 90%-ной защиты (табл. 9,13). [c.307]


    Несмотря на большое число веществ, применяемых в качестве ингибиторов коррозии, многое в механизме их действия еще остается невыясненным. Запросы практики требуют таких теоретических обобщений, которые позволили бы вести целенаправленный поиск ингибиторов, прогнозировать наличие ингибирующих свойств у еще мало изученных соединений. Несомненно, что проявление ингибирующего эффекта связано с адсорбцией. В то же время количественная взаимосвязь между адсорбцией поверхностно-активных веществ (ПАВ) и их эффективностью как ингибиторов установлена лишь в отдельных случаях. [c.4]

    Защитные свойства пленок пластичных смазок, как и любых других смазочных материалов, определяются двумя факторами [22] наличием слоя смазки, нанесенной на металл и предохраняющей его от коррозии благодаря механической изоляции поверхности металла от влаги и кислорода воздуха, и эффективностью торможения электрохимических процессов коррозии благодаря адсорбции и хемосорбции поверхностно-активных веществ (ингибиторов коррозии) на металле. Эффективность изо- [c.128]

    М.меется много опубликованных статей, относящихся к электрохимическим исследованиям влияния ингибиторов и поверхностно активных веществ на процесс корразии при использовании потенциостата [95, 96]. Адсорбция органических и неорганических ионов на поверхности металла имеет очень важное значение, так как, изменяя заряд поверхности, этот процесс соответственно изменяет и потенциал поверхности. Некоторые подробности использования поляризационной техники для изучения специфического влияния адсорбционных процессов на кинетику анодных и катодных реакций описываются в работах [95, 96]. [c.611]

    При равной стабильности ингибирующих соединений эффективность функционального атома в адсорбционных процессах изменяется в такой последовательности селен > сера > азот > кислород, что связано с меньшей злектроотрицательностью элементов слева [38]. Кроме того, адсорбция поверхностно-активных органических веществ растет с увеличением их молекулярной массы и дипольного момента, более эффективными ингибиторами оказываются органические соединения асимметричного строения. [c.146]

    Адсорбционные ингибиторы относятся к классу поверхностно-активных (чаще органических) веществ, способных адсорбироваться на по.-верхности металла. В результате адсорбции происходит торможение- [c.17]

    В состав больщей части органических ингибиторов входит, по крайней мере, одна полярная группа с атомом азота, серы или кислорода, а в некоторых случаях — селена или фосфора, то есть элементов, имеющих на внешней орбите неподеленные пары электронов, способных поэтому к активному донорно-акцептор-ному взаимодействию. Использование органических соединений, содержащих кратные (двойные и тройные) связи, обусловлено наличием п-связей, для которых характерны высокая поляризуемость и способность к взаимодействию с металлом. При равной стабильности ингибирующих соединений эффективность функционального атома в адсорбционных процессах изменяется в последовательности селен > сера > азот > кислород, что связано с меньшей электроотрицательностью элементов слева [4]. Кроме того, адсорбция поверхностно-активных органических веществ растет с увеличением их молекулярной массы и дипольного момента, более эффективными ингибиторами оказываются органические соединения асимметричного строения. [c.326]

    В то же время для большинства серусодержащих органических веществ такого параллелизма между защитными свойствами соединений по отношению к железу и х поверхностной активностью на ртути не обнаружено. Объясняется это специфическим взаимодействием электронов атомов серы с электронами незаполненных -орбиталей железа, которое приводит к значительному упрочнению связи ингибиторов с металлом. В пользу этого утверждения свидетельствует необратимость адсорбции серусодержащих соединений на железе и увеличение адсорбции с ростом температуры. В отличие от адсорбции азотсодержащих соединений специфическая адсорбция серусодержащих соединений зависит не только от свойств адсорбированных частиц, но и от химической природы металла. [c.138]

