Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Реакции амбидентные

    Многие реакции нуклеофильного замещения проводятся с участием амбидентных анионов (анионов, обладающих двойственной реакционной способностью). К таким ионам относятся, например, нитрит-ион 10—Ы —01 . цианид-ион [ С енолят- и фенолят- [c.99]

    Начнем наше рассмотрение с реакции алкилирования, которая должна характеризоваться сильной зависимостью от р/Са соответствующей С—Н-, N—Н- или О—Н-кислоты. Относительно сильные кислоты, такие, как, например, ацетилацетон, растворяются в гидроксиде натрия. Соответственно работа катализатора межфазного переноса состоит в реэкстракции аниона в форме ионной пары обратно в органическую фазу, где и проходит С- или 0-алкилирование (в разд. 3.10 см. о направлении алкилирования амбидентных анионов). Другими словами, в этом случае действует механизм, представленный на схеме 2.2. [c.55]


    Механизм первой стадии реакции был подробно рассмотрен ранее (см. гл. 3). Она относится к реакциям нуклеофильного замещения атома галогена, протекающим по механизму 5к2 нуклеофилом в данном случае является амбидентный ион натриймалонового эфира. [c.491]

    Согласно принципу жестких и мягких кислот и оснований, жесткие кислоты предпочтительно взаимодействуют с жесткими основаниями, а мягкие кислоты—с мягкими основаниями (т. 1, разд. 8.4). При реализации механизма SnI нуклеофил атакует карбокатион, который представляет собой жесткую кислоту. В механизме Sn2 нуклеофил атакует атом углерода молекулы, которая является более мягкой кислотой. Болёе электроотрицательный атом амбидентного нуклеофила — это более жесткое основание, чем менее электроотрицательный атом. Поэтому можно утверждать, что при изменении характера реакции от SnI к Sn2 вероятность атаки менее электроотрицательным атомом амбидентного нуклеофила возрастает [362]. Следовательно, переход от условий реакции SnI к условиям реакции Sn2 должен способствовать атаке атома углерода в цианид-ионе, атома азота в нитрит-ионе, атома углерода в енолят- и фенолят-ионах и т. д. Например, атака на первичные алкилгалогениды (в протонных растворителях) происходит атомом углерода аниона, полученного из СНзСОСНгСООЕ , тогда как а-хлороэфиры, которые взаимодействуют по механизму SnI, атакуются атомом кислорода. Однако это не означает, что во всех реакциях Sn2 атакует менее электроотрицательный атом, а во всех реакциях SnI—более электроотрицательный. Направление атаки зависит также и от природы нуклеофила, растворителя, уходящей группы и других условий. Это правило утверждает лишь, что усиление SN2-xapaKTepa переходного состояния делает более вероятной атаку менее электроотрицательным атомом. [c.97]

    Кинетические исследования реакции натрийацетоуксусного эфира с алкилгалогенидами в безводном этаноле, приводящей к С-алкилпроизводным ацетоуксусного эфира, показали, что она имеет второй порядок, аналогично реакциям гидролиза и алкоголиза алкилгалогенидов. На этом основании можно утверждать, что эта реакция относится к реакциям нуклеофильного замещения, протекающим по механизму N2, причем анион натрийацетоуксусного эфира, подобно ионам СМ и ЫОг , можно рассматривать как амбидентный нуклеофильный реагент, в котором местом с наибольшей нуклеофильной реакционной способностью является атом углерода метинной группы, а местом с наибольшей электронной плотностью — атом кислорода карбонильной группы. [c.244]


    В качестве субстратов вместо спиртов часто используют алкилгалогениды. При этом обычно берут соль неорганической кислоты и реакция идет как нуклеофильное замещение у атома углерода. Важным примером служит реакция алкилгалогенидов с нитратом серебра, приводящая к алкилнитратам (реакция часто применяется как тест на алкилгалогениды). В некоторых случаях наблюдается конкуренция со стороны центрального атома. Так, нитрит-ион, будучи амбидентным нуклеофилом, может давать нитриты или нитросоединения (см. реакцию 10-62). В некоторых случаях субстратами могут быть и простые эфиры. Диалкиловые и алкилариловые эфиры, например, можно расщепить действием безводных сульфоновых кислот [602]  [c.138]

