Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кювета газов

    Уо—объем пропущенного через кювету газа, приведенный к нормальным условиям, в мл  [c.168]

    Вначале кювету продувают исследуемым газом, проходящим по трубке 1, для чего закрывают кран 5 и с помощью крана 4 направляют поток газа через кювету 2 и трубку 5. Перед измерением, открывая краны 4, 13 и микрокран 6, направляют поток газа через капилляр реометра 7. Устанавливают определенную объемную скорость потока газа через кювету. Во время измерения направляют газ из кюветы поворотом трехходового крана 3 в объемный счетчик 14 и одновременно начинают счет вспышек, наблюдаемых в поле зрения микроскопа. По окончании счета отмечают объем протекшего через кювету газа.,  [c.274]


    Интерферометр ИТР-1. Интерферометр ИТР-1 предназначен для измерения концентраций растворов п газовых смесей. Принцип работы прибора основан на сравнении показателей преломления эталонных жидкостей и газов с исследуемыми. Прибор снабжен комплектом кювет размером от 100 до 1000 мм для анализа газов и от 5 до 80 мм для анализа жидкостей. Точность измерения разности показателей преломления и интервал показателей преломления в различных кюветах приведен в табл. 8. [c.91]

    Поверхностное натяжение растворов как функцию их состава измеряли методом максимального давления пузырька по известной методике. Электропроводность дисперсионной среды определяли, используя мост переменного тока погрешность, не превышала 10%. Измерение электрокинетического потенциала для границ жидкость—газ и стекло—жидкость выполняли методом микроэлектрофореза в плоскопараллельной кювете. Предварительно исследуемое стекло измельчали в шаровой мельнице с металлическими шарами в течение нескольких часов. Образующуюся дисперсную систему многократно отмывали на фильтре [c.201]

    Светящиеся тела, содержащие возбужденные частицы, испускают излучение. Возбуждение происходит или путем поглощения квантов света, или при столкновениях, т. е. за счет теплоты. Спектры испускания известны для атомов и сравнительно небольшого числа молекул, в основном двухатомных (более сложные разлагаются при высокой температуре). Молекулярные спектры изучают главным образом как спектры поглощения, когда излучение источника сплошного спектра (например, лампы накаливания) проходит через кювету, наполненную молекулярным газом. [c.145]

    Газ, поглощающий излучение, помещают в кюветы с окошками из материала, пропускающего соответствующее излучение. В кюветах многократного прохождения ход луча через газ достигает 10 м. Для определения интенсивности поглощения используются высокочувствительные вакуумные термоэлементы, болометры и пневматические приемники Голоя. В ближней ИК-области используют чувствительные фотоэлементы. Показания приемника усиливаются и автоматически записываются. В лучших приборах удается разрешить две линии, отстоящие по частоте всего на 0,3 см">. [c.150]

    Вначале установку, полностью подготовленную к работе, подсоединяют к вакуумной линии для тренировки . Затем колбу 6 наполняют азотом. Для этого к крану 1 присоединяют трубку, конец которой опущен в жидкий азот. Используя известный объем калиброванной колбы и применяя закон Бойля — Мариотта (измерение производят для каждой кюветы в отдельности), измеряют адсорбционный объем системы и замеряют давление Р Р должно быть 120 мм) газа в системе при открытом кране 7, затем кран 7 закрывают и откачивают газ, далее вновь открывают край 7 (при [c.296]


    Далее градуируют дифференциальный манометр по ртутному, и определяют поправку на охлаждение газа в кювете. Для нахождения этой поправки в зависимости от навески адсорбента загружают в каждую кювету определенное количество стеклянных шариков или палочек. Затем систему снова вакуумируют, подают азот до давления 120 мм рт. ст., все кюветы, кроме одной, отключают, замеряют давление и погружают эту кювету в жидкий азот. После того, как давление стабилизируется, вычисляют коэффициент охлаждения . Такие измерения проводят для каждой кюветы и строят график зависимости коэффициента охлаждения от навески g (рис. 128) [c.297]

    При непосредственном измерении удельной поверхности берут навеску исследуемого материала из такого расчета, чтобы величина ее суммарной поверхности была 5—100 м . Все заполненные навесками кюветы ставят в рабочее положение, для ч го соединяют с вакуумной линией и создают, необходимый вакуум при обогреве до 200—250 °С. Затем отключают насос и обогрев После остывания кювет их соединяют с измерительной системой. Далее из К(элбы с азотом подают газ с таким расчетом, чтобы давление его в системе стало 120 мм рт. ст., отключают от системы все кюветы, кроме одной, замеряют показания манометра и кювету погружают в сосуд Дюара с жидким азотом. После того, как положение уровня жидкости в манометре установится, снова замеряют давление. [c.297]