    При определении области потенциалов, в которой происходит адсорбция ингибиторов, можно исходить из величины потенциала нулевого заряда исследуемого металла или из изменений емкости двойного электрического слоя при добавке в электролит адсорбирующегося вещества. Рассмотрим, какие возможности имеются в настоящее время для определения области потенциалов адсорбции заданных веществ методом измерения импеданса. С точки зрения анализа результатов измерений импеданса простейшей является адсорбция нейтральных органических веществ. Если исследуемые вещества являются поверхностно-активными адсорбирующимися веществами, диэлектрическая постоянная которых меньше, чем воды, то в области их адсорбции наблюдается понижение емкости двойного слоя и область потенциалов адсорбции на кривых зависимости емкости от потенциала ограничивается пиками адсорбции — десорбции [2]. [c.27]

    В отличие от Дж. Брегмана А. А. Гоником предложена следующая схема структуры адсорбционных слоев ингибиторов коллоидного типа на поверхности стали. Нижний слой молекул ингибитора обращен полярными группами к металлу и связан с ним химически. Обратно же ориентированный слой молекул, образующихся на границе раздела углеводород—электролит, направлен полярными группами в электролит. Между этими проти воположно ориентированными слоями молекул заклю чено равновесное количество углеводородной жидкости При адсорбции углеводородорастворимых поверхностно активных веществ при их концентрации выше критиче ской концентрации мицеллообразования также возникают бимолекулярные слои из поверхностно-активных молекул, но между ними отсутствует углеводородная прослойка. [c.93]

    Весовые и электрохимические исследования показали, что с ростом температуры до 100°С заш ит-ное действие каптакса и его смеси с ОП-7 или ОП-10 увеличивается и только при высоких температурах наблюдается их последействие. Полученные результаты свидетельствуют о синергизме действия каптакса и ОП и о хемосорбционном механизме загцитного действия рекомендованной смеси ингибиторов. Высказано предположение, что добавление поверхностно-активного вещества (ПАВ), которым является ОП-7 пли ОП-10, облегчает десорб-Щ 1Ю молекул воды с поверхности и способствует адсорбщ1и каптакса. Защитная пленка упрочняется за слет дополнительной адсорбции смачивателя ОП на поверхности. Высокий ингибиторный эффект в циркулирующих растворах моноцитрата аммония можно объяснить тем, что ингибиторы воздействуют, в основном, на катодный процесс, являющийся в этих условиях контролирующим. [c.10]

    Асфацдияров Ф. А., Гоник А. А. О кинетике адсорбции поверхностно-активных ингибиторов коррозии при закачке в продуктивный пласт и защите от коррозии оборудования нефт5шых скважин // Тез. докл. Всесоюз. симпозиума по поверхностно-активным веществам и их примению в химической и нефтяной пром-сти.— Киев Наукова думка, 1971— С. 93. [c.216]

    По описанной выше методике были изучены кривые / — т, полученные на положительно заряженной поверхности стали при потенциале ф = —0,15 в. В этих условиях сила тока характеризует скорость реакции ионизации металла (стационарный потенциал стали в 1 н. НаЗО ф т = —0,25 в). Существует определенное различие в характере влияния ингибиторов на реакции восстановления Н3О+ и ионизации металла. В отличие от реакции восстановления НдО" , скорость анодной реакции при добавлении в кислоту органического ингибитора сначала резко уменьшается, а затем увеличивается, достигая стационарной величины. Это подтверждается ходом кривых для сернокислого бутилпиридиния и неионогенного вещества ОП-20 (кривые 1 я 2 на рис. 6), которые указывают на сильную первоначальную адсорбцию веществ на поверхности стального электрода и последующую их десорбцию. Первоначальное резкое уменьшение и последующее увеличение силы тока особенно сильно выражено при добавлении неионогенных поверхностно-активных веществ (рис. 6, кривая 2) меньшее влияние оказывает сернокислый нонилпиридиний (рис. 6, кривая 3). Указанная разница во влиянии органических веществ на катодный процесс восстановления Н3О+ и анодный процесс ионизации металла объясняется, прежде всего, существенным различием в условиях адсорбции этих веществ на поверхности металла при анодной поляризации в раствор непрерывно переходят ионы металла, в то время как при катодной поляризации происходит разряд НзО . Это и определяет различие в кинетике формирования переходного стационарного слоя на поверхности металла. [c.142]

