Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Системы с многокомпонентной жидкой фазой

    В предыдущих главах были рассмотрены основные понятия, представления и методы, применяемые при описании строения жидких фаз. Теперь, опираясь на эти понятия и методы, можно рассмотреть структуру жидких систем. Множество различных жидких систем бесконечно. В этой книге мы ограничимся простыми жидкостями. Строение простых жидкостей и строение более сложных жидких систем в основных чертах однотипно. С позиций молекулярной теории резкого различия между простыми жидкостями и более сложными жидкими системами нет. Систематический обзор строения и свойств простых жидкостей позволяет в сжатой форме охарактеризовать особенности, присущие строению и свойствам громадного числа более сложных жидких фаз. Он важен и сам по себе, поскольку значение простых жидкостей в науке и практике велико. Простые жидкости и более сложные двух- и многокомпонентные жидкие фазы до последнего времени было принято изучать раздельно. Эта традиция вызвана отставанием молекулярной теории жидких систем, многолетним господством феноменологических представлений и методов. Теперь, когда исследования строения жидких систем, и в том числе простых жидкостей, развернулись широко, указанная традиция потеряла смысл. Она уже давно оставлена в теории твердых тел и газов. В монографиях и учебной литературе строение и свойства твердых сплавов излагаются после описания строения простых твердых тел. Так же поступают в молекулярной теории газов. Пришла пора пойти по этому пути и в теории жидких систем. [c.161]


    Многокомпонентные (к > 2) двухфазные (ф = 2) системы характеризуются векторами (наборами) концентраций в каждой фазе состав жидкой фазы Х(ха, хц,. .., х ), состав паровой фазы (ул, Ув. , 31с)- Условимся в дальнейшем именовать компоненты А, В,, К в порядке нарастания их температ ф кипения tp< < <. .. < /к- Каждому составу многокомпонентной жидкой фазы X отвечает определенный равновесный состав паровой фазы Y (и наоборот). [c.986]

    Разные методы выращивания кристаллов в многокомпонентных системах, содержащих жидкую фазу, имеют так много общего, что естественно все их рассматривать в одной главе. Поскольку при таких методах сверх кристаллизующейся фазы всегда имеются дополнительные компоненты, им присущи все недостатки, связанные с ростом в многокомпонентных системах (см. гл. 2, особенно разд. 2.10). Но эти методы дают и определенное преимущество, связанное с низкими температурами процессов (см. разд. 2.1). Поскольку кристаллы выращиваются из многокомпонентной жидкости, их рост во всех случаях можно рассматривать как кристаллизацию из раствора. И действительно, основные различия разных методов носят технический, а не принципиальный характер и связаны с типом применяемого растворителя. В конце главы мы остановимся также на некоторых других методах, тесно примыкающих к методам выращивания из растворов. [c.271]

    Системы с многокомпонентной жидкой фазой [c.201]

    Это уравнение относится к массопередаче между поверхностью тверды гранул и газовой или жидкой фазой. Можно привести много других соотношений, в том числе и более поздних, но в настоящее время вполне достаточно указанного уравнения. Метод оценки коэс ициентов диффузии в многокомпонентных системах был разработан Вильке . Элективные коэффициенты диффузии будут рассмотрены ниже. [c.284]

    Данные о парожидкостном равновесии бинарных смесей, необходимые для расчета фазового равновесия в многокомпонентных системах, являются специфическими для процессов разделения. Они размещаются в базе, названной Периферия . К этим данным относятся параметры корреляций для учета неидеальности жидкой фазы. Такая организация банка данных позволяет дополнять или заменять периферийную базу и, следовательно, специализировать систему на решение других классов задач химической технологии, не изменяя общей структуры банка. [c.97]

    Из термодинамики известно [8], что условием равновесия в многокомпонентных системах является равенство химических потенциалов компонентов в паровой и жидкой фазах [c.407]


