Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кинетика формы

    Усадка полукоксов при температуре выше затвердевания, естественно, является следствием выделения летучих веществ и тесно связана с ним с точки зрения кинетики. Форма кривой, отображающей скорость усадки в зависимости от температуры, является одной из основных характеристик угля (или шихты), определяющих процесс образования трещин в коксе. [c.136]


    Уравнение (18.17) по форме не отличается от уравнения, описывающего кинетику электрохимической стадии частной (индивидуальной) реакции [c.393]

    Кинетические зависимости, выраженные в такой форме, часто и успешно используются для описания гомогенных реакций, поскольку они соответствуют механизму этих реакций, и для корреляции экспериментальных данных кинетики гетерогенных реакций. Величины Ру и у. называются порядками соответственно прямой и обратной реакций по веществу А,. Если реакция необратима, то к = 0 бывают случаи, когда равновесие настолько сдвинуто в сторону образования продуктов реакции, что это равенство выполняется с хорошим приближением. [c.65]

    Все три процесса переноса энергии, компонента и количества движения (импульса) протекают во времени, причем каждый имеет собственную кинетику. Независимо от формы кинетических законов в уравнении процесса переноса пе появляется новых переменных, не являющихся функцией основных величин, характеризующих состояние системы и, V, Скорость приращения энтропии, например, согласно уравнению (3-20), при 7 = О и = О выразится следующим образом  [c.31]

    Явная форма этой функции определяется кинетикой реакции (см. табл. 11-1). [c.69]

    Более подробное изложение этого вопроса дается в специальных работах по кинетике химических реакций [1]. Уравнение скорости реакции можно записать также в следующей форме  [c.197]

    Для более сложных моделей молекул, например тех, которые предполагают наличие центральных сил, мы заменяем вышеуказанный ряд параметров новым рядом, определяющим силовое поле. Если добавить к тому же проблему сложных молекул (т. е. молекул, обладающих сложным внутренним строением), то потребуется еще дополнительный ряд параметров, определяющих взаимодействия между внутримолекулярными движениями и внешними силовыми полями. В случае жесткой сферической модели это потребовало бы введения дополнительных коэффициентов для описания эффективности передачи внутренней энергии между сталкивающимися молекулами. Несмотря на эти трудности, кинетическая теория в ее простом равновесном приближении и в ее более точном неравновесном представлении способна воспроизвести физическое поведение в форме, которая математически проста, качественно правильно представляет взаимозависимость физических переменных и дает количественное соответствие, более точное, чем только порядок величины. Как таковая, эта теория представляет ценное орудие прямого проникновения во взаимосвязь между молекулярными процессами и макроскопическими свойствами и, как мы увидим, способствует пониманию существа кинетики. [c.173]


    Исследование кинетики гидрогенолиза этилциклопентана на Ru/ и транс-1,2-диметилциклопентана на Rh/ показало [229, 230], что в изученных условиях реакция проходит согласно первому или близкому к нему порядку по углеводороду. Это указывает, по-видимому, на относительно меньшую степень заполнения активной формой углеводорода поверхности Rh- и Ru-катализаторов по сравнению с Pt/ , на котором реакция идет согласно нулевому порядку по углеводороду. Энергия активации гидрогенолиза этилциклопентана на Ru/ равна 59—75 кДж/моль (в зависимости от образца катализатора), на Rh/ она составляет 75 кДж/моль, т. е. зна- [c.170]

    При температурах выше 800° С скорость конденсации до углерода становится важным фактором и так как углерод катализирует разложение бензола, и быстро покрывающиеся углеродом поверхности реактора, то кинетика реакции усложняется. Однако можно сказать, что реакция является, по-видимому, реакцией второго порядка, причем имеет место адсорбция на поверхности контакта.В полом цилиндре углерод не только отла-,гается в виде прочно пристающего к стенкам налета, но также образуется в струе пара и оседает на дно трубы в виде мягкого объемистого осадка. В связи с этим Айли и Райли [22] дают описание трех форм углерода, отлагающегося при пиролизе углеводородов, включая бензол, при температурах от 800 до 1300° С. Таковыми являются отложения стекловидные, мягкая сажа и волокнистые, располагающиеся зонально от нагревающегося до охлаждающегося концов трубы соответственно. На качество конденсирующихся структур углерода, а также и на их количество преимущественное влияние оказывает температура. [c.96]

