Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фазовое равновесие, определение

Рис. 1.7. Номограмма для определения константы фазового равновесия легких углеводородов. Рис. 1.7. Номограмма для <a href="/info/1504254">определения константы фазового</a> <a href="/info/328652">равновесия легких</a> углеводородов.

    Определение коэффициентов фазовых равновесий подробно рассмотрено в гл. 5. Здесь только следует еще раз подчеркнуть, что этп коэффициенты меняются в ходе реакций, т. е. по координате /г реактора, и эти изменения могут достигать значительных величин. [c.190]

    Точный расчет числа теоретических ступеней основан на модели ректификационной колонны со ступенчатым контактом фаз (рис. III.9, б), причем каждая ступень принимается теоретической. Расчет заключается в последовательном определении, от ступени к ступени, расходов, составов и энтальпий фаз с помощью уравнения фазового равновесия (111.11), а также материального и теплового балансов. Для верхней (укрепляющей) части колонны [c.58]

    Расчет фазового равновесия жидкость—жидкость—пар. Определение равновесных составов жидких и паровых фаз представляет собой более сложную задачу по сравнению с расчетом парожидкостного равновесия. Более того, равновесие жидкость— пар и жидкость—жидкость можно рассматривать как частные случаи равновесия жидкость—жидкость—пар первое — когда расслаивание в жидкости отсутствует и второе — когда в равновесии не участвует паровая фаза. [c.309]

    Кроме того, значение констант фазового равновесия для ряда углеводородов можно определять из графиков, таблиц и номограмм. На рис. 12. 4 приведена номограмма для определения констант фазового равновесия уг.чеводородов от метана (СН4) до к-декана (С,оНг,). [c.266]

    Из них главная — это создание теоретически обоснованных моделей, способных с удовлетворительной точностью описывать свойства равновесных фаз, используя минимум экспериментальных данных. Ряд вопросов возникает при оценке эмпирических параметров моделей. Например, какие экспериментальные данные взять за основу и как сформулировать критерий оптимальности параметров, вопрос о температурной зависимости параметров, о выборе одного набора параметров из нескольких возможных и другие. Актуальна задача сопоставления моделей при описании фазовых равновесий определенного типа и при описании разнородных равновесных свойств, а также при описании систем различной химической природы. Наконец, существует потребность в совершенствовании расчетных алгоритмов и создании на их основе достаточно универсальных и быстродействующих программ для ЭВМ. [c.156]

    Основные понятия и определения. Теория процессов перегонки и ректификации покоится на сочетании термодинамического учения о парожидкостном фазовом равновесии с законами сохранения вещества и энергии, используемыми в форме уравнений материальных и тепловых балансов. Для строго дедуктивного термодинамического метода исследования явлений важное значение имеет точное определение ряда приведенных ниже основных понятий и терминов, широко используемых в теории и технических расчетах процессов перегонки и ректификации. [c.9]


    Определение составов равновесных фаз, отвечающих заданной степени отгона е, проще всего провести путем совместного решения уравнений материального баланса и фазового равновесия. Из уравнения (11.2) следует  [c.67]

    Принципиальной основой расчета элементов ректификации на последовательных тарелках колонны является попеременное использование соотношений фазового равновесия для нахождения составов потоков, расходящихся со ступени, и уравнения концентраций в той или иной форме с целью определения составов встречных на одном уровне паров и флегмы. [c.142]

    В случае идеальной смеси определение этой константы не вызывает затруднений. Для систем, находящихся при высоких давлениях и температурах, расчет константы фазового равновесия проводится с помощью фугитивности жидкой и паровой фаз (см. главу двенадцатую). Из уравнения (8. 28) следует, что в условиях равновесия распределение данного компонента между паровой и жидкой фазами равно отношению давления насыщенных паров данного компонента к общему давлению паров смеси. [c.148]

    Так ведется аналитический расчет числа теоретических ступеней контакта путем постепенного перехода от одного межтарелочного уровня к другому, с попеременным использованием соотношений фазового равновесия для нахождения составов расходящихся с тарелки потоков и уравнения концетраций для определения составов встречных на одном уровне потоков. [c.75]

