Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Зависимость скорости кристаллизации от вязкости

Рис. 34. Зависимости скоростей кристаллизации (1) и вязкости (2) каучука от температуры Рис. 34. <a href="/info/1328694">Зависимости скоростей кристаллизации</a> (1) и вязкости (2) каучука от температуры

    Рассмотрим явления, происходящие при температурах ниже температуры кристаллизации. С понижением температуры уменьшается интенсивность теплового движения и резко возрастает вязкость системы. При охлаждении системы, в диапазоне температур, в котором вязкость не очень высока, перегруппировка молекул еще возможна, а тепловое движение все в меньшей степени нарушает образовавшиеся упорядоченные области. Поэтому с понижением температуры в этом диапазоне скорость образования зародышей и их роста увеличивается. При переходе же в область температур, в которой вязкость очень высока, перегруппировка молекул затрудняется, вследствие чего при дальнейшем понижении температуры скорость кристаллизации уменьшается. Следовательно, зависимость скорости кристаллизации от температуры выражается кривой с максимумом (рис. 43). Температура, соответствующая максимуму на кривой, — это оптимальная температура, при которой достигается наибольшая скорость кристаллизации. Эта оптимальная температура всегда ниже температуры кристаллизации вещества. [c.140]

    На форму и размеры частиц, образующих структуру (каркас) консистентных смазок, химический состав масел оказывает очень малое влияние. Частицы мыл одного и того же химического состава в смазках в зависимости ет условий кристаллизации, дополнительной термообработки, вязкости масла и некоторых других факторов могут сильно различаться по форме и размерам. Чем больше вязкость масла, тем длиннее образуются кристаллы это связано с тем, что скорость образования зародышей новых кристаллов мыл меньше и больше растут уже образовавшиеся лентообразные частицы. Однако при очень больших вязкостях масла образования лент не происходит, а получается мелкозернистая масса. , [c.656]

    Затвердевание гранул различных плавов происходит по-разному, в зависимости от их свойств — теплоты кристаллизации, вязкости, способности к переохлаждению и др. Например, капля нитрата аммония начинает кристаллизоваться без существенного переохлаждения, а капля карбамида сильно переохлаждается, и лишь затем наступает интенсивная кристаллизация сразу по всему ее объему [88]. Это видно на термограммах рис. 12.2. На кривой 1 для нитрата аммония (при скорости движения относительно воздуха 5,5 м/с) имеются три площадки 2 — первоначальной кристаллизации, [c.297]

Рис. 40. Зависимость от температуры скорости образования зародышей (/ , вязкости (2) и скорости кристаллизации (.У). Рис. 40. Зависимость от <a href="/info/1003257">температуры скорости образования зародышей</a> (/ , вязкости (2) и скорости кристаллизации (.У).

    Однако эти процессы сравнительно мало исследованы. Нами изучена скорость кристаллизации гипса из водных растворов некоторых солей. Кристаллизация протекала из растворов различной степени пересыщения без участия затравки. Вероятность образования центров кристаллизации в единицу времени находится в зависимости, главным образом, от пересыщения, хотя такие факторы, как природа растворителя и растворенного вещества, температура, перемешивание, вязкость и другие, играют при этом также весьма существенную роль. [c.123]

Рис. 42. Зависимость скорости образования зародышей (— — — — —), вязкости (-----) и скорости кристаллизации (-) от температуры. Рис. 42. <a href="/info/1153507">Зависимость скорости образования</a> зародышей (— — — — —), вязкости (-----) и <a href="/info/12712">скорости кристаллизации</a> (-) от температуры.
Рис. 7. Зависимость скорости роста кристаллов (СРК, кривая 1), скорости образования центров кристаллизации (СОЦ, Кривая 2) и вязкости (кривая 3) от переохлаждения расплава. Рис. 7. <a href="/info/73000">Зависимость скорости роста кристаллов</a> (СРК, кривая 1), <a href="/info/318113">скорости образования центров кристаллизации</a> (СОЦ, Кривая 2) и вязкости (кривая 3) от переохлаждения расплава.
    В то же время замечено, что кристаллизация ориентипован-ного полимера не ускоряется при введении агентов зародышеобразования 2". Это было обнаружено по характеру зависимости между кажущейся вязкостью и скоростью сдвига. При увеличении скорости сдвига кажущаяся вязкость уменьшается, а затем внезапно увеличивается из-за кристаллизации полимера в капилляре при высокой скорости сдвига. В присутствии агентов зародышеобразования увеличение вязкости происходит при более высоких скоростях сдвига. [c.149]