    Экспериментальные исследования статики равновесия фаз многокомпонентных смесей [45, 46 ] показали, что давление насыщенного пара (ДНП) сложных смесей, какими являются нефтепродукты, при заданной температуре существенно зависит от соотношения объемов паровой и жидкой фаз системы = Vл/V . На [c.76]

    При депарафинизации масел получается двухфазная система жидкая фаза (раствор масла в растворителе) и кристаллы парафинов. Каждая из этих фаз является многокомпонентной смесью. [c.230]

    Уравнение (31.23) имеет особо важное значение при равновесии жидкость — пар в многокомпонентных системах. Если система состоит из т компонентов и т жидких фаз находятся в равновесии с паром, то уравнение (31.23) представляет температурную зависимость общего давления пара, соответственно зависимость температуры кипения от давления. [c.155]

    Для описания равновесия многокомпонентной системы используются N основных уравнений, представляющих собой равенство фугитивностей паровой и жидкой фаз по каждому из компонентов  [c.55]

    Для многокомпонентной системы взаимно растворимых жидкостей, с чем часто приходится встречаться в процессе переработки нефти, число степеней свободы будет равно числу компонентов п, т. е. из 2 /г параметров, определяющих состояние равновесной системы, — температуры, давления, и — 1 концентраций в паровой и п — 1 концентраций в жидкой фазах, произвольно могут быть выбраны только п определяющих параметров, а остальные п определятся. [c.48]

    Однако такой процесс применяется главным образом для многокомпонентных смесей (гомологов углеводородов), так как для двухкомпонентных смесей разделение слишком мало. При проведении этого процесса чаще всего приходится иметь дело с системами, жидкую фазу которых можно рассматривать как идеальный раствор. Поэтому равновесие -го компонента можно представить следующим уравнением  [c.430]

    Так, например, математическое моделирование и расчет разделения многокомпонентных азеотропных и химически взаимодействующих смесей методом ректификации сопряжены с определенными вычислительными трудностями, вытекающими из необходимости рещения системы нелинейных уравнений больщой размерности. Наличие химических превращений в многофазных системах при ректификационном разделении подобных смесей приводит к необходимости совместного учета условий фазового и химического равновесий, что значительно усложняет задачу расчета. При этом основная схема решения подзадачи расчета фазового и химического равновесия предусматривает представление химического равновесия в одной фазе и соотнесения химически равновесных составов в одной фазе с составами других фаз с помощью условий фазового равновесия. Для парожидкостных реакций можно выразить химическое равновесия в паровой фазе и связать составы равновесных фаз с помощью уравнения однократного испарения. Для реакций в системах жидкость-жидкость целесообразнее выразить химическое равновесие в той фазе, в которой содержатся более высокие концентрации реагентов. Для химически взаимодействующих систем с двумя жидкими и одной паровой фазой выражают химическое равновесия в одной из жидких фаз и дополняют его условиями фазовых равновесий и материального баланса. Образующаяся система уравнений имеет вид  [c.73]

    Для расчета работы образования паровой фазы в многокомпонентной системе при постоянстве давления и температуры необходимо значение термодинамического потенциала Гиббса для исходного и конечного состояний системы. При этом следует учитывать, что на работу по образованию зародыша паровой фазы из метастабиль-ной жидкой фазы оказывают влияние сорбционно-десорбционные процессы на границе раздела фаз, приводящие к изменению поверхностного натяжения, а также изменение химического потенциала взаимодействующих компонентов системы в процессе образования зародыша. [c.110]

    Переход жидкой фазы чистого вещества в кристаллическую происходит при постоянной температуре и соответствует горизонтальной площадке на кривой охлаждения. Далее увидим, что характер кривых охлаждения многокомпонентных систем может быть иным. Однако всегда при температуре, соответствующей началу фазового превращения, плавный ход такой кривой нару-щается. Это позволяет использовать кривые охлаждения, полученные для смесей различного состава, для построения диаграммы состояния изучаемой системы выбранных компонентов. Такие диаграммы называют еще диаграммами плавкости. Конкретный вид диаграммы зависит от свойств компонентов и определяется их взаимной растворимостью, а также способностью к образованию химических соединений. Ниже рассмотрим диаграммы плавкости некоторых бинарных двухкомпонентных систем. Во всех случаях будем предполагать, что системы находятся в условиях постоянного давления и выбранные компоненты обладают неограниченной растворимостью в жидком состоянии. [c.156]


