Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сера, полиморфизм

    Изучение полиморфизма простых веществ. 1. (Работать под тягой ) В пробирку насыпают порошок серы (около 1/4 ее объема). Осторожно и медленно нагревают ее пламенем горелки, пробирку держат специальным держателем. Наблюдают изменение цвета и вязкости серы. Расплавленную серу нагревают до кипения и быстро выливают ее в стакан с холодной водой. При нагревании возможно возгорание серы в пробирке, которое тушат, закрыв чем-либо устье пробирки. Охлажденную серу вынимают из воды и проверяют ее пластичность. [c.185]


    Явление полиморфизма имеет большое значение и в технике. Например, ос- и у-железо значительно отличается по механическим, магнитным и другим свойствам у-структура, обладающая более высокими механическими свойствами, устойчива при температуре выше 910° С, но может сохраниться при быстром охлаждении стали до низких температур. В этом состоит сущность закалки стали. Продолжительное нагревание ниже 910° С ускоряет обратное превращение у->а (отжиг). Переходы кремнезема из одной полиморфной формы в другую при нагревании имеют большое значение в технологии обжига керамических изделий и кремнистых огнеупорных минералов. Широко известным примером полиморфных превращений в технике является оловянная чума —переход белого олова в серое. [c.54]

    Аллотропия может быть обусловлена или различным числом атомов данного элемента в молекуле вещества, например кислород О2 и озон Оз, или различной кристаллической структурой образующихся модификаций, например олово серое и белое. Способность веществ при определенных температурах (давлениях) образовывать в твердом состоянии различные типы кристаллических структур называют полиморфизмом. Полиморфные модификации могут иметь не только простые вещества, но и соединения. Например, для 81С известно более сорока модификаций. Для обозначения аллотропных и полиморфных модификаций используют греческие буквы а, р, 7 и т. д., где а — самая низкотемпературная модификация. При нагревании до определенной температуры происходит переход к следующей модификации, которая обычно имеет менее плотную упаковку. [c.245]

    Аллотропные видоизменения элементарного вещества — это вещества, молекулы которых различны, хотя и образованы атомами одного и того же химического элемента. Свойства аллотропных видоизменений одного и того же элемента, проявляемые в различных агрегатных состояниях, различны. Способность одного и того же вещества существовать в различных кристаллических формах называют полиморфизмом. Он может быть двух видов энантиотропный, когда относительная устойчивость полиморфных видоизменений зависит от температуры и существует температура обратимого превращения, и монотропный, когда одно видоизменение устойчивее другого независимо от температуры. Энантиотропные полиморфные видоизменения, таким образом, подобны агрегатным состояниям одного и того же вещества. Монотропные полиморфные видоизменения являются, по существу, аллотропными видоизменениями в кристаллическом состоянии. Таким образом, границы понятий аллотропии и полиморфизма не вполне совпадают. Следует отметить, что во многих случаях элементарные вещества в жидком и газообразном состояниях содержат молекулы, различные как по числу атомов, так и по структуре. Относительное содержание этих различных молекул в массе элементарного вещества зависит от температуры и других условий, причем изменение этих условий обычно приводит к возврату соответствующих равновесий. В связи с этим, а также с трудностью изоляции отдельных форм молекул последние не принято считать самостоятельными аллотропными видоизменениями. Известным примером таких элементарных веществ является сера, которая в газовом состоянии содержит молекулы четырех видов — За, 5 , (цепе-) и 5 (цикло-). [c.37]


    Теплотами фазовых превращений называют тепловые эффекты полиморфных переходов, плавления, испарения и сублимации. Полиморфные переходы, т. е. процессы превращения одних кристаллических форм вещества в другие в последовательности возрастания температуры могут быть двух типов экзотермические (моно-тропные)—необратимые, односторонне осуществимые, и эндотермические (энантиотропные)—обратимые, двусторонне осуществимые. Примерами полиморфизма могут служить переходы серого олова в белое или моноклинной серы в ромбическую. Процессы плавления, сублимации и испарения во всех случаях являются эндотермическими (в направлении возрастания температуры). С повышением температуры теплота парообразования любого вещества уменьшается и при критической температуре обращается в нуль. Фазовые превращения при условии постоянства давления осуществляются при строго определенной температуре. [c.22]