    Зависимость линейной скорости кристаллизации от переохлаждения, как правило, имеет экспоненциальный характер [6—8], пока степень переохлаждения не достигнет определенной величины. При дальнейшем охлаждении линейная скорость кристаллизации остается примерно постоянной, а при очень большом переохлаждении даже уменьшается, по-видимому, в результате увеличения вязкости раствора и замедления процессов тепло- и массопередачи. В расплавах линейная скорость кристаллизации достигает нескольких сантиметров в секунду, а в растворах, как правило, она измеряется долями миллиметра в час. [c.51]

    Описанные результаты, по-видимому, нельзя объяснить в рамках модели ПСК, поскольку сетка зацеплений в расплавах ТМО, судя по данным измерения вязкости, образуется при 2,3-10 , что существенно превышает Мег = 1,07-10 . Таким образом, аномальный характер температурной зависимости поверхностного натяжения ТМО при М = Мег следует отнести к стабилизации зародышей складчатых структур при понижении температуры расплава. Очевидно, охлаждение расплава ниже температуры плавления полимера (т. е. переход в область термодинамической устойчивости кристаллической фазы) должно приводить к противоположному явлению разворачивания цепей, поскольку наибольшей термодинамической стабильностью, вообще говоря, обладают кристаллы полимеров, образованные макромолекулами с полностью выпрямленной конформацией (более подробно об этом см. главу VI). Видимо, именно конкуренцией этих двух противоположных эффектов объясняется резкое уменьшение скорости кристаллизации из расплава фракций ПОЭ в области ММ, в которой происходит аномальное понижение плотности упаковки (см. рис. 1.8 и 1.9). [c.46]

    Помимо степени пересыщения растворов или переохлаждения расплавов на скорость возникновения центров кристаллизации существенно влияет температура, гидродинамические условия кристаллизации, электрические и магнитные поля и др. [41, с. 67]. Изменение температуры раствора или расплава приводит к изменению их вязкости, растворимости кристаллизанта, коэффициента диффузии ионов и ассоциатов, структуры растворителя, сдвигает равновесие между ассоциатами и раствором, влияет на процессы сорбции примесей, плотность и распределение поверхностных дефектов зародышей. В связи с этим однозначной зависимости скорости зародышеобразования от температуры нет, в большинстве случаев она увеличивается при нагревании.  [c.48]

    Вязкость расплава— это степень ограничения интенсивности диффузионных процессов. Чем меньше вязкость, тем скорее кристаллизуются и в большем количестве наиболее высокотемпературные минералы. Т.е. величина вязкости сдвигает скорость кристаллизации минералов при ее уменьшении в сторону наиболее высокотемпературных минералов, а при ее увеличении в сторону меньшей зависимости от температуры и большей зависимости от количественного соотношения минералов, когда первыми кристаллизуются минералы количественно преобладающие в породе почти независимо от температуры их кристаллизации. [c.48]


    Вязкость нефтяных остатков при высоких температурах изменяется по сложной зависимости по мере увеличения концентрации дисперсной фазы она непрерывно возрастает. Только при замедлении скорости перехода системы из аномального жидкого состояния в твердое до оптимального ее значения, когда вязкость обеспечит диффузию молекул к центрам кристаллизации, возможен рост крупных кристаллов. При одних и тех же условиях (получения нефтяного углерода соответствие между указанными скоростями и ростом кристаллов создается подбором сырья определенной молекулярной структуры (крекинг-остатки дистиллятного происхождения, ароматические концентраты). В температурном интервале перехода системы из состояния с критическим напряжением сдвига предельно разрушенной структуры Рг к состоянию с критическим напряжением сдвига необратимо твердеющей системы Рд возможен, интенсивный рост кристаллов углерода с анизотропными свойствами. Величина температурного интервала зависит от температуры процесса перехода. При высоких температурах этот интервал минимален, что существенно ограничивает рост кристаллов. Он минимален также при использовании сырья, со- [c.47]