    Величина кц характеризует отклонение в поведении смеси от идеального раствора из-за взаимодействия между -м и /-м компонентами, Таким образом, кц = О, если 1 = /, и кц ->0, если пары компонентов являются почти идеальными растворами. Если пары компонентов образуют неидеальные растворы, то величина кц может значительно отличаться от нуля. Основой для определения кц являются главным образом данные по фазовому равновесию бинарной смеси. [c.47]

    Установлено, что отклонения от закона Рауля во всех системах, образованных углеводородами с одинаковым числом углеродных атомов Пс, являются положительными, причем зависимость коэффициентов активности компонентов и 72 от состава, как правило, имеет характер близкий к симметричному. Отклонения от закона Рауля тем больше, чем больше компоненты различаются по числу л-связей Пц, а-ацетиленовых атомов водорода пн и циклов Пц в молекуле. Определенное влияние, хотя и меньшее, чем указанные факторы, оказывает различие в пространственной структуре молекул. Для корреляции и предсказания фазового равновесия в углеводородных смесях предлагается использовать [c.665]

    При расчете этими двумя методами констант фазового равновесия расхождение особенно значительно в случае приравнивания широкой фракции бензина индивидуальному углеводороду. Для более узкой фракции расхождение невелико, поэтому при определении константы фазового равновесия узких фракций небольшого молекулярного веса предпочтительно пользоваться графическим методом. [c.267]

    Для определения температуры верха стабилизационной колонны также необходимо задаться температурой, и при подобранной температуре и известном давлении по номограмме рис. 12. 4 определить константы фазового равновесия если нри подстановке их в уравнение (12. 9) результат будет равен единице, то температура выбрана правильно, в противном случае нужно задаться новым значением температуры. [c.268]

    Толщина незамерзающих прослоек к зависит от температуры, внешнего давления р и расклинивающего давления П. В работах [32, 318] определен качественный ход изотермы к(р), исходя из зависимости температуры фазового равновесия от давления на закрытую грань кристалла [319], и ход изотермы /г(П)—на основе теории поверхностных сил [42]. Равновесная толщина незамерзающей прослойки определяется точкой пересечения изотерм Н(р — ро) и /г(П), когда (р — ро) = = П. При каждой заданной температуре Т = Т и давлении ро устанавливается единственно возможная толщина равновесной прослойки и отвечающее ей значение гидростатического давления р = 11 + ро. При невыполнении одного из этих условий равновесное состояние нарушается и ледяная пластина будет либо расти, либо таять. [c.107]

    Уравнение (5.3) со всей очевидностью показывает, что погрешности при определении константы фазового равновесия и зависящей от нее величины Уд приводят к ошибкам в определении необходимого реакционного объема, которые, по крайней мере, не меньше, а как правило, гораздо больше аналогичных ошибок при неточном определении константы скорости реакции. [c.79]

    Особенно тщательно следует учитывать изменение констант фазового равновесия при определении энергии активации реакции. Изменение констант фазового равновесия при изменении температуры может совершенно исказить температурную зависимость скорости реакции. [c.80]

    Константы фазовых равновесий определяются, как правило, экспериментальным путем. Методики измерения констант фазовых равновесий достаточно хорошо разработаны и определения в общем случае не вызывают больших затруднений, хотя в многокомпонентных системах для того, чтобы получить полную картину, необходимо провести много опытов. [c.82]


    Значения констант фазовых равновесий для большого количества систем приведены в многочисленных справочниках но равновесию в системах жидкость — жидкость и жидкость — газ [1 — 7]. Однако при разработке реакторных узлов справочных материалов, как правило, бывает недостаточно и возникает необходимость в экспериментальном определении констант фазовых равновесий. Если, как уже отмечалось выше, в общем случае подобные определения и не вызывают трудностей, то применительно к реакционноспособным системам экспериментальное определение констант фазовых равновесий часто превращается в неразрешимую задачу. [c.82]

    Выше были приведены простейшие и наиболее широко известные соотношения, описывающие растворимость газов и распределение вещества в системе жидкость — газ. Естественно, что существующие сегодня методы приближенного расчета констант фазового равновесия этим не ограничиваются. Существует целый ряд более сложных методов расчета этих констант в системе жидкость — газ, которые не являются, однако, универсальными и пригодны лишь для определенных систем и в определенных условиях. Подробный разбор этих методов и рекомендации по их использованию даны Адлером и Палаццо [56, 57], а также Ридом и Шервудом [58]. [c.99]