    Применяемые в турбинных маслах ингибиторы коррозии представляют собой поверхностно-активные вещества, смачивающие поверхность металла и предотвращающие таким образом образование ржавчины. Селективная адсорбция ингибиторов коррозии поверхностью металла происходит в присутствии влаги. Следовательно, турбинные масла с ингибиторами необходимо трансиор-тировать и хранить в сухом состоянии, чтобы ингибиторы коррозии не теряли своих свойств. [c.72]

    При введении поверхностно-активных веществ, в том числе маслорастворимых ингибиторов коррозии, в масло значения амв и амв уменьшаются. При снижении омв величина в возрастает, а при снижении омв, наоборот, уменьшается. Поэтому уменьшение толщины пленки воды зависит от того, в какой степени изменяются эти величины. Если в масло доба влен ингибитор коррозии, который сильнее снижает амв и слабее омв, то значение 0 возрастает, а толщина пленки воды уменьшается. Ингибированное масло вытесняет воду с поверхности металла. При разрыве пленки воды происходит адсорбция ингибиторов коррозии на металле,. и поверхностное натяжение сгмем на границе металл — масло уменьшается. В этом случае равновесие имеет место, когда [c.151]

    Высказано положение, что при механическом нагружении сталей в агрессивных средах, содержащих ингибиторы коррозии, существует конкуренция двух противоборствующих факторов разупрочнение Материала из-за адсорбционного снижения поверхностной энергии и упрочнение в связи с адсорбционным ингибированием локальной коррозии. Преобладание одного из этих факторов зависит от уровня адсорбщюнной и ингибирующей активности веществ. Так, при явно выраженной химической адсорбции, когда образуются адсорбционные пленки с высокой защитной способностью j преобладает адсорбционное упрочнение. При обратимой (физической) адсорбции, когда ингибирующее действие незначительно, возможно преобладание адсорбционного разупрочнения (тог а проявляется эффект Ребиндера). Поскольку физическая и химическая адсорбции взаимосвязаны и адсорбция во многих случаях обусловливает ингибирование коррозии, эффект Ребиндера вследствие введения в средьг ингибиторов, как правило, не проявляется [69]. В настоящее время подобран ряд достаточно эффективных ингибиторов, существенно повышающих сопротивление металлов и сплавов коррозионному растрескиванию [8,19]. [c.109]

    В начальный период этого цикла исследований основное внимание было обращено на выяснение роли адсорбции в процессах ингибирования. На основании концепции приведенной шкалы потенциалов было показано, что при коррозии металлов ингибирующее действие органических веществ меняется симбатно с их поверхностной активностью на ртути, если все эти измерения проведены при одинаковых ф-потенциа-лах, т. е. при одинаковых зарядах поверхности металла. Этим был доказан адсорбционный механизм действия большинства органических ингибиторов и внесен рациональный элемент в поиски вероятных ингибиторов. Было введено понятие о специфической адсорбции I и II родов. Специфическая адсорбция I рода определяется природой адсорбирующихся частиц природа металла здесь проявляется главным образом через его нулевую точку. Это позволило на основании адсорбционных измерений, проведенных на одном металле, предвидеть адсорбционное поведение того же вещества на других металлах. Так, в частности, оказалось возможным, используя приведенную шкалу, оценивать области потенциалов, внутри которых на данном металле следует ожидать адсорбцию и влияние органических веществ на коррозионные и другие электрохимические процессы. Подобный же подход был впоследствии плодотворно использован и в работах Лошкарева по электроосаждению металлов. Недавно в работах московских и тартусских электрохимиков были получены результаты, дающие экспериментальное качественное подтверждение этой концепции. Следует, однако, подчеркнуть, что она оправдывается для оиределенной, хотя и широкой группы ингибиторов (азотсо- [c.135]