    Скорость химических реакций, а также процессов кристаллизации зависит от скорости диффузии ионов в силикатном расплаве, которая находится в прямой зависимости от вязкости расплава чем больше вязкость, тем меньше скорость диффузионных процессов и, следовательно, меньше скорость реакции и роста кристаллов. Снижение вязкости жидкой фазы позволяет увеличить скорость и процессов образования силикатных и оксидных соединений. Большое значение имеет вязкость жидкой фазы в процессе получения материалов путем спекания. При производстве стекла вязкость расплава определяет режим обработки материала практически на всех стадиях технологической схемы. Знание свойств расплавов позволяет правильно выбирать оптимальные параметры технологии большинства силикатных материалов. [c.111]

    На ряде зарубежных заводов для получения низкозастывающих масел осуществляется по новой технологии процесс 011сЬ1П [68, с. 153 87]. В этом процессе использован оригинальный метод кристаллизации парафина, заключающийся в прямом введении холодного растворителя в нагретое сырье при энергичном перемешивании в кристаллизаторе, снабженном перемешивающим устройством. Образующиеся сильно разрозненные и компактные агломераты кристаллов твердых углеводородов обеспечивают высокие скорость фильтрования и выход депарафинированного масла. Затем в скребковых кристаллизаторах температуру суспензии понижают до требуемой температуры фильтрования. Кристаллы парафина отделяются от м асла филы1ро.ванием в одну или более ступеней в зависимости от заданного содержания масла в парафине. Дополнительной обработки не требуется. Для предотвращения образования льда в оборудовании, работающем с холодным растворителем, применяется система осушения растворителя. Обычно в качестве растворителя используют смесь метилэтилкетона с метилизобутилкетоном или толуолом. По этой технологии можно депарафинировать сырье практически любой вязкости и получать масла с низкой температурой застывания при увеличении скорости фильтрования суспензии на 40—50% и уменьшении содержания масла в гаче до 2—15% (масс.) при одноступенчатом фильтровании. В случае двухступенчатого фильтрования получается парафин с содержанием масла менее 0,5% (масс.). [c.165]

    Отложим пока анализ показателя т и вспомним, что для кристаллизации полимеров необходимо некоторое переохлаждение. Это обстоятельство не только сдвигает область кристаллизации влево по оси температур по сравнению с областью плавления, но и дополнительно расширяет ее (прежние причины размазывания фазового перехода также остаются в силе). Характер температурной зависимости скорости кристаллизации v можно понять из следующих соображений. При Т кристаллизация невозможна (и = 0). С увеличением степени переохлаждения ЛГ = rUj, — скорость V должна была бы все возрастать, но тут всту пает в игру другой фактор вязкость расплава, которая тоже резко возрастает с увеличением АГ. Но так как процессы нуклеации и роста кристаллов контролируются диффузией, а скорость диффузии звеньев или сегментов обратно пропорциональна вязкости, то это должно вызвать уменьшение V при увеличении АГ. Комбинация двух противоположных тенденций приводит к появлению колоколообразной кривой (рис. П1. 10), причем V обращается в нуль при и а максимуму соответствует примерно О.ВГпл правило Годовского [48]). [c.103]

    Дитцель и Пёгель [11] исследовали зависимость скорости кристаллизации от температуры для ряда составов в интервале концентраций Са(ЫОз)г 46—54 вес.% (рис. 96). Максимальная скорость кристаллизации наиболее устойчивого стекла (содержащего 50,4 вес.% Са(МОз)2) имеет такой же порядок, как и у наиболее устойчивых стекол в системе ЫагО — ЗЮг. На рис. 97 приведена зависимость вязкости этого стекла от температуры. [c.225]

    Анализ этого уравнения применительно к кристаллизации переохлажденной жидкости, показывает, что с ростом степени переохлаждения скорость зарождения центров кристаллизации увеличивается (уменьшается AG) и уменьн1ается скорость доставки вещества (увеличивается вязкость). Такие зависимости должны давать максимум на кривой зависимости скорости образовании центров кристаллизаций от температуры (рис. 11.25), Например, [c.103]

    В работах Михневича с сотр. [92—95] было доказано существование граничных слоев переохлажденного полярного бетола и пиперина толщиной до 1 мкм вблизи поверхности стекла. Особая структура проявлялась здесь в замедлении образования в ориентированных поверхностью граничных слоях центров кристаллизации по сравнению с объемной частью той же жидкости. Активность поверхности могла быть снижена обработкой стекла раствором плавиковой кислоты или покрытием его тонким слоем коллодия. Действие импульсного магнитного поля приводило к разрушению ориентированной структуры тонких пристенных слоев бетола [95]. Было сделано предположение, что вязкость пристенных слоев переохлажденного бетола имеет аномально высокие значения. Этот вывод подтвержден недавно Межидовыми [96] при измерениях зависимости скорости распространения фронта кристаллизации переохлажденных дифенилами-ла, тимола и бетола от радиуса капилляров, менявшегося в этих экспериментах от 4 мкм до 15 мм. [c.213]