    При работе с газами используются кюветы с большой длиной оптического пути, снабженные вакуумными кранами. Воздух из кюветы сравнения при снятии спектра газообразного вещества удаляется. [c.17]

    Спектры газов. Спектры веществ в газовой фазе снимают в стеклянных трубках с прозрачными для ИК-излучения окошками. Кюветы обычно снабжают вакуумными кранами и шлифами для соединения с вакуумной установкой. Для кюветы длиной 10 см используют давления до 0,1 МПа ( 1 атм) в зависимости от интенсивности полос вещества. Для уменьшения объема газовой кюветы при неизменной длине оптического пути ее размеры в поперечном сечении делают близкими к форме пучка света объем такой кюветы при длине 10 см может быть равен 30 мл. Для увеличения чувствительности изготовляют газовые кюветы с многократным отражением от окон, при этом длина оптического пути может достигать десятков метров. При работе с газами необходимо добиваться максимально возможного разрешения во всей спектральной области. [c.210]

    Напр мер, для снятия спектров из растворов газ-носитель, содержащий исследуемое вещество, пропускают через растворитель, поглощающий данное вещество. В случае снятия спектров твердых веществ вещество из газа-носителя осаждают на порошок бромида калия и из полученной смеси приготовляют таблетки. Если исследуемое вещество газообразно, то измерения проводят в специальной газовой кювете, в которую вещество поступает в смеси с газом-носителем. Эти методы позволяют работать с меньшими потерями вещества по сравнению с методом улавливания веществ в ловушках. [c.195]

    Атомизатор и электроды с пробами размещены внутри камеры, заполняемой инертным газом до давления, большего или равного атмосферному. Световому пучку, проходящему через кювету от лампы с полым катодом или безэлектродной высокочастотной лампы, обычно придают форму двойного конуса с вершиной в центре кЮвеТы. Далее он проецируется на входную щель монохроматора с диаметром пятна 3—4 мм. Иногда кювету помещают также в параллельный пучок света. [c.151]

    На пути лучей между плоскостью 2 и объективом 3 помещается двухкамерная кювета. Одну кювету наполняют эталонной жидкостью или газом, другую — исследуемой жидкостью или газом. Разность хода лучей света, возникшая вследствие различия показателей преломления, смещает наблюдаемую в окуляре интерференционную картину. Измерение смещения интерференционных полос позволяет определить разность показателей преломления эталонного и исследуемого вещества. [c.85]

    При работе необходимо соблюдать чистоту прибора и кювет. Прибор очень чувствительный, и поэтому малейшее загрязнение стенок кювет, защитных стекол, термостатирующей жидкости приведет к неверным результатам. Кюветы для жидких образцов заполняются пипеткой. Кюветы для газов имеют по два патрубка. Это позволяет измерять показатель преломления или концентрацию какого-либо газообразного вещества в газовом потоке. При этом через кювету пропускают исследуемый газ, а кювету сравнения заполняют эталонным газом или через нее с такой же скоростью пропускают эталонный газ. Измерения можно проводить и не в потоке. Тогда кювету промывают газом из сосуда и после заполнения ее краны закрывают. При этом необходимо соблюдать постоянство давления газа. Давления эталонного газа и исследуемого должны быть точно одинаковыми. [c.93]


    Газовые смеси можно готовить, пользуясь реометрами. По реометру измеряется скорость подачи обоих компонентов газовой смеси. Далее оба газа проходят в смесительную камеру, из которой газ поступает в кювету интерферометра. Выходной кран при этом остается открытым с тем, чтобы давление газа в кювете было равно атмосферному. [c.93]