    Физические и химические свойства иттрия и лантаноидов. РЗЭ имеют серебристо-белый цвет (неодим и празеодим с желтоватым оттенком), в порошкообразном состоянии — от серого до черного. Большая их часть кристаллизуется в плотной гексагональной решетке, за исключением церия, иттербия, самария и европия (табл. 15). Изменение атомных объемов иллюстрируется рис. 16. Для сопоставления верхней и нижней пунктирными линиями показано изменение атомных объемов двух- и четырехвалентных элементов, соседних с лантаноидами в периодической системе. Гексагональная плотная упаковка при достаточно высокой температуре превращается в кубическую плотную с тем же координационным числом. Всем им присущ полиморфизм. В химически чистом виде они имеют высокую электропроводность. Пластичны, имеют твердость порядка 20—30 единиц по Бринеллю. Твердость их зависит от чистоты, термической обработки и обычно воз- [c.51]

    От полиморфизма следует отличать аллотропию — явление, когда один и тот же химический элемент способен существовать в виде двух или нескольких разновидностей или модификаций, которые имеют различные внешние и внутренние признаки. Аллотропия относится к различным кристаллическим модификациям элемента, совпадая в этом случае с полиморфизмом (например, сера ромбическая и моноклинная), и к различным по строению молекулам, различающимся числом атомов в них, например, озон Оз и кислород Ог. [c.53]

    Таким образом, при образовании простых веществ из элементов в общем случае выделяются две стадии химического превращения атом — молекула и молекула — координационный кристалл Уже на первой стадии из одного элемента может образоваться несколько простых веществ. Например, из элемента кислорода образуются два простых вещества Оа и Оз, различающихся составом, строением, а следовательно, и свойствами. Элемент сера в парообразном состоянии существует в виде молекул 5,, 5 , причем равновесие между различными молекулярными ( )ормами зависит от температуры. На второй стадии образования простых веществ возникающие координационные кристаллы в зависимости от внешних параметров равновесия — температуры и давления — существуют в различных структурах (полиморфизм) Одному элементу соответствует несколько простых веществ (полиморфные модификации), различающихся типом кристаллической решетки ромбическая и моноклинная сера, белый, красный и черный фосфор, ГЦК и ОЦК модификации железа и т. п. [c.28]

    Употребляются два термина, отражающих способность веществ существовать в разных формах, — аллотропия и полиморфизм. Первый относится только к простым веществам независимо от их агрегатного состояния (кислород—озон, алмаз—графит и т. п.). Второй относится только к твердому состоянию независимо от того, простое это вещество или сложное. Таким образом, эти термины совпадают для простых твердых веществ (кристаллическая сера, фосфор, железо и др.). [c.321]

    Сера отличается ярко выраженным полиморфизмом. Известно много кристаллических и аморфных модификаций серы. Устойчивой модификацией является а-сера, представляющая собой желтые кристаллы ромбической системы. [c.54]

    Явление аллотропии обусловлено несколькими причинами 1) образованием молекул с различным числом атомов (кислород и озон фосфор двухатомный — 2 и фосфор четырехатомный — Р4 с молекулой в виде правильного тетраэдра и т. д.) 2) образованием кристаллов различных модификаций — частный случай полиморфизма (см. углерод в виде графита и алмаза модификации серы и т. д.). [c.11]

    Экспериментальное определение молекулярной массы ромбической и моноклинной серы показывает, что молекулы серы состоят из восьми атомов, несмотря на различие модификаций. Следовательно, различие в свойствах этих аллотропных видоизменений обусловлено не различным числом атомов в молекуле (как это имело место в О2 и О3), а неодинаковой структурой формой кристаллов. Такое явление называется полиморфизмом. [c.181]


    Опыт 1. Полиморфизм серы [c.126]

    Сера — твердое кристаллическое вещество желтого цвета = 119°С = 445°С циклич молекулы 83 пары 8д 85 8, 82 аллотропия (полиморфизм) [c.26]

    Некоторые вещества могут иметь несколько кристаллических форм. Это явление получило название полиморфизма. В природе существуют две кристаллические формы углерода — алмаз и графит, которые различаются строением кристаллической решетки и свойствами (рис. 11). Сера имеет две устойчивые кристаллические формы — ромбическую и моноклинную. [c.31]

    Серым цветом указаны те частоты аллелей, при которых имеет место полиморфизм. [c.451]

    Полиморфизм — свойство веществ — простых и сложных — существовать в нескольких кристаллических формах, называемых полиморфными (например, сера — моноклинная, ромбическая). [c.236]