    Ингибиторы с большей длиной алифатической цепи обладают и большей адсорбируемостью (их поверхностно-активные свойства выше, чем у веществ с короткой цепью). Поэтому в единицу времени большее число молекул с длинными алифатическими цепями адсорбируется на поверхности металла. При адсорбции этих веществ больше ионов Н3О+ будет удалено из зоны электрохимической реакции и этот процесс будет идти быстрее, значительнее и быстрее изменится скачок потенциала в плотной части двойного слоя. В связи с этим скорость изменения силы тока в зависимости от времени в первые секунды для веществ с более длинной алифатической ценью будет больше (рис. 1). Вместе с тем, как видно из рис. 1, время достижения стационарного значения силы тока для веществ с более длинной и менее длинной алифатической цепью может быть одинаковым. Это объясняется замедленными изменениями в двойном слое в присутствии веществ с более длинной алифатической цепью. [c.141]

    При совместном введении в кислоту ионов галогенов и органического ингибитора скорость изменения силы тока, прежде всего, определяется формированием стационарного переходного слоя. Поверхностно-активные анионы, увеличивая скорость и величину адсорбции органического вещества, увеличивают иг его влияние на изменение силы тока. Увеличением адсорбции можно также объяснить наблюдающееся на опыте изменение скорости падения силы тока с увеличением концентрации добавленЯого ингибитора. [c.142]

    Причина этого, по-видимому, заключается в следующем. В растворе кислоты ионную часть двойного слоя стального электрода образуют ионы S0 . Если в кислоту введены ионы Вг , строение двойного слоя будет иным. Можно предполагать, что количество анионов Вг в ионной части двойного слоя будет больше, чем ионов SOJ , из-за большей поверхностной активности 13г . Их будет больше и в слзп1ае последующей адсорбции катионов органических веществ (например, катионов нонилпиридиния). Выше было показано, что органические ингибиторы могут выталкиваться из двойного слоя электрическим полем, которое создается катионами металла, [c.147]

    В серии работ Л. Хорнера с сотрудниками [150—152] изучены ингибирующие свойства четвертичных солей арсония и алкилариларсинов различного строения. Четвертичные соли арсония оказались весьма эффективными ингибиторами кислотной коррозии. Механизм их действия связывается с явлением вторичного ингибирования, когда ингибирующие свойства объясняются адсорбцией на металле продуктов правращения исходного вещества. Действительно, четвертичные соли арсония чрезвычайно электрохимически активны и в зависимости от величины и знака электродного потенциала могут давать целую гамму продуктов. При контакте железа с кислыми растворами, в которых имеются соли арсония, образуются замещенные арсииы, арсиноксиды и даже свободные радикалы типа Кз, з. Все эти вещества поверхностно-активны и благодаря сильной адсорбции экранируют поверхность металла, вызывая торможения коррозии. [c.112]

    Из рис. 3 следует также, чго имеется возможность увеличения эффективности ингибирующего де11ствня этой добавки путем смещения потенциала до более отрицательного значения (например, путем катодной поляризации), при котором адсорбция вещества А увеличивается (Да > Аод). В зависимости от величины и соотношения между начальным потенциалом катода и нулевой точкой металла наиболее эффективная защита будет достигаться при комбинации катодной поляризации с различными по заряду частицами ингибитора [201. Так, при комбинированной защите железа от разрушения в кислотах следует использовать поверхностно-активные катионы, а для защиты кадмия (ср > 0) — поверхностноактивные молекулярные вещества. [c.38]


Смотреть страницы где упоминается термин Адсорбция ингибиторов поверхностно-активных веществ: [c.93]    [c.93]    [c.10]    [c.169]    [c.303]    [c.74]    [c.78]    [c.276]    [c.119]   
Ингибиторы коррозии (1977) -- [ c.134 ]




ПОИСК





Смотрите так же термины и статьи:

Адсорбция поверхностная

Поверхностная активность

Поверхностно-активные вещества



© 2025 chem21.info Реклама на сайте