    Особенностью амбидентных анионов, обладающих двумя реакционными центрами, является направление реакции в условиях механизма 5л/1 по центру наиболее высокой электронной плотности, а 5л/2 — наибольшей поляризуемости  [c.76]

    Такие ионы представляют собой амбидентные нуклеофилы, так как в них имеются два способных к атаке атома углерода (помимо возможности атаки атомом кислорода). В этих случаях атака практически всегда происходит более основным атомом углерода [357]. Поскольку водород при атоме углерода, соединенном с двумя карбонильными группами, обладает более кислыми свойствами, чем водород при атоме углерода, соединенном только с одной карбонильной группой (см. гл. 8), то СН-группа иона 89 менее основна, чем СНг-группа, и поэтому субстрат атакуется этой последней группой. Отсюда вытекает полезный общий принцип. В тех случаях, когда молекула, которую предполагают использовать в качестве нуклеофила, имеет два различающихся по кислотности положения, а желательно, чтобы нуклеофильная атака осуществлялась менее кислым реакционным центром, следует отщепить от нейтральной молекулы оба протона. Если это окажется возможным, то атака на субстрат осуществится желаемым нуклеофильным центром, так как он представляет собой анион более слабой кислоты. В то же время, если требуется атака более кислым положением, достаточно удалить только один протон [358]. Например, этилацетоацетат может быть проалкилирован либо по метильной, либо по метиленовой группе (реакция 10-96)  [c.95]

    Предскажите главный продукт в следующих реакциях галогеналканов с амбидентными нуклеофилами  [c.42]

    Соотношение между выходом нитрилов и изонитрилов зависит от механизма и условий реакции. О реакциях амбидентных нуклеофилов см. разд. В,6 и Г,2.3. [c.301]

    По-видимому, на первой стадии реакции аммиак действует как основание, отщепляя протон от молекулы ацетоуксусного эфира. Затем образовавшийся анион, реагируя как амбидентный нуклеофил, замещает хлор в хлорацетоне, в результате чего образуется б-дикетон (60), который затем реагирует с еще одной молекулой аммиака. [c.520]

    Это. увеличило набор применяемых в синтезе нуклеофильных синтонов (см. табл. 4.3) и позволило успешно и зачастую регио-селективно осуществлять многие превращения на их основе. Еноляты лития вступают в те же реакции, что и другие литийорганические соединения. И хотя они являются амбидентными нуклеофилами (т. е. могут выступать как О- и С-нуклеофилы), наиболее типичные пути их превращений связаны с С-нуклеофильностью. Нижеприведенная реакция подтверждает это положение  [c.244]

    Межфазным катализом (МФК) называют ускорение реакций между химическими соединениями, находящимися в различных фазах. Как правило, это реакции между солями, растворенными в воде или присутствующими в твердом состоянии, с одной стороны, и веществами, растворенными в органической фазе, — с другой. В отсутствие катализатора такие реакции обычно протекают медленно и неэффективны или не происходят вообще. Традиционная методика проведения реакций включает растворение реагентов в гомогенной среде. Если используется гидроксилсодержащий растворитель, реакция может замедляться из-за сильной сольватации аниона. Побочные реакции с растворителем иногда снижают скорость еще больше. Часто превосходные результаты дает применение полярных апротон-ных растворителей. Но они обычно дороги, трудно отделяются после реакции и могут вести к возникновению экологических проблем при широкомасштабном использовании. Кроме того, в некоторых случаях, например при О- или С-алкилировании амбидентных анионов, полярные апротонные растворители могут в результате преобладающего образования нежелательных продуктов в заметной степени подавлять, а не промотировать реакцию. [c.12]

    Депротонирование любого таутомера идет очень легко, приводя к образованию амбидентного мезомерного аниона, который в зависимости от условий реакции может быть атакован по кислородному или углеродному атому. [c.309]

    В 1964 г. Р. Гомппер [272] попытался установить общие правила протекания реакций амбидентных анионов. Он показал, что [c.116]