    Для углерода (аморфный углерод, графит, алмаз), фосфора (белый, фиолетовый, желтый, черный), серы (ромбическая, моноклинная, полимерная) эти понятия совпадают. Для кислорода в твердом срстоянии известно три типа кристаллов с температурами перехода между ними —229 и —249°С. Это также ттроявление полиморфизма. Но существование кислорода в двух различных молекулярных формах Ог и Оз (озон) выходит за рамки полиморфизма и является аллотропией. [c.97]

    Такое поведение поли-у-бензил-1-глутамата связано с его конфигурационным полиморфизмом, вообще присущим а, -полипептидам. Принимая во внимание, что, в зависимости от характера растворителя, макромолекулы П 0ли-7-бензил-1-глутамата могут иметь и конформацию клубка, можно схематизировать различные структурные состояния этого и родственных полимеров циклической серией переходов (рис. 21). В отличие от первоначального варианта этой схемы, предложенной Флори [42], мы подчеркиваем то обстоятельство, что характер кристаллического состояния может зависеть от пути, который должны проделать различные части молекулярных цепей, так как кинетика кристал-,лизации гибких и жестких макромолекул совершенно различна. [c.75]

    Берцелиус [3, 61] первым высказал мысль, что продукты полимеризации, т. е. полимеры, представляют собой вещества, имеющие тот же процентный состав, что и исходные вещества, но отличающиеся от них по молекулярному весу. Голлеман [32] описывал полимеризацию как процесс, при котором две или больше реагирующие молекулы соединяются вместе таким образом, что исходное вещество можно регенерировать обратно. Штаудингер [79, 80], критикуя утверждение Голлемана, показал, что этот критерий совсем не существенен для процесса полимеризации, потому что может быть менее глубокая степень разложения, чем деполимеризация в мономолекулярное состояние. Другими словами, полимеризация не всегда сопровождается деполимеризацией и если даже сопровождается, то деполимеризация не обязательно регенерирует исходное вещество. Обратимость может быть неполной. Штаудингер рассматривает полимеризацию как взаимодействие двух или более молекул одного соединения с образованием продукта, имеющего тот же состав, но больший молекулярный вес. Сделана попытка [29] подразделить полимеризацию на физический полиморфизм (так же, как в случае серы) и полимерию с этой точки зрения полимеризация рассматривалась как процесс, который включает структурно-химические изменения. Предполагалось, что процессы полимеризации аналогичны процессам изомеризации в том смысле, что участвующее вещество совершенно изменяется. Структурно-химические изменения сообщают полимеру особую характеристику и отражаются на изменяемости его физико-химических свойств. Представления о полимеризации не всегда отличаются от представлений об ассоциации. Если первичные частицы рассматривать как химические молекулы, то удвоение молекулярного веса можно рассматривать как изменение степени -агрегации и образование таких молекулярных агрегатов будет подчиняться законам кристаллизации из насыщенных растворов. [c.634]

    Следует различать стереоизомерию и физическую изомерию (полиморфизм). Полиморфизм наблюдается только у кристаллических веществ и обусловлен различным строением кристаллической решетки, т. е. различным расположением молекул или ионов в кристаллах (например, октаэдрическая и призматическая сера кальцит и арагонит), а не различной конфигурацией самих молекул. При переходе таких полиморфных веществ в раствор или в неупорядоченное жидкое состояние различие между ними, естественно, исчезает. [c.88]

    Сера отличается полиморфизмом, может находиться в кристаллической и аморфной модификациях, которые плавятся до 120 °С. Изменение вязкости серы от температуры показано на рис. 63 максимум вязкости достигается при 187 °С, когда сера теряет текучесть. Видимо, в этом состоянии размеры дисперсных частиц имеют максимум. При ускорении нагревания максимум вя жости смещается в сторону повышения температуры. [c.172]

    В случаях полиморфизма, когда вещество может находиться в разных твердых модификациях, каждая из них имеет на фазовой диаграмме свое поле. Примером может служить сера, существующая в ромбической и моноклинной сингониях с температурой взаимного перехода 95,5 °С. На рис. 5.3 схематически показана фазовая диаграмма серы. Левее GBDF — поле ромбической серы, BAD — поле моноклинной серы, правее ADF — поле жидкой серы, ниже ВАС — поле газообразной серы. BD — линия взаимных превращений твердых модификаций серы. В этой системе имеются три стабильные инвариантные тройные точки в точке В ромбическая и моноклинная сера в равновесии с паром, в точке D — в равновесии с жидкостью, в точке А — моноклинная сера в равновесии с жидкостью и паром. Ромбическая сера может быть перегрета выше температур превращения, а жидкая сера — переохлаждена ниже температур затвердевания, и они могут существовать в метастабильном состоянии. [c.132]