    Если полимеризация проводится в воде, содержащей не просто небольшое количество диспергирующего вещества, а довольно большое количество мыла или другого поверхностно-активного вещества, то достигается гораздо более тонкое диспергирование продукта, и часто продукт реакции получается в форме стойкой эмульсии или латекса. Эти условия эмульсионной полимеризации, хотя и разработаны более или менее эмпирически, как доказано, сильно изменяют кинетику полимеризации и подробнее обсуждаются ниже. Они допускают образование полимеров высокого молекулярного веса из таких веществ, как бутадиен, радикальную полимеризацию которого не удается провести удовлетворительно в массе. Этот метод имеет очень большое техническое значение для производства синтетического каучука и нри промышленной полимеризации многих других мономеров. Однако он имеет тот недостаток, что трудно [c.119]

    Значительные усилия были приложены, чтобы изложить материал в возможно доступной форме и в объеме, достаточном для перехода студента или инженера-химика к изучению оригинальной литературы и правильной интерпретации ими экспериментальных данных по химической кинетике, а также для применения своих знаний в проектировании химических реакторов. Числовые примеры и задачи, включенные в текст, должны облегчить достижение указанной цели. [c.10]

    Реактор является самой важной и одновременно наиболее трудно исследуемой частью установки. Простые физические методы измерения производительности, использованные нами при обследовании других аппаратов, в данном случае неприменимы, так как в реакторе протекают многочисленные и взаимосвязанные химические реакции. Здесь нужен полный теоретический анализ кинетики процесса (см. главу И) или его эквивалент в форме уравнений, полученный статистически, методом регрессионного анализа экспериментальных данных.  [c.74]

    В первой из них в компактной форме излагается тот минимум сведений по химической кинетике и теории химических реакторов, который необходим для составления математических моделей реакторов. Здесь же описывается процедура составления таких моделей и приводятся некоторые математические сведения, в основном по качественной теории дифференциальных уравнений. [c.8]

    Скорость образования аддуктов и клатратов заметно выше скорости, при которой достигается равновесие в большинстве процессов адсорбции кинетику.последних можно сравнить с кинетикой образования соединений включения в кристаллических решетках с пустотами в форме слоев (цеолиты). [c.76]

    Таким образом, необходимо наличие в металлируемом соединении достаточно подвижного водорода. Растворители эфирного типа значительно облегчают реакцию переноса цепи и, кроме того, сами часто являются объектами металлирования, что служит еще одним доводом к отказу от использования их в процессах получения жидких каучуков методом каталитической полимеризации. Однако в некоторых случаях перенос активного центра возможен также в среде неполярных растворителей. Так, эффективный перенос цепи осуществляется при синтезе бутадиен-стирольных жидких каучуков, если процесс проводят в толуоле в присутствии алкоголятов калия, в качестве добавок сближающих константы сополимеризации. При исследовании кинетики полимеризации 1,3-пентадиена было показано, что если полимеризация транс-формы мономера подчиняется закономерностям полимеризации с литийорганическими соединениями, то цас-форма ведет себя иначе во всех растворителях эффективный перенос на мономер обусловливает расширение молекулярно-массового распределения и получение полимера с молекулярной массой более низкой, чем расчетная [17], [c.418]


    Если определяющим является физический этап, скорость процесса описывают уравнениями кинетики массопереноса или сорбции. Тогда для выбора формы кинетического уравнения должны быть выполнены исследования по оценке роли процессов массопереноса и сорбции. Методы такого исследования рассмотрены в работе [19]. [c.133]

    Другой формой кинетического уравнения, справедливой как для технической кинетики, так и для области внутренней диффузии [c.133]

    В монографии в доступной форме рассмотрены вопросы химической кинетики применительно к промышленным технологическим процессам. В ней излагаются научные основы проектирования химических реакторов, позволяющие получить ясное представление о физических и химических основах расчета, а также условиях, при которых реакторы могут работать на режиме максимальной эффективности. [c.2]

    N = N(i). Это означает, что потенциал Цг однозначно связан с кинетикой выбор формы потенциала определяет в ид кинетики и наоборот. Самая общая форма связи химического потенциала (без конкретизации его формы) с функцией скорости получается при дифференцировании (1.59) по времени  [c.40]

    В гл. 3 показано, что выбор формы химического псевдопотенциала однозначно определяет тип кинетик и вид неравновесных термодинамических характеристик. [c.103]

    Из схемы универсального последовательного анализа (см. рис. 14) видно, что этап стехиометрического анализа предшествует кинетическому. Он, однако, не просто предшествует ему, но и лежит в основе последнего, поскольку балансовые ограничения носят принципиальный характер и, являясь одной из форм закона сохранения вещества, в значительной степени определяют основные особенности кинетики сложного процесса. Перечислим конкретные задачи начального этапа анализа. [c.127]

    Яблонский Г. С., Быков В. И. Упрощенная форма записи кинетического уравнения сложной каталитической реакции с одномаршрутным механизмом.— Кинетика и катализ, 1977, т. 18, вып. 6, с. 1561-1567. [c.370]