    На втором этапе проводится оценка параметров моделей, определяющих данный процесс. Сюда относятся оценка физико-химических, термодинамических и кинетических данных определение параметров моделей фазового равновесия, гидродинамической структуры потоков, кинетических моделей. Получение такой информации невозможно чисто расчетным путем, поэтому в той или иной степени используется экспериментальный материал (например, данные по свойствам, бинарному фазовому равновесию и т. д.). [c.94]

    Таким образом, накопление данных и их обработка должны проводиться с использованием пакета программ. В него входят собственно программы аппроксимации табличных данных, программы обработки данных по фазовому равновесию. Последние соответствуют последовательности подготовки данных, подлежащих записи в базу. Этот комплекс программ основан на алгоритмах проверки термодинамической совместимости равновесных данных, выбора уравнений для описания неидеальности фаз, определения параметров этих уравнений. [c.118]

    Сложность определения параметров уравнений (4-23) и (4.24) состоит не только в высокой нелинейности функционала (4.28), но и в том, что не всегда имеются однозначные экспериментальные данные по фазовому равновесию. В связи с этим для определения параметров используются следующие исходные данные. [c.119]

    Система уравнений (7.116), (7.120) и (7.122) является нелинейной, и для ее решения необходимо использовать либо методы нелинейного программирования, либо итерационные методы. Наиболее целесообразным с точки зрения затрат машинного времени и вычислительных трудностей являются алгоритмы последовательного определения составов в результате решения уравнений материального баланса (7.120) при заданных значениях констант фазового равновесия, с последующей коррекцией концентраций путем решения уравнений фазового равновесия (7.116). Определение значения фактора расслаивания производится решением уравнения (7.122). [c.310]

    Алгоритм независимого определения концентраций. В отличие от рассмотренного ранее этот метод ориентирован на решение задач в проверочной постановке, т. е. когда известны режимные и конструктивные параметры колонны. Поэтому при использовании его для целей проектирования уточнение необходимых параметров должно проводиться путем проведения многократных расчетов. В методе независимого определения концентраций в качестве зависимых переменных выбираются константы фазового равновесия и расчет составов по высоте колонны сводится к решению системы линейных алгебраических уравнений по каждому из компонентов разделяемой смеси с использованием принципа суперпозиции решений в сочетании со специальным приемом коррекции интервала значений концентраций в процессе расчета [16, 58]. Расчет составов пара и жидкости проводится последовательно снизу вверх по уравнениям баланса, записанным относительно куба колонны. Алгоритм изложен применительно к потарелочному расчету и поэтому является эффективным по объему занимаемой памяти. [c.336]

    В настоящей главе излагаются общие принципы применения методов направленной кристаллизации для решения таких задач, как получение образцов переменного состава с их последующим исследованием, построение линий фазового равновесия, определение предельной растворимости, состава эвтектик и перитектик, установление характера нонвариантного превращения вблизи ординат чистых компонентов и соединений, исследование фазовых равновесий в многокомпопентных системах и др. [c.126]

    Совмещенные реакционно-ректификационные процессы очень сложны, и строгий расчет их пока не создан. Однако имеются расчеты для некоторых упрощенных случаев [47—50], Так, Марек [51] предложил общий метод расчета ректификации при наличии химической реакции, взяв за основу итерационный расчет ректификации по Сорелю и Мак-Кэбу и Тиле. При этом наличие химической реакции в жидкой фазе учитывается введением в уравнения материального и теплового балансов дополнительных членов, соответствующих изменению количества вещества и тепла за счет реакции. Общность метода состоит в том, что он не ограничен числом компонентов, типом реакции и т, д, В общем случае, для расчета необходимы исходные данные в полном объеме (для концентрационного симплекса я-ко.мпонентной смеси в целом) о скорости реакции, тепловом эффекте, фазовом равновесии жидкость — пар, Мареком учтены возможные упрощения метода, связанные с рациональными допущениями, которые встречаются при обычном расчете ректификации, В итерациях, наряду с предположением определенных концентрации, предполагается также общее прореагировавшее количество вещества и учитывается в связи с этим задержка жидкости на каж- [c.208]