    При содержании иодата лития в расплаве 20,8—60 мол% на кривых охлаждения начало кристаллизации обычно четко не фиксируется, что связано, по-видимому, со значительной вязкостью и малой линейной скоростью кристаллизации указанных расплавов. В этой области составов положение линии ликвидуса определялось методом визуально-политермического и термического анализа с использованием затравок реактивного иодата лития. Для предотвращения гравитационного расслаивания расплавов при растворении иодата лития они тщательно перемешивались при значительном перегреве выше точки ликвидуса. В этом случае при своевременном введении затравки и многократном повторении экспериментов полон ение точки ликвидуса определяется с точностью 0,5°С. При других составах расплавов диаграмма состояния исследовалась также методом, статистического термического анализа. Для примера на рис. 40 показана политерма скорости зарождения центров кристаллизации. Зависимость скорости заронедения центров кристаллизации нитрата лития от переохлаждения имеет экстремальный вид при переохлаждениях примерно 3, 6 и 14 С. Этот ряд температур не зависит от термической предыстории расплава, в то время как скорость зарождения центров кристаллизации значительно уменьшается при увеличении длительности выдержки в перегретом состоянии. [c.98]

    На рис. 11.29 показапы температурные зависимости скоростей образования центров кристаллизации сч и роста кристаллов V2 в переохлажденной жидкости. Соотношение между этими скоростями и взаимное расположение их максимумов определяют характер кристаллизации и структуру продуктов кристаллизации, Температурные области, лежан1ие по обе стороны от кривой скорости образования центров кристаллизации V], соответствуют метастабильпым зонам, в которых самопроизвольная кристаллизация невозможна. В высокотемпературной метастабильной зоне не образуются зародыши (мала степень переохлаждения), но могут расти центры конденсации, внесенные извне, так как температура в этой зоне ниже температуры плавления кристаллизуемого вещества. Наличие низкотемпературной метастабильной зоны обусловлено высокой вязкостью системы, которая препятствует доставке вещества к центру кристаллизации, и последний не образуется. [c.126]

    Температурная зависимость вязкости, определяющая скорость кристаллизации выше Т , описывается с помощью обычного экспоненциального уравнения (6) [см. первую экспоненту уравнения (10)], как это принято в теории кристаллизации низкомолекулярных жидкостей. Такая зависимость с U — onst не применима для полимеров в широком температурном интервале, и для опи- [c.42]

    Диффузия пе является интердевочкой , она сама может влиять па последовательность кристаллизации минералов из расплавов. В зависимости от скорости диффузии (вязкости) проявляется скорость роста наиболее высокотемпературных минералов. При метасоматозе энергия диффузии определяет собой состав метасоматических зоп. При метаморфизме опа определяет иптепсивпость перегруппировки вещества по более или мепее эпергозатратпым минералам. [c.51]

    Оценим кинетические константы. Для каждого падающего кристалла можно построить зависимость v=v i) и определить величину dvldt с точностью до малых первого порядка dvldt Lv—Подставив dvldt в уравнения (3.185), (3.186), можно разрешить их относительно диаметра сферы, масса которой совпадает с массой падающего кристалла. Подставив найденные значе- ния а в уравнения (3.185), (3.186), легко получить значения для скоростей роста кристаллов в соответствующих временных точках. Однако в нашу задачу входит не только определение скоростей роста по длине трубы, но и определение влияния на скорость роста кристалла пересыщения, температуры раствора, скорости обтекания кристалла раствором, вязкости и плотности среды, окружающей его. Если кристаллизация идет во внешней области (диффузионной), то массовую и линейную скорости роста кристалла можно представить в виде [c.295]