    Фундаментом прогнозирования активности, селективности и других специфических свойств катализатора должна стать детальная микроскопическая теория гетерогенного катализа, опирающаяся на современные представления квантовой химии и теории твердого тела. Описывая элементарные акты реакций и превращений вещества на поверхности реального катализатора, такая теория в принципе дает возможность не только в полной мере понять механизм, кинетику и термодинамику катализа, но и предсказать каталитическую способность того или иного металла, полупроводника, диэлектрика в конкретной химической реакции. Однако незавершенность теорий катализа не позволяет однозначно предсказывать оптимальный состав промышленных катализаторов и другие их характеристики для действующих и проектируемых производств. До сих пор решение проблемы подбора катализаторов опирается в значительной мере на эмпирические подходы, сопряженные с большими затратами рутинных форм труда. Так, в поисках первого катализатора для синтеза аммиака было исследовано около 20 тыс. различных веществ [1, 2]. В 1973 г. число известных органических соединений оценивалось в 6 млн. Ежегодно только в нашей стране синтезируется более 40 тыс. новых химических соединений. Таким образом, разработка научно обоснованных целенаправленных стратегий поиска катализаторов представляет актуальную проблему современного катализа. Актуальность проблемы подтверждается еще и тем, что коло 90% промышленных химических и нефтехимических производств ведется с применением катализаторов. [c.56]

    С этих же позиций могут быть объяснены наблюдаемые закономерности кинетики каталитических процессов. Различные формы моделей кинетики процессов адсорбции и десорбции с учетом вида твердой поверхности приведены в табл. 3.3. Здесь же указаны основные параметры моделей кинетики — константы скорости адсорбции и десорбции К ,. [c.151]

    Форма описания кинетики [c.153]

    Для реакции с ленгмюровской кинетикой феноменологические кинетические закономерности становятся более сложными и зависимыми от соотношения коэффициентов диффузии реагентов и продуктов. Подробно это изложено в монографии [1]. Там же показано, что при пользовании гидравлическим радиусом как характеристическим линейным размером вид кинетических уравнений во внутри-диффузионной области практически не зависит от формы частнц. [c.58]

    Большинство взрывных реакций, причем не только тепловых, подчиняются уравнениям в этой форме, и в большинстве случаев кинетика реакций недостаточно хорошо известна для того, чтобы интерпретировать параметры. Кроме того, коэффициент теплопередачи отчетливо зависит от состава смеси, и это будет влиять на пределы давления, если состав изменяется. Так, в работе Загулина [6] было найдено, что при определенной температуре смесь состава С1г —1/зНг имеет наиболее низкий взрывной предел. Из кинетики реакции [скорость = кд (Нг)] следует ожидать, что [c.379]

    Биологические процессы на уровне одной клетки или на уровне более сложных многоклеточных форм составляют наиболее трудные и привлекающие внимание проблемы химии и химической кинетики. Из огромного количества работ, которые были выполнены с целью выяснения элементарных кинетических закономерностей в биологических процессах, можно сделать некоторые выводы. Один из них состоит в том, что, за исключением простой ионизации, большинство отдельных стадий в биохимических процессах катализируется большими молекулами, называемыми ферментами. Каталитическая активность ферментов обусловлена наличием особых простетиче-ских групп. Кроме того, в состав их молекул входят белковые остатки, которые составляют большую часть молекулы. Молекулярный вес ферментов определяется в основном молекулярным весом входящего в их состав белкового остатка. [c.561]

    В работе [4] исследована кинетика реакций дейтерообмена полиметилциклопентанов на поверхности металлических пленок (Pt, Pd, Ni, Rh), a также конфигурационной изомеризации цис- и трамс форм 1,1,3,4-тетра-метилциклопентана и цис-1,2-диметилциклопентана. Изучив кинетику дейтерообмена и конфигурационноп изомеризации, Го и соавторы [4] пришли к заключению, что скорости обеих реакций подчиняются уравнению первого порядка. [c.65]

    В книге В доступной форме рассмотрены вопросы кинетики химических реакций и по аз.эны пути практического применения теоретических положений к инженерным расчетам промышленных реакторов- Книга снабжена большим числом примеров и задач. В ней приведена обширная и хорошо и тeмaтизиpoвaLIнaя библиография. [c.2]

    В предлагаемой читателю книге С. Вейласа сделана попытка систематического изложения основ расчета реакторов химических производств. Кратко, но в весьма доступной форме приводятся и необходимые сведения по кинетике химических реакций. Таким образом, книга в значительной мере восполняет существенный пробел в учебных пособиях, нужных для полноценной подготовки инженера-химика. [c.7]