    Если по известному составу х флегмы в каком-нибудь текущем сечении верхней секции необходимо найти составз встречной паровой фазы, то следует задаться значением Q теплосодержания единицы веса этих паров, рассчитать по уравнению 217 состав у паровой фазы и проверить, насколько правильно было принято значение их теплосодержания Q. Одного—двух пересчетов обычно оказывается достаточно для практически точного определения состава у паров по заданному составу х встречной жидкости, пересекающей тот же горизонтальный уровень. Попеременное использование соотношений парожидкого фазового равновесия для нахождения составов расходящихся с тарелки потоков и уравнения концентраций 217 для установления составов встречных на одном межтарелочном уровне потоков, образует схему аналитического метода расчета числа тарелок. [c.106]

    В отличпе от аналитического расчета простой колонны, где используется одно лишь уравнение концентраций для каждой секции, здесь их число равно числу компонентов системы, поэтому с увеличе 1ием числа составляющих расчет разделения заметно осложняется. Другим осложняющим фактором при определении температур паровых и жидких потоков является необходимость решения уравнений изотерм методом постепонного приблил еиия. Как указывалось выше, это затруднение удается преодолеть путем использоваиия относительных летучестей вместо констант фазового равновесия, однако лишь за счет внесения определенной неточности в результаты расчета. Остановимся подробнее иа этом вопросе. [c.392]

    Согласно теории Уитмана и Льюиса, в ядре потока концентрахщя постоянная и процесс переноса описывается одномерным стационарным уравнением молекулярной диффузии в тонких пленках при условии фазового равновесия на границе раздела жидкость - жидкость или жидкость - газ. Скорость массопередачи по каждой из фаз определяется выражением (4.3), в котором частные коэффициенты массопередачи равны К1 =1)1/61 и К2 =02182, где >1, /)2, 51, 2 - коэффициенты диффузии и поперечные размеры пленок соответствующих фаз (см. рис. 4.1). Пленочная теория не дает методов для определения толщин пленок 5, и 62, которые зависят от физико-химических свойств жидкостей и гидродинамических условий протекаемых процессов. [c.173]

    В работе Илембитовой Р.Н. [53] приведены эксперимеит зльные данш.1е по константам фазового равновесия узких высококипящих фракций наиболее массовых отечественных нефте й и результате исс.оедования однократного испарения в широком диапазоне изменения состава смесн и параметров режима, включая условия глубоко переработки н(2фти. Показано, что влияние давления на значения констант фазового равновесия в исследованном диапазоне соизмеримо с точностью их определения. [c.84]

    Наиболее надежным методом определения области протекания реакции является независимое определение скорости массодере-носа. Это можно сделать, определив в условиях процесса скорость реакции, заведомо лимитируемой диффузией, например скорость окисления сульфита или озонирования двойной связи органических соединений. Конечно, и этот метод не свободен от ошибок за счет приравнивания скоростей массопереноса для различных реакций (см. гл. 13), но более надежен, чем косвенные определения. При использовании этого метода надо знать константы фазового равновесия, чтобы оценить истинные константы скорости реакции и правильно пересчитывать процесс на другие условия температур и давлений. [c.75]

    Кратко остановимся на вопросе расчета состава газовой и жидкой фаз смесей углеводородов с надкритическими газовыми компонентами, такими как метан и его гомологи, яри высоких давлениях. Такие смеси в виде газоконденсатных и газонефтяных залегают на разных глубинах осадочной толщи земли. Из-за отсутствия теоретических методов расчета фазового равновесия таких смесей при высоких давлениях определение состава их равновесных фаз ведут по константам фазового равновесия углеводородов К ). Величина углеводорода I представляет собой отношение его мольных долей в равновесных газовой и жидкой фазах системы. Величина К зависит не только от температуры и давления системы и от природы углеводорода 1, но и от природы и концентрации всех других компонентов системы. Константы фазового равновесия углеводородов определяются по атласу констант, периодически публикуемому Американской ассоциацией для снабжения и переработки природного газа. Методы расчета состава фаз в углеводородных системах с помощью констант фазового равновесия подробно описаны в ряде работ [Е11ег1 С. К-, 1957 г. Степанова Г. С., 1974 и Намиот А. Ю., 1976 и др.]. [c.14]

