Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Комбинационного рассеяния спектрометрия спектрометрия

Рис. 2. Блок-схема спектрометра для получения снектров комбинационного рассеяния света с прямой регистрацией. Рис. 2. <a href="/info/1619729">Блок-схема спектрометра</a> для <a href="/info/1126780">получения снектров</a> <a href="/info/5365">комбинационного рассеяния света</a> с прямой регистрацией.

    Не все молекулы поглощают инфракрасное излучение. В частности, молекулы с определенными свойства.ми симметрии, как, например, гомоядерные двухатомные молекулы, не поглощают инфракрасного излучения. В более сложных молекулах не все типы колебаний обязательно соответствуют поглощению инфракрасного излучения. Например, симметричные молекулы, как, скажем, этилен, Н,С=СН2, не обнаруживают всех своих колебаний в инфракрасном спектре. Для того чтобы помочь исследованию колебаний таких молекул, часто используется спектроскопия комбинационного рассеяния (КР). Спектр КР возникает в результате облучения молекул свето.м (обычно в види.мой области) известной длины волны. В современных спектрометрах КР в качестве источника света, облучающего образец, обычно используется лазерный пучок (рис. 13-35). Поглощение излучения измеряется косвенным путем. При облучении светом высокой энергии [c.590]

    Для расшифровки состава природных органических соединений нефти и нефтепродуктов и характеристики их свойств применяются оптические методы. Сюда относятся инфракрасная и ультрафиолетовая спектрометрия, метод комбинационного рассеяния света, определения показателя преломления и оптической активности. Вещество, через которое проходит излучение, поглощает лучи только определенной длины волны (частоты), и по закону Кирхгофа само вещество излучает только те лучи, которые оно в данных условиях поглощает. Каждый ион, атом, молекула дают характерные частоты в спектре поглощения, спектре испускания и спектре комбинационного рассеяния. Задачей спектрального анализа является определение этих характеристических частот, зная которые, можно определить качественный состав углеводородной смеси. Для этого существуют таблицы характеристических частот индивидуальных углеводородов. Для количественного анализа еще необходима оценка интенсивности излучения. [c.228]

    Для идентификации конденсированных ароматических углеводородов, входящих в вышеуказанные фракции были изучены спектры комбинационного рассеяния на спектрометре ИСП-51 и инфракрасные спектры поглощения в области 690—1700 M- на спектрометре ИКС-14. [c.44]

    Из физических методов определения строения органических соединений используются спектроскопия в видимой области, ультрафиолетовая, инфракрасная и комбинационного рассеяния, масс-спектрометрия, определение дипольных моментов, ядерный магнитный резонанс и др. Подробное описание всех этих методов можно найти в специальных руководствах и