    Изучение равновесия между твердыми и жидкой фазами н многокомпонентных системах имеет огромное значение в металловедении, металлургии, галургии и многих других отраслях народного хозяйства. [c.115]

    Закон Рауля. Давление насыщенного пара жидкости при определенной температуре является характерной постоянной величиной, не зависящей от объема жидкости. Для многокомпонентной системы зависимость парциального давления Р) -го компонента от давления насыщенного пара чистого компонента 1 и мольной доли компонента Х) в жидкой фазе выражается законом Рауля  [c.329]

    При построении математической модели процесса разделения многокомпонентной смеси методом ректификации поступают так же, как при описании состояния равновесия в паро-жидкостной системе (см. гл. V) из уравнений материальных балансов по отдельным компонентам находят состав жидкой фазы, Х , а уравнения равновесия используют для определения состава пара, -У и температуры Т на тарелке. [c.160]

    Для многокомпонентных систем условия равновесия между жидкостью и твердым телом значительно сложнее, чем для чистых веществ. Уже наиболее простые системы—двухкомпонентные—показывают большое разнообразие возможных случаев сосуществования твердой и жидкой фаз, значительно превосходящее число случаев для жидкости и газа. [c.33]

    Если кристаллическое вещество нагревать, медленно перемещая зону расплава, то примеси будут концентрироваться в этой зоне и двигаться вместе с ней. При повторении этого процесса несколько раз все примеси сместятся к одному концу и в основной массе будет получено чистое вещество. Такой метод очистки твердых веществ, который мод<но рассматривать как частный случай экстракции, получил название зонной плавки. Жидкая фаза— расплав — находится в равновесии с твердой фазой и экстрагирует из нее примеси, растворимость которых в твердой фазе отличается от их растворимости в расплаве. Этот метод особенно хорош для очистки соединений, имеющих низкое давление паров или разлагающихся при перегонке. В то же время он непригоден для веществ, склонных к образованию пересыщенных растворов илн неустойчивых при плавлении. Зонной плавкой нельзя разделять многокомпонентные системы. [c.27]

    Из решения системы уравнений диффузионной модели (4.77) - (4.78) находятся поля концентрации компонентов многокомпонентной смеси в паровой и жидкой фазах по высоте насадочной колонны. При известных полях концентрации и условий равновесия можно найти число теоретических тарелок и высоту эквивалентную теоретической тарелки (ВЭТТ) для заданного типа насадки и режимных параметров работы колонны. [c.153]

    К другим недостаткам уравнений локального состава относится взаимная корреляция параметров j и наличие проблемы неоднозначности решения уравнений относительно параметров и относительно предсказываемой взаимной растворимости компонентов. Даже когда взаимная растворимость компонентов бинарных систем, входящих в многокомпонентную, рассчитывается однозначно, возможна множественность решения относительно составов жидких фаз в многокомпонентной системе [2291. [c.210]

    Предыстория насадки. Обработка и простое приведение к фазовому равновесию как аналитических, так и препаративных насадочных материалов очень важны для успешного масштабирования и получения воспроизводимых результатов. Это особенно справедливо и позволяет сэкономить много времени в жидко-жидкостной распределительной хроматографии на поверхностно-активных веществах и в адсорбционных систе ах жидкость — твердое тело с использованием многокомпонентных подвижных фаз, содержащих одну или более минорных составляющих (меньше 1—5%, ср. разд. 1.6.2.2.3). Обычно при исследовании с целью дальнейшего масштабирования, если это возможно, берут или свежую колонку, или колонку, использованную с известным растворителем, после которого ее можно легко привести в равновесие в условиях, пригодных для препаративного разделения. Аналитическое ЖХ-разделение, разработанное на колонке, которая прежде использовалась во многих других разделениях с различными системами растворителей, при после- [c.57]