    Полиморфизмом могут обладать не только простые вещества, но и соединения, ярким примером которых может служить лед, имеющий в зависимости от давления свыше 7 модификаций или хлорид аммония NH4 I, который может кристаллизоваться по типу Na l (см. рис. 7.13) или s l (см. рис. 7.14). Полиморфизм является частным случаем аллотропии (последняя включает в себя еще возможность варьирования состава молекул, как, например, О2 и Оз или модификации серы и др.). [c.155]

    ЩЕЛОЧНОЗЕМЕЛЬНЫЕ ЭЛЕМЕНТЫ кальций Са, стронций Sr, барий Ва, радий Ra металлы. Название сохранилось со времен алхимиков, оксиды Щ. э. по хим. св-вам напоминают оксиды и елочных металлов и землю - оксид А1, входящий в состав глин. Щ. э. имеют серебристый металлич. блеск, кристаллизуются в кубич. решетке, для Са, Sr и Ва характерен полиморфизм. На воздухе Щ. э. покрываются голубовато-серой пленкой, содержащей МО, МСО3 и отчасти MOj и M3N2, где М - Щ. э. Т-ры плавления Са, Sr, Ва и Ra равны соотв. 842 3, 768 3, 727 3 и 969 °С. Окисление Щ. э. на воздухе может сопровождаться воспламенением, Ва загорается уже при резке и раздавливании, поэтому Щ. э. хранят под слоем обезвоженного керосина. Все они ковки, пластичны и путем давления и резания м. б. превращены в прут- [c.402]

    Молекулы серы в кристаллическом состоянии и в расплаве при температурах ниже 159°С имеют форму замкнутого сморш енного кольца, содержащего 8 атомов [268]. Сера характеризуется полиморфизмом кристаллической структуры [269] и при нормальных условиях устойчивым является кристалл ромбической сингонии (а-модификация) структурного класса Ъ = 16, характеризующийся следующими параметрами кристаллической ячейки [270] я = 1,0464 нм, Ь = 1,2866 нм, с = 2,4486 нм, а = у = р = 90°. При нагревании кристаллов а-модификации, начиная с 94,5°С происходит переход серы в моноклинную сингонию (р-модификация) структурного класса Р21/с, 2 = 6 [271] и параметрами кристаллической решетки при 100°С а = 1,0955 нм, Ь = 1,0928 нм, с = 1,0846 нм и р = 96,17°. [c.67]

    Б. В. Волконский. СУЛЬФАТЫ (от лат. sulphur — сера) — средние соли серной (сульфатной) кислоты. Как двухосновная, серная к-та образует соли средние — сульфаты и кислые — гидросульфаты. С. хорошо кристаллизуются, проявляют полиморфизм, с. неокрашенных катионов бесцветны. Окрашенными, кроме С. хрома и ванадия, являются кристаллогидраты С. марганца, железа, кобальта, никеля, меди и некоторых лантаноидов. Многие С. и их кристаллогидраты встречаются в природе как минералы тенардит, мирабилит (глаубе- [c.477]

    Действительно, макромолекулы — молекулы полимеров — можно рассматривать как миниатюрные физические тела, обладающие протяженностью, формой. Форма макромолекул подвергается изменениям. Эта изменчивость, выражающаяся в весьма разнообразных типах молекулярного полиморфизма [1, 2, 3], может проявляться в серии внутримолекулярных превращений, влекущих за собой макросконические фазовые переходы, или при внешних воздействиях на полимерные системы, затрагивающих как внутри-, так и межмолекулярные силы. [c.45]

    На самом деле, однако, такое заключение не очевидно [2, 6] и можно вообще отказаться от деформационных терминов в определении Г,,,,, т. е. не учитывать АР в явной форме. Действительно, нагрузка может непосредственно влиять на АН и особенно на Д5. В уже рассмотренном случае растяжение цепи идентично увеличению ее жесткости (затрудняется образование свернутых конформаций, т. е. обедняется кон-формационный набор). Но возможны и противоположные варианты, когда ориентированная цепь (снова вследствие полиморфизма) уже находилась в частично свернутом, хотя и асимметричном состоянии, например спиральном (как пружина амортизатора). Тогда между этим упорядоченным состоянием и полностью вытянутым может быть серия промежуточных с более богатым конформационным набором. И вообще — независимо от реальных причин — если растяжение почему-либо приводит к увеличению конформациопного набора, Д5 должно возрастать, а Гпл — убывать с . [c.48]