    ИЗО, 1131, 1133, 1146, 1148, 1150, 1170, 1171]. Химия 0,0-диалкило-вых эфиров дитиофосфорной кислоты" . Синтез полных эфиров дитиофосфорной и дитиофосфиновых кислот по реакции присоединения кислых эфиров этих кислот по кратным связям " -" . Получение фосфорорганических сульфен- и селенхлоридов и присоединение их к ненасыщенным соединениям " " . Реакции амбидентных анионов, образующихся из производных тио- и дптио-кислот пятивалентного фосфора " . Нуклеофильная реакционная способность тиофосфорильной группы" . [c.568]


    Авторы сохранили общий строй книги, но для облегчения пользования материалом отказались от разделения процессов на реакции, проходящие в присутствии и в отсутствие щелочи, воспользовавщись классификацией по типам реакций. Введены отдельные разделы по хиральным и полимерносвязанным катализаторам, которые отсутствовали в первом издании, а также новые разделы относительно нуклеофильного ароматического замещения и реакций металлоорганических соединений в условиях межфазного катализа. Основную часть книги занимает гл. 3, посвященная практическому использованию межфазного катализа, где достаточно подробно освещены вопросы техники проведения межфазных реакций, а затем последовательно обсуждено применение межфазного катализа в реакциях замещения (синтез галогенидов, включая фториды, синтезы нитрилов, сложных эфиров, тиолов и сульфидов, простых эфиров, Ы- и С-алкилирование, в том числе амбидентных ионов), изомеризации и дейтерообмена, присоединения к кратным С—С-связям, включая неактивированные, присоединения к С = 0-связям, р-элиминирования, гидролиза, генерирования и превращения фосфониевых и сульфониевых илидов, в нуклеофильном ароматическом замещении, в различных реакциях (ион-радикальных, радикальных, электрохимических и др.), в металлоорганической химии, при а-элиминировании (генерировании и присоединении дигалокарбенов и тригалометилид-ных анионов), окислении и восстановлении. В каждом разделе приведены конкретные методики проведения реакций в различных условиях межфазного катализа и таблицы примеров синтеза разнообразных классов соединений. В монографии использовано более 2000 литературных источников. [c.6]

    Ацетоуксусный эфир реагирует с этилатом натрия с образованием натрацетоуксусного эфира, анион которого имеет мезомерное строение. См. [2], И, с. 68 [4], 1, с. 578. Такие анионы с двумя реакционными центрами (в данном случае Св- и О -) называются амбидентными. В 5 у2-реакциях такие ионы реагируют с алкилирукщими и ацилирующими соединениями центром, обладающим наибольшей нуклеофильностью,— атомом углерода и дают продукты С-алкилирования и С-ацилирования. В д Ьреакциях амбидентные ионы реагируют с карбкатионом центром, имеющим наибольший отрицательный заряд, — атомом кислорода,— с образованием продуктов 0-алкилирования и О-ацилирования. Продуктами приведенных в задаче реакций являются следующие соединения  [c.228]

    Эти соли полезно использовать в качестве МФ-катализатора в тех случаях, когда анион катализатора должен переходить в органическую фазу намного хуже, чем реагируюш,ий анион (по терминологии Брендстрёма такой процесс называется препаративная экстракция ионных пар). Изо всех обычных анионов наиболее подходящими являются бисульфат и хлорид. Во многих случаях можно использовать бромиды, однако применение иодидов часто вызывает трудности, особенно в тех случаях, когда в реакцию вводят алкилиодиды, что вызывает образование в ходе реакции дополнительных количеств иодид-ионов. При этом наблюдается отравление катализатора, которое состоит в том, что весь катализатор экстрагируется в форме иодида в органическую фазу и реакция останавливается. Так же как и в случае гомогенных реакций с предварительно полученной аммониевой солью, в системах с иодидами большую роль может играть ионный обмен. Следует подчеркнуть, что такой обмен в большинстве типичных МФК-реакций не является необходимым. Однако в некоторых реакциях в присутствии катализаторов добавление небольших количеств иодида ускоряет процесс иодид обменивается с галогенидом в алкилирующем агенте, делая его более активным (КХ+1 —Таким способом можно влиять на соотношение С/О-изомеров, образующихся при алкилировании амбидентных анионов (см., например, [1716]). [c.82]