    Схема эксперимента показана на рис. XIV. . Источником света может служить ртутная лампа. Монохроматор выделяет излучение с определенной длиной волны X (частот V или со = 2яу). Далее поляризатор формирует линейно поляризованный луч, который направляется в отверстие в магните (электромагните), ось которого совпадает с направлением магнитного поля В. При использовании электромагнитов значения индукции достигают 1 Т с однородностью 10 Т/см в зазоре 7 см. Поляриметрическая кювета для жидкостей длиной 3 см и объемом 2 см термостатируется и фиксируется в зазоре латунными держателями. Естественно, что технические данные установок могут несколько отличаться. Анализатор позволяет определять угол поворота плоскости поляризации с высокой точностью (до - 10 град). Так же могут исследоваться газы и твердые вещества, а в частности молекулы, изолированные в матрице. Регистрация прошедшего излучения производится фотоэлектрическим методом. Поскольку измерение угла поворота осуществляется методом компенсации, т. е. до полного исчезновения прохождения света, вводится компенсатор (рис. XIV.]). [c.248]

    Распределение одинаковых по размеру частиц, видимых в микроскоп или ультрамикроскоп, по высоте можно исследовать двумя методами. В первом слуг чае микроскоп располагают горизонтально и при исследовании системы передвигают его по высоте. Тогда сразу видно, что число частиц убывает с высотой. Однако для выявления зависимости убывания частиц с высотой обычно пользуются вторым методом. Согласно этому методу микроскоп при исследовании устанавливают вертикально, при этом видны только частицы, находящиеся в слое, на который фокусирован микроскоп. Толщина этого слоя в опытах Перрена, работавшего с монодисперсным золем гуммигута, составляла 1 мкм. Поднимая или опуская тубус, микроскоп можно было фокусировать на слои, которые лежали выше или ниже начального. В одной из серий опытов Перрена при общем числе частиц 13 000 и диаметре их в 0,212 мкм соотношение числа частиц в слоях, отстоявших от дна кюветы на расстояниях 5, 35, 65 и 95 мкм, составляло 100 47 22,6 12. Как можно видеть, через каждые 30 мкм число частиц в поле зрения микроскопа убывало вдвое. Таким образом, при возрастании высоты в арифметической прогрессии число частиц в поле зрения микроскопа уменьшалось в геометрической прогрессии. Следовательно, как н предполагал Перрен, взвешенные в жидкости частицы распределяются по высоте в гравитационном поле по той же барометрической формуле, что и молекулы газа. За эти опыты, увенчавшиеся окончательной победой атомизма и отличавшиеся исключительной точностью, остроумием и простотой, Перрену в 1926 г. была присуждена Нобелевская премия. [c.69]

    Спектры интермедиатов с временем жизни не менее нескольких десятков секунд можно получать, осуществляя электролиз непосредственно в кювете спектрофотометра. Определенные преимущества дает применение проточных ячеек, конструкция которых предусматривает быструю циркуляцию раствора, например под давлением инертного газа, между двумя отделениями, в одном из [c.220]

    Оптико-акустическая спектроскопия является методом, родственным с предыдущими в том отношении, что в качестве источника света в анализаторе используется лазер с перестраиваемой частотой. Лазерный луч, промодулированный со звуковой частотой, направляют в камеру образца, в одну из стенок которой вмонтирован чувствительный емкостный микрофон. Когда частота модуляции излучения лазера соответствует частоте полосы поглощения газа в кювете, газ, нагреваясь, расширяется, при этом возникают колебания давления с частотой модуляции. Эти колебания давления регистрируются емкостным микрофоном. Метод крайне чувствителен он позволяет при подходящих условиях обнаруживать концентрации порядка нескольких частей на миллиард, а при удачных обстоятельствах и даже меньше [9, 22, 23, 54, 55]. [c.33]

    Стандартная одноходовая кювета (рис. 18) представляет собой стеклянный или металлический цилиндр, торцы которого снабжены тонкими окошками, прозрачными в соответствующей спектральной области. Кюветы, предназначенные для работы в УФ-области спектра, снабжаются кварцевыми окошками, в видимой области — стеклянными, в ИК-области — окошками, изготовленными из галоидных солей щелочных и щелочноземельных элементов. В боковую поверхность цилиндра введены две трубки— одна для заполнения кюветы газом, другая для эвакуирования воздуха цплнндр закреплен в специальном металлическом держателе. [c.22]

    Фототокн прнемпяков излучения усиливаются балансным усилителем, выполненным по мостовой схеме. Плечами моста являются триоды ламиы 6Н9 и сопротивления НЗ и К7. В диагональ моста включены измерительный прибор (микроамперметр ла 200 ла), регистрирующий прибор (ЭПП-09) и ограничивающие сопротивления и Р6. Балансировка моста [ роизводится при заполнении кюветы газом, концентрация которого должна соответствовать нулевому показанию прибора (нижний предел измеряемой концентрации). Это производится уравниванием интенсивностей световых [c.389]