    Методы определения растворимости в сжатых газах твердых веществ, представляющих интерес для геологов, подробно рассмотрены также в работе [Gillingham, 1948 г.]. Методы исследования фазового равновесия в углеводородных системах изложены в книге [Гороян В. И., 1W7 г.]. Выбор метода в значи-тельно11 мере определяется имеющимся количеством исследуемого вещества и газа, интервалом температур и давлений исследования и желаемой точностью получаемых результатов. [c.26]

    Для математического моделирования ХТС используют специальные программы ц и ф р о в о г о м о д е л и р о в а н и я (СПЦМ), построенные по блочному илн декомпозиционному принципу. Обобщенная функциональная схема СПЦМ ХТС состоит из следующих блоко.в (рис. П-7) 1—блок ввода исходной информации 2 —блок математических моделей типовых технологических операторов или модулей 3 —блок определения параметров физико-химических свойств технологачесних потоков и характеристик фазового равновесия 4 —блок основной исполнительной программы 5 —блок обеспечения сходимости вычислительных операций 6 — блок оптимизации и расчета характеристик чувствительности ХТС к изменению пара-метров элементов (технологических операторов) системы 7 — блок изменения технологической топологии ХТС 8 — блок расчета функциональных характеристик ХТС 9 —блок вывода результатов. [c.53]

    Несмотря на различную физико-химическую природу рассмотренных выше процессов, разработка математических моделей каждого из них и методология определения параметров во многих аспектах имеет много общего. Прежде всего для каждого из процессов характерны такие этапы, как исследование условий химического и фазового равновесия, причем для большинства из пих по единой методологии и одним и тем же моделям оценка гидродинамической структуры систем с двумя (и более) фазами применительно к выбранному типу оборудования оценка параметров кинетических закономерностей (коэффициентов массопередачи, площади поверхности раздела фаз, коэффициентов диффузии и т. д.) для учета реальных условий массоиереноса установление механизма химических реакций и оценка параметров (для процессов химического превращения, хеморектификации, хемосорбции), выбор разделяющего агента (для комплексов с разделяющими агентами). [c.94]

    Расчет процессов расслаивания жидких систем включает два основных этапа установление факта наличия многофазности и определение характеристик процесса расслаивания. Первый этап связан с расчетом фазового равновесия, а второй — с определением параметров режима и времени пребывания жидкости в аппарате. Эти вопросы рассмотрены ниже и предложены соответствующие модели для расчета равновесных составов и гравитационных декантаторов. [c.286]

    Многообразие вариантов расчета фазового равновесия обусловлено значительным различием свойств разделяемой смеси. Это различие находит отражение в алгоритмах расчета фазового равновесия. Применительно к массообменным процессам в настоящее время накоплен достаточный опыт по расчету равновесия в идеальных и неидеальных системах, однако применение точных моделей часто обусловлено отсутствием экспериментальных данных для оценки параметров корреляционных зависимостей тина уравнений Вильсона и НРТЛ для учета неидеальности жидкой фазы или вириального уравнения для оценки неидеальности паровой фазы. Отсутствие данных приводит к тому, что при расчетах принимаются упрощающие допущения, оценка которых даже не всегда возможна. К распространенным допущениям относительно расчета фазового равновесия относятся паровая (газовая) фаза подчиняется законам идеальных газов, что позволяет отказаться от учета неидеальности и обычно принимается для систем в диапазоне умеренных давлений жидкая фаза подчиняется законам идеальных растворов, что позволяет отказаться от учета неидеальности и определять константы равновесия через давление паров чистых компонентов (это допущение обычно принимается при определении равновесия систем, состоящих из компонентов с близкими свойствами, например членов [c.315]


Смотреть страницы где упоминается термин Фазовое равновесие, определение: [c.25]    [c.209]    [c.50]    [c.147]    [c.12]    [c.85]    [c.96]    [c.55]    [c.126]    [c.179]    [c.365]   
Оборудование химических лабораторий (1978) -- [ c.393 ]




ПОИСК





Смотрите так же термины и статьи:

Равновесие фазовое



© 2025 chem21.info Реклама на сайте