    Для сложных многокомпонентных систем состав паровой и жидкой фаз в состоянии равновесия при данной температуре определяется системой уравнений (2.7) - (2.10). [c.193]

    Рассмотрим многокомпонентную систему, состав которой задан в виде мольных долей входящих в нее компонентов. При давлении р и температуре Г система разделилась на паровую и жидкую фазы. Обозначим через лг и г/, мольные доли компонентов в жидкой и паровой фазах, а через V и Ь — мольные доли паровой и жидкой фаз. Определим константы равновесия компонентов Ki как отношения мольных долей  [c.81]

    Переходной ступенью от теории ректификации бинарных 1)астворов к теории многокомпонентных систем является рассмотрение тройных смесей, часто встречающихся в нефтехимической технологии. При наличии данных но парожидкостному равновесию состояние тройных смесей поддается наглядному графическому представлению в системе трилинейных координат, а принятие некоторых упрощающих допущений позволяет проводить удобный графический расчет ректификации таких смесей. Исследование же процесса разделения тройных систем является основой для ностроения теории процессов азеотропной и экстрактивной ректификации, в которых разделение гомогенного в жидкой фазе азеотропа пли трудно разделимого бинарного раствора осуществляется путем добавления к системе третьего компонента. [c.247]

    Физико-химические свойства многокомпонентных смесей, зависящие от температуры, давления, состава, и параметры бинарного взаимодействия компонентов обладают той характерной особенностью, что их количество при небольшом увеличении числа чистых компонентов быстро возрастает до больших объемов. Вследствие этого для хранения таких данных необходимо выбирать формы, позволяющие получить характеристики произвольной многокомпонентной смеси из составляющих для смесей возможно меньшей размерности, обладающей большей степенью общйости. Исходя из этого принято нецелесообразным хранить физико-химические свойства многокомпонентных смесей, а рассчитывать их с достаточной степенью точности но известным методикам на основе свойств чистых компонентов. Что касается параметров равновесия в бинарных системах, то для каждой пары компонентов хранятся только коэффициенты (два или три в зависимости от модели описания неидеальности жидкой фазы). Тем неменее разнообразие моделей описания фазового равновесия и их полуэмпирический характер часто не позволяют остановиться на какой-либо одной модели, вследствие чего наряду с коэффициентами предусмотрено хранение и экспериментальных табличных данных по фазовому равновесию в бинарных смесях в специальной базе на внешнем носителе типа магнитной ленты. [c.406]

    Определение параметров уравнений Вильсона и NRTL. Параметрами уравнений являются константы, характеризующие энергетические эффекты взаимодействия между молекулами в жидкой фазе. Они обычно не поддаются непосредственному измерению или расчету по теоретическим моделям, а определяются по экспериментальным равновесным данным жидкость—пар в бинарных системах, образующих многокомпонентную смесь. Для этого используются уравнения (2-6) и (2-7), записанные для двойных систем. Уравнение Вильсона [c.108]

    Проиллюстрируем сказанное па пр1шере расчета пароишдкост-ного равновесия многокомпонентной системы. Пусть задана система п компонентов и требуется по известному составу жидкой фазы и давлению системы определить температуру кипения и состав паровой фазы. Предположим, что система подчиняется законам отдельных газов и что давление равно 1 атм. Тогда зависимость между паровой и жидкой фазами по каждому из компонентов может быть выражена законом Генри  [c.34]