    При исследоваиии газа следует применять кюветы, изготовленные из стекла 1[ли из нержавеющей стали длиной 1 сл с окошками из кристаллического пли плавленого кварца. [c.282]

    Через 2—3 мин промывки газом кюветы закрыть кран капельной ворош<и закрыть кран, соединяющий колбу Вюрца со склянкой для осушки газа и закрыть входной и выходной краны кюветы. 3. Отвернуть крыии<и, предохраняющие окна кюветы от порчи атмосферной влагой. Установить газовую кювету перед входной щелью прибора. [c.62]

    При совместном действии электрического и ультразвукового внешних силовых полей наблюдается заметная интенсификация процессов седиментации и коалесценции при наложении электрического поля. Однако следует заметить, что скорость движения частиц фазы и время образования границы фаза—среда несколько меньше, а время полного разделения несколько больше, чем при наложении только электрического поля. Положительное действие ультразвука заключалось в исключении таких процессов, как гетероадагуляция полностью исключалось прилипание частиц фазы к электродам и к стенкам измерительных кювет, накопление пузырьков газа как на поверхности электродов, так и во всем объеме жидкости. Неблагоприятное воздействие ультразвука проявляется в уменьшении степени поляризации частиц дисперсной фазы и выравнивания концентрации частиц фазы по всему объему кюветы и у электродов. [c.69]

    Наряду с пламенными атомизаторами в ААС в последнее время широко применяются электротермические атомизаторы [3], имеющие ряд неоспоримых гфеимуществ, таких как более низкне пределы обнаружения (до 10 %), малый объем пробы (1-10 мкл), отсутствие взрывоопасных газов. Метод основан на атомизации элементов в графитовой кювете, нагреваемой электрическим током, которая представляет собой графитовую трубку длиной 20-50 мм, внутренним диаметром 3-5 мм и внешним - 5-8 мм Пробу вводят в кювету через отверстие (2 мм) с помощью микропипетки или автосамплера. Время определения одного элемента составляет 1-2 мин. В этих условиях возможно определение до (1,02 мкг/л кадмия, 1,0 мкг/л свинца, 0,016 мкг/л цинка (табл. 7.3). Обладая большими достоинствами, электротермические атомизаторы не свободны от недостатков, главными из которых являются фоновое излучение от раскаленной 248 [c.248]

    В случае ИКС-детекторов последовательно регистри] )ую1ся ИК-спектры элюируемы - лз колонки соединений. Поток газа-носителя поступает в кювету, в которой молекулы поглощают ИК-излучение с точно определенной частотой. Чувствительность детектирования зависит от наличия в органических соединениях тех или иных функциональных фупп. Если молекула хорошо поглощает ИК-излучение, то aнaлитичe ш сигнал может быть получен при поступлении в кювету 1 нг вещества. Современные компьютеризованные ИК-спектрометры с преобразованием Ф>рье дают возможность сравнгаать полученные спектры с библиотечными, позволяя тем самым идентифицировать вещества, дополняя масс-спектры Следует заметить, что комбинация ГХ с ИКС и МС является в настоящее время самым мощным инструментом для идентификации суперэкотоксикантов. [c.262]

    На рис. 164 приведена принципиальная схема установки для измерения содержания нитробензола в анилине. Смесь паров анилина и воды, отфильтрованная от шлама на фильтре 1, поступает в конденсатор 2 и затем в разделитель фаз 3. Неконденси-рующиеся газы удаляются в атмосферу, конденсат через холодильник 4 [юступает в сепаратор 5, где анилин отделяется от воды. Уровешз анилина в сепараторе автоматически регулируется прибором 6. Анилиновь[й слой поступает через подогреватель 7 в кювету фотоколориметра 13, которая вмонтирована в прибор, со- стоящи из фотоэлементов 5, линз 11, светофильтров 10, регулирующей диафрагмы 9 и осветителя 12. Фотоколориметрический прибор сигнализирует о повьппении содержания невосстановленного [c.283]