    В обеих реакциях нуклеофилом является нитрит-анион— 0 — N = 0<-> <->O = N —О , который обладает двумя нуклеофильными центрами —атомами кислорода и азота. Это амбидентный анион. В 5лг2-реакциях он реагирует более нуклеофильным атомом азота с образованием нитросоединения (пример а ). В условиях Sjvl-реакции образующийся карбкатион взаимодействует с нитрит-анионом по атому кислорода, несущему отрицательный заряд. В этом случае продуктом реакции является эфир азотистой кислоты (пример б ) (Ag+ сдвигает реакцию в Sjyl-область). Более подробно об Зд -реакциях с амбидентными анионами см. [7], с. 219. [c.221]

    Очевидно, в исследованных реакциях в абсолютном этаноле и дидиметил формам иде осуществляется С-алкилирование малонового эфира по механизму 8м2, в то время как в водном этаноле возможна ионизация бромидов (1а,6) с последующей атакой амбидентного нуклеофила (IX), имеющего наибольшую плотность отрицательного заряда на атоме кислорода, и образованием промежуточного неустойчивого продукта 0-алкилирования [c.183]

    Принципиально иной результат дает использование системы амид натрия - жидкий аммиак. Основные свойства этой системы оказываются достаточно сильными, чтобы отщепить протон не только от наиболее кислой метиленовой группы, но и от следующей по кислотности группы. Образовавшиеся дикарбанионы представляют собой амбидентные нуклеофилы, так как в них имеются два способных атаковаться атома углерода (помимо атома кислорода, атака по которому возможна для любого енолят-аниона). Важно, однако, что реакция с одним молем галоидного алкила происходит [c.193]

    Несмотря на амбидентный характер аниона перимидона, он алки-лируется в среде ацетона или диметилсульфоксида [349] исключительно по атомам азота. В результате реакции может быть получен [c.109]

    Алкилирование амбидентной гетероциклической системы, где возможно направление реакции по двум реакционным центрам, было проведено впервые на примере 2-тноксо-2,3-дигидро-имидазола и его Ы-метилпроизводного. Установлено, что в межфазных условиях алкилирование проходит по атому серы [140]  [c.79]

    Во-вторых, как уже обсуждалось в гл. 5 книги 1, нуклеофильность в реакциях 5лг2 связана с поляризуемостью. Чем легче электронное"облако нуклеофила может быть деформировано при образовании свя. ч тем более сильным будет нуклеофил в реакциях 5л/2-типа. Сравнений нуклеофил ьности углеродного и кислородного атомов амбидентного иона еиолята приводит к выводу, что менее электроотрицательный атом углерода является более поляризуемым и поэтому должен быть более нуклеофильным. [c.21]

    Депротонирование диазинонов сходно с депротонированием пиридонов и приводит к образованию мезомерных анионов. Эти анионы амбидентны — при их алкилировании или ацилировании в зависимости от условий реакции и от природы взятого диазинона может доминировать либо замещение по атому азота, либо замещение по атому кислорода. [c.153]

    В качестве амбидентного нуклеофила этот анион способен реагировать двояко — по атому азота и по р-углеродному атому. Соотношение этих двух реакций замещения зависит от целого ряда факторов природы металла, который служит катионом, наличия и характера имеющихся заместителей, природы растворителя, температуры и, наконец, природы электрофила. Как правило, натрий-индолы замещаются главным образом по атому азота, а индолил-магнийгалогениды — преимущественно по р-положению. [c.303]


Смотреть страницы где упоминается термин Реакции амбидентные: [c.336]    [c.263]    [c.325]    [c.200]    [c.102]    [c.190]    [c.94]    [c.216]    [c.223]    [c.251]    [c.252]    [c.252]    [c.1279]    [c.1343]    [c.1343]    [c.1665]    [c.1733]    [c.1745]    [c.1747]    [c.222]    [c.462]   
Реакционная способность и пути реакций (1977) -- [ c.14 ]




ПОИСК





Смотрите так же термины и статьи:

Амбидентный ион

Конкуренция реакций SN2 и SN1. Амбидентные нуклеофилы

Реакции амбидентные нуклеофилов

Реакции амбидентные электрофилов



© 2025 chem21.info Реклама на сайте