    Свойства бинарных азеотропных смесей в самом общем виде выражаются законом (Коновалова, устанавливающим, что точки максимума или минимума на кривых давления пара или температуры кипения отвечают растворам, состав которых одинаков с составом находящегося в равновесии с ними пгфа. А. В. Сторонкин показал [3, 14, 78], что этот закон соблюдаете не только в бинарных, но и в многокомпонентных системах, а экстремуму температуры всегда соответствует противоположный экстремум давления. Однако равенство составов равяовескых паровой и жидкой фаз не обязательно соответствует экстищц  [c.73]

    Основываясь на различии в кристалличности и температурах плавления твердых нефтяных парафинов различного молекулярного веса и строения, пытались применить для очистки и разделения их метод зонной плавки. Испытывались два образца заводского нефтяного парафина микрокристаллический парафин (т. плавл. 79,5— 80,6° С) и кристаллический (т. нлавл. 55° С). Второй образец заводского парафина (как можно судить по микрофотографии) по кристалличности приближается к синтетическому эйкозану, Н-С20Н42, т. е. имеет хорошо выраженные крупные кристаллы. Тем не менее этот образец, так же как и микрокристаллический нефтяной парафин (т. плавл. 79,5—80,6 С), не поддавался очистке и разделению методом зонной плавки. Причину этого Эльдиб [177 ] видит в том, что даже узкие фракции твердого парафина представляют собой сложные смеси компонентов, сильно различающиеся между собой по температурам плавления. Зонная плавка базируется на следующем принципиальном положении, вытекающем из анализа идеальной бинарной системы при замораживании системы более низкоплавкие примеси будут концентрироваться в жидкой фазе. Реализация этого положения в случае такой многокомпонентной смеси, как парафин, практически исключается, так как при этом возможно образование ди-, три- и многокомпонентных систем, имеющих близкие температуры плавления. [c.28]

    Приведенные выше уравнения и методы расчета однократного испарения многокомнонептной смеси могут быть использованы и для расчета однократной конденсации многокомпонентной смсси, так как составы фаз и отпоситольное количество паровой и жидкой фаз зависят только от конечной температуры и дапления н i e. ча-висят от того, каким путем данная система достигла этих условии нагревом и однократным испарением жидкости илп охлаждением и однократной конденсацией паров. [c.178]

    Учет рассмотренных аномалий приобретает исключительную важность при разработке методик для техгюлогических расчетов нефтезаводской аппаратуры. Прежде всего это касается представлений о состоянии системы пар-жидкость, расчетов парциального давления испаряющихся компонентов нефтяной системы в зависимости от ее состава и условий, в которых она находится. При этом, как правило, нефть представляют в виде многокомпонентного молекулярного раствора, границу раздела фаз считают плоской, а давление паров над плоской поверхностью равным давлению в жидкой фазе. Болео того, во многих случаях систему пар-жидкость представляют в виде термодинамически сформировавшейся, не обращая внимания на процессы зарождения и развития паровой фазы отличающиеся, как это показано выше, значительными отклонениями от аддитивности. [c.109]

    Уточняя вышеизложенное можно отметить, что зарождение паровой фазы в процессе нагрева жидкой углеводородной многокомпонентной системы сопровождается соответствующей работой, которая зависит от поверхностного натяжения межфазной поверхности и разности химических потенциалов компонентов жидкой фазы в исходном и метастабильном, в данном случае конечном, состоянии. Варьирование указагг-ных параметров позволяет управлять процессом парообразования при перегонке нефтяного сырья, прежде всего в направлении понижения затрат на осуществление этого процесса. Например, искусственное понижение межфазного натяжения в пер -гоняемом сырье путем введения в него определенных поверхностно-активных веществ [c.110]

    В общем случае пластовая нефть находится, в равновесии с растворенными в ней газами. При изменении внешних условий температуры, давления) равновесие изменяется, в результате чего может образоваться многокомпонентная, многофазная система— газовая + жидкая нефтяная, водянаяЧ-твердая (парафины, асфальтены). При перемещении многофазной системы в пласте происходит многокомпонентный обмен между фазами, приводящий к непрерывному изменению и появлению аномальных свойств нефти. При неоднородной системе в результате выделения твердой фазы теряется часть ценных составляющих нефтей и может снизиться нефтеотдача пласта. [c.48]