    Дальнейшую очистку от ряда примесей, содержащихся в металлах, осуществляют посредством диффузионной (зонной) плавки. Сущность ее заключается в следующем металл наплавляют в лодочку или в противень шириной от 20 до 300 мм, длиной 200—500 мм. Материал лодочки или противней подбирают с расчетом не загрязнить металл (чистый графит, кварц, глинозем). Над поверхностью металла на расстоянии 5—10 мм помещают несколько поперечных нагревательных стержней из сили-та, угля, вольфрама, молибдена (применение последних трех требует защитной газовой среды). Для более труднорасплавляе-мых металлов применяют высокочастотный нагрев. Расстояние между нагревателями от 100—500 мм. Кюветы или противни продвигают под стержнями оо скоростью 20—160 мм/час и быстро возвращают обратно. Для очистки металла делают 10— 100 проходов. Чаще всего нагреватели и кюветы или противни помещают в кожух, наполненный нейтральным газом, либо в трубки, из которых выкачивают воздух. В этом случае нагрев осуществляют извне посредством контуров высокой частоты. [c.589]

    Через 2—3 мин промывки газом кюветы закрыть кран капельной воронки закрыть крап, соединяющий колбу Вюрца со склянкой для осушки газа и закрыть входной и выходной краны кюветы. 3. Отвернуть крышки, предохраняющие окна кюветы от порчи атмосферной влагой. Установить газовую кювету перед входной щелью прибора. 4. Снять спектр поглощения газа подобно съемке спектра поглощения полистирола. 5. Сделать анализ полученного спектра. Отнести каждую полосу поглощения к определенному переходу. 6. Определить значения шкалы длин волн для каждой полосы поглощения в Р-ветви вращательно-колебательного спектра. 7. Определить среднее значение из 10 значений Дм (разность волновых чисел соседних полос поглощения). 8. Вычислить по уравнению (111,39) вращательную постоянную В на основании среднего значения Асо. 9. Рассчитать момент инерции. Сопоставить полученную величину со справочной. 10. Р ассчитать межатомное расстояние по уравнению (III, 4). 11. Определить по уравнению (111, 38) волновое число основной полосы поглощения. Сопоставить полученное значение с собственной частотой колебания. [c.62]

    Последовательность выполнения работы. 1. Построить дисперсионную кривую прибора ИКС-12 с призмой ЫаС1 как это было описано на стр. 47 п. п. 16—22. Начальное деление шкалы 11,80. Скорость записи спектра 4. Зеркальную заслонку открыть, когда на шкале будет деление 12,00. Конечное деление шкалы 16,50. 2. Сопоставить спектр полистирола со спектром, изображенным на рис. 31, в. 3. Определить деления шкалы длин волн для каждого максимума в спектре полистирола и построить дисперсионную кривую. 4. Заполнить газовую кювету осушенным метаном. Для этого соединить кювету со склянкой для осушки метана из газопровода. Через 2—3 мин промывки газом кюветы закрыть сначала входной кран, а затем выходной. 5. Отвернуть крышки, предохраняющие окна газовой кюветы от порчи атмосферной влагой, установить газовую кювету перед щелью прибора. [c.63]

    На занятии Эксперимент при изучении водорода, кислот и солей иллюстрируют возможности эпидиаскопа. Показывают рисунки установок, предназначенных для демонстрации физических, химических свойств и способов получения водорода. Студентам предлагают узнать, какое свойство водорода можно продемонстрировать визуально указать приборы, которые можно использовать при первичном ознакомлении со свойствами водорода, а также при закреплении и проверке знаний назвать прибор и описать его устройство, методику использования, технику безопасности найти одинаковые по назначению, принципу действия приборы, сравнить нх по устройству, экономичности, безопасности, отметить их достоинства и недостатки. На этом же занятии показывают возможности графопроектора для демонстрации признаков реакции. На просвет рядом ставят две кюветы. Одна наполняется кислотой, другая — водой. В обе помещают одинаковые кусочки цинка. На экране ясно видно, что реакция идет там, где цинк соприкасается с кислотой (возникают маленькие пузырьки газа, раздувающиеся, сливающиеся друг с другом и, наконец, отрывающиеся от поверхности цинка). В кислоту устремляются струйки, как будто тяжелая жидкость добавляется к более легкой кислоте. При этом кусочек цинка, погруженный в кислоту, стано- [c.26]


Смотреть страницы где упоминается термин Кювета газов: [c.225]    [c.280]    [c.62]    [c.63]    [c.93]    [c.151]    [c.296]    [c.286]    [c.62]    [c.151]    [c.60]    [c.359]   
Химическое разделение и измерение теория и практика аналитической химии (1978) -- [ c.733 ]




ПОИСК







© 2025 chem21.info Реклама на сайте