    Основной теоретической задачей в химической кинетике является создание такой системы взглядов и уравнений, которая позволила бы, исходя из молекулярных параметров реагирующих компонентов и внешних условий протекания процесса, вычислить его скорость. К молекулярным параметрам относятся масса реагирующих молекул, их форма и размеры, порядок связи отдельных атомов и атомных групп в молекуле, энергетическая характеристика отдельных связей, совокупность возможных энергетических состояний молекулы. Под внешними условиями понимается давление (или концентрации), температура, условия, в которых осуществляется процесс (например, проведение реакции в статических условиях или в потоке). В решении этой задачи важным этапом является применение молекулярно-кинетической теории к интерпретации кинетических закономерностей при химических превращениях, поэтому настоящая глава и посвящается тем основам молекулярно-кине-тической теории, которые будут использованы далее при решении поставленной задачи. [c.89]

    Поскольку величины кинетических параметров ко, Е, Ьо п Q, г [где к = каехр —Е1РТ), Ь = Ьоехр (Q/ЯT)] приходится определять подбором по экспериментальным данным или иногда проведением специального исследования, обычно стараются использовать наиболее простые формы кинетических уравнений, содержащие минимальное число кинетических параметров. Еще в ранних работах по кинетике [18] отмечалось, что простое уравнение первого порядка т=кС достаточно эффективно для описания различных химических реакций. [c.132]

    Еще раз следует подчеркнуть, что важной особенностью предлагаемого механизма является стабилизация предшественника карбена, динамически связанного в форме тригалометилидного аниона на границе раздела фаз. Кинетика таких реакций и реакций алкилирования слабых кислот не исследована. Их изучение осложняется гетерогенностью системы, конкурентными реакциями, сложными равновесиями, а также общими ограничениями, связанными с получением линейных зависимостей для констант скоростей второго порядка (см. [10]). Однако, несмотря на все эти трудности, известные факты, по-вцдимому, согласуются с рассмотренным выше механизмом. [c.63]

    Интеллектуальный диалог ЛПР—ЭВМ представляет наиболее эффективную форму организации ППР в различных режимах в режимах сбора и переработки экспериментальной информации, в режимах синтеза оптимальных функциональных операторов объ-ектов) в режимах автоматизированного решения проектных задач, в режимах поиска оптимальных законов гибкого управления и др. Из перечисленных режимов ППР, реализуемых в форме диалога ЛПР—ЭВМ, для успешного решения задач в области теории и практики гетерогенного катализа особое значение приобретают автоматизированные методы получения достоверной информации о процессе, глубины ее обработки и осмысления. Здесь на первый план выступают вопросы оптимальной организации эксперимента, обеспечения его гибкости и информативности, создания специализированных систем научных исследований (АСНИ). Специализация методов экспериментального исследования может осуществляться по различным направлениям изучение только или преимущественно самих катализаторов изучение только или преимущественно каталитических процессов, изучение отдельных свойств, не имеющих простой и однозначной связи с катализом, и изучение свойств, непосредственно характеризующих катализ прямые методы изучения каталитического процесса — его выходов, селективности и кинетики в сочетании с его экономической эффективностью, целесообразностью его промышленной реализации и т. п. [c.38]

    Численное решение записанной системы уравнений проводилось методом ортогональных коллокаций. Исследовался пример решения модели (4.20)—(4.26) с линейной кинетикой адсорбции, т. е. / (X, п, 0) = Ла (X — п1Ка), где Ка — константа адсорбционно-десорбционного равновесия Ка — константа скорости адсорбции. При проведении расчетов принимали 7 = 13 мл 7а = 5 мл к = 25,0 см/с >эф = 0,2 см7с ц = 0,4 6 = 1 г/см . Варьировали РГ от 1 до 2 мл/с, Д от 0,1 до 1 см, ка от 2 до 100 мл/г с. Ка от 1 до 50 мл/г, Д( от 3 до 10 с, а также величину и форму входного сигнала Свх t)  [c.213]

    Рассмотрим вначале феноменологическую кинетику реакции во йпутридиффузионной области. Если скорость химической реакции в единице объема пористой частицы равна р (с, Т), то распределение концентрации с любого г-го вещества со стехиометрическим коэффициентом V внутри частицы произвольной формы определяется решением системы дифференциальных уравнений  [c.57]


Смотреть страницы где упоминается термин Кинетика формы: [c.112]    [c.149]    [c.112]    [c.149]    [c.286]    [c.8]    [c.74]    [c.259]    [c.15]    [c.7]    [c.214]    [c.12]    [c.121]   
Экстрагирование Система твёрдое тело-жидкость (1974) -- [ c.93 ]




ПОИСК







© 2025 chem21.info Реклама на сайте