    Катализаторы гетерогенного гидрирования-обычно многокомпонентные каталитич. системы на основе платиновых и др. переходных металлов, а также их оксидов или сульфидов. Нанесенные оксидные К. г., применяемые обычно для гидрирования в газовой фазе, получают осаждением гидроксидов металлов из р-ров их солей на пористый носитель или пропиткой последнего р-ром соли активного компонента, затем следует сушка и восстановление. Пористые К., применяемые обычно для гидрирования в жидкой фазе, готовят выщелачиванием сплавов, содержащих активный в р-цин гидрирования металл, напр. Ni, Со, Fe, u, Pt, Re (см. Катализаторы). Наиб, распрюстранение такие К. г. получили в нефтеперерабатывающей пром-сти в процессах гидроочистки и гидрообессеривания нефтяных фракций и остатков, гидрокрекинга, каталитического риформинга. Более подробно см. Катализаторы процессов нефтепереработки. [c.339]

    В тройных системах Т. т.- точки нонвариантных четырехфазных равновесий (см. Многокомпонентные системы). В эвтектич. или перитектической Т. т. сходятся три пов-сти первичной кристаллизации разл. фаз и соотв. три линии совместной кристаллизации, отвечающие трехфазным равновесиям. Т. т. указывают состав жидкой фазы, находящейся в равновесии с тремя кристаллич. фазами. Эвтектическая Т. т. расположена внзтри концентрац. треугольника, в вершинах к-рого находятся точки состава соответствующих кристаллич. фаз, перитектическая Т. т.- вне этого треугольника. Перитек-тические Т. т. могут быть двух видов точки двойного подъема, в к-рых одна из трех линий совместной кристаллизации отходит от Т. т., понижаясь, а две другие - повышаясь точки двойного спуска, в к-рых две линии совместной кристаллизации отходят с понижением, а одна - с повьшгением. [c.12]

    Мы уже познакомились с фазовой диаграммой для однокомпонентной системы (см. рис. 11.11). В однокомпонентной системе содержится только одно химическое вещество, хотя оно может быть представлено сразу несколькими состояниями. Каждая отличимая по внешнему виду часть системы называется фазой , и на рис. 11.11 указано сушествование трех различных фаз — твердой, жидкой и газообразной. В многокомпонентных системах могут одновременно существовать две жидкие фазы, как, например, в смеси масла с водой. [c.198]

    Диаметры ректификационных колонн для разделения многокомпонентных смесей определяют из тех же соображений, что и колонн для бинарной ректификации (ем. разд. 3.2.4), Наиболее надежный способ расчета рабочей высоты колонны — использование опытных данных по эффективности тарелок или по значениям ВЭТС (для на-садочных колонн), полученных для систем с близкими свойствами. При отсутствии таких данных можно использовать результаты расчета бинарной ректификации для отдельных пар компонентов, входящих в состав многокомпонентной системы, В частности, для оценки среднего коэффициента полезного действия ступени можно использовать график (см. рис. 3,9) для ключевых компонентов. Считают [И], что эффективность ступени BbiLue для компонентов, обладаюн1ИХ большей летучестью. Применение данных по бинарной ректификации к многокомпонентной является более надежным в тех случаях, когда существенная доля сопротивления массопереносу сосредоточена в жидкой фазе. [c.144]


Смотреть страницы где упоминается термин Системы с многокомпонентной жидкой фазой: [c.340]    [c.54]    [c.174]    [c.266]    [c.620]    [c.156]    [c.216]    [c.149]    [c.233]   
Смотреть главы в:

Сокристаллизация -> Системы с многокомпонентной жидкой фазой




ПОИСК





Смотрите так же термины и статьи:

Жидкая фаза

Системы многокомпонентные

Фазы системы



© 2025 chem21.info Реклама на сайте