    Если один и тот же элемент может существовать в виде различных простых веществ, то такое явление называется аллотропией. Общеизвестным примером может служить I и лopoд, который образует два простых вещества — обычный, атмосферный кислород Ог и озон Оз. У кристаллических простых веществ аллотропия обычно является частным случаем полиморфизма. Например, сера имеет ромбическую форму, устойчивую до 95,5°, и моноклинную — устойчивую в пределах от 95,5° до точки плавления (120°). Между обеими модификациями серы существует обратимый переход Зромб. Змон.. Каждая из модификаций имеет свою температуру плавления. Так, сера ромбическая плавится при 114°, а моноклинная при 120°. [c.61]

    ЖЕЛЕЗОУГЛЕРОДИСТЫЕ СПЛАВЫ — сплавы железа с углеродом. Различают Ж. с. чистые (со следами примесей), используемые для исследовательских целей и особо важных изделий, и Ж. с. технические — стали (до 2% С) и чугуны (более 2% С). Технические Ж. с. содержат, кроме железа и углерода, постоянные примеси (марганец, кремний, серу, фосфор, кислород, азот, водород), вносимые из исходных шихтовых материалов, и примеси (медь, мышьяк и др.), обусловленные особенностями произ-ва. Фазовые состояния Ж. с. при разных хим. составах и т-рах описываются диаграммами стабильного и метаста-бильного равновесия (см. Диаграмма состояния железо — углерод). Полиморфные превращения (см. Полиморфизм) таких сплавов связаны с перестройками гранецентрированной кубической решетки гамма-железа и объемноцентрированной решетки альфа- и дельта-железа. Стали подразделяют на доэвтектоидные (менее 0,8% С) с ферритоперлитной структурой (см. Феррит, Перлит в металловедении) в равновесном состоянии, эвтектоидиые (около 0,8% С) с перлитной структурой и заэвтектоидные (свыше 0,8% С), структура к-рых состоит из перлита и вторичного цементита. Доэвтектоидные стали применяют гл. обр. для изготовления деталей машин, агрегатов и конструкций (см. Конструкционная сталь), эвтектоидиые и заэвтектоидные стали — для изготовления режущего, штампового и измерительного инструмента (см. Инструментальная сталь). Приме- [c.444]

    Явление, называемое полиморфизмом, заключается в том, что одно и то же вещество в зависимости от условий кристаллизации образует кристаллы различной формы (сера, диоксид кремния, карбонат кальция и др.). Отдельные полиморфные модификации веществ устойчивы лишь в определенных пределах температуры и давления. К названиям модификаций, устойчивых при более низких температурах, добавляется приставка альфа (а), а при более высоких — бета (Р), гамхма (у) и др. Например, а-нитрат aм юния (НН КЮв) существует лишь до температуры 32,3° С, переходя в р-нитрат (обе модификации имеют ромбическую решетку, отличающуюся параметрадш) Р-нитрат при 84,2° С превращается в у-нитрат, характеризующийся тетрагональной решеткой, а последний при 125,2° С переходит в б-нит-рат (кубическая решетка). Явление полиморфизма широко распространено у минералов. Каждая из полиморфных модификаций составляет отдельную фазу вещества. [c.153]

    Явление полиморфизма весьма распространено в природе почти все вещества при известных условиях могут быть получены в различ-шлх полиморфных модификациях. Иапример, сера образует пять таких модификаций, нитрат аммония NH4NO3 — 4, железо — 4 и т. д. Кристаллы различной внутренней структуры могут образовывать также С, Si, Sn, Р, As и др. Лед при применении различных давленш" п соответств ющих телшерат р может быть получен в виде семи различных кристаллических форм. [c.149]


Смотреть страницы где упоминается термин Сера, полиморфизм: [c.112]    [c.115]    [c.115]    [c.142]    [c.219]    [c.260]    [c.164]    [c.255]    [c.48]    [c.81]    [c.372]   
Основы физико-химического анализа (1976) -- [ c.39 ]




ПОИСК





Смотрите так же термины и статьи:

Полиморфизм



© 2024 chem21.info Реклама на сайте