    В промышленных кристаллизаторах непрерывного действия образование и рост кристаллов происходят одиовремепно. Относительные скорости образования и роста определяют распределение получаемых кристаллов по размерам. Данные об этих скоростях, пригодные для проектных расчетов, практически отсутствуют. Однако детальное рассмотрение процесса позволяет сделать некоторые выводы, подтвержденные опытом эксплуатации промышленных кристаллизаторов. При низких степенях пересыщення растворов рост кристаллов преобладает над их образованием и поэтому получаются крупные кристаллы. При высоких степенях пересыщения существует обратная зависимость и получаются мелкие кристаллы. Как правило, для получения крупных кристаллов требуется низкая степень пересыщения, так как в противном случае независимо от типа применяемого оборудования и режима работы образуется слишком большое число ядер кристаллизации. Это неизбежно ведет к снижению производительности кристаллизаторов и необходимости в круппогабаритном оборудовании. Следовательно, задача сводится к достижению максимальной ироиз-водительности кристаллизаторов, совместимой с низкой скоростью образования ядер кристаллизации. Тип применяемого кристаллизационного оборудования, скорость перемешивания, температурный градиент, вязкость жидкой фазы й другие факторы определяют в весьма сложной форме степень пересыщения, которая допустима при необходимости получения крупных кристаллов. Однако оптимальный режим, требуемый для получения кристаллов заданных размеров, может быть выбран только па основе производственного опыта. [c.70]

    До недавнего времени исследования вязкости шлака в зависимости от их химического состава относились к истинно жидкому состояник> раоплава, подчиняющегося закону течения Ньютона. Однако исследования [Л. 118, 120, 122 и др.] показали, что расплавы золы, характеризующиеся наличием основных окислов, способны частично кристаллизоваться и переходить в структурированное состояние. В таком слу-ч ае течение щлака описывается не уравнением Ньютона, а уравнением Бингема — Шведова [Л. 122], которое содержит независящий от градиента скорости деформации член. Поэтому в качестве основной характеристики вытекания шлака принято состояние перехода шлака из структурированного в истинно жидкое состояние. В качестве основного расчетного параметра принимается температура истинно жидкого состояния /о, определяемая по точке расхождения кривых вязкости шлака при нагреве и охлаждении. Расхождение между кривыми нагревания и охлаждения вызвано растворением твердой фазы в расплаве при подъеме температуры и кристаллизации жидкой фазы при охлаждении. Температура нормального жид-fOQ кого шлакоудаления н,ж определяется по температуре о, если вязкость шлака не превышает 200 П. Если вязкость при и более 200 П, то за н.ж принимается температура, соответствующая вязкости 200 П [Л. 122]. Определение н.ж по температуре вязкости при 200 П вызвано тем, что кислые золы и шлаки (с высоким содержанием ЗЮа + АЬОз) имеют низкую кристаллизационную-способность и могут застывать в стекловидном состоянии. Для таких расплавов характерны относительно низкие температуры истинно жидкого состояния при высоких значениях вязкостей. [c.92]

    Целесообразно применять вращающиеся барабанные фильтры, работающие под давлением, для разделения суспензий, жидкая фаза которых имеет высокое давление пара или значительную вязкость, а также в тех случаях, когда образующийся иа ткани осадок отличается большим сопротивлением или растворенные в жидкой фазе вещества склонны к кристаллизации при пониженной температуре, или продувка осадка производится ценными газами [184]. Найдено, что при быстром возрастании скорости фильтрования с увеличением разности давлений целесообразно поддерживать величину ЛР в пределах 2,3—4,2 ат, а при медленном — около 1,4 ат. Прн выборе компрессора для сжатия воздуха нлн другого газа рекомендовано использовать приведенную в указанной работе графическую зависимость расхода воздуха нлн другого газа от скорости фильтрования, Для определения скорости фильтрования прн условии, что сопротивлением фильтровальной перегородки можно пренебречь, получено уравнение, аналогичное уравненню (VIII, 42), в котором пр )нято Яф. п = 0. [c.255]


Смотреть страницы где упоминается термин Зависимость скорости кристаллизации от вязкости: [c.135]    [c.277]    [c.386]    [c.135]    [c.43]    [c.27]    [c.50]    [c.632]    [c.278]    [c.23]    [c.261]    [c.295]    [c.44]    [c.165]    [c.131]    [c.43]    [c.255]   
Кинетика образования новой фазы (1986) -- [ c.67 ]




ПОИСК





Смотрите так же термины и статьи:

Вязкость зависимость

Скорость зависимость



© 2025 chem21.info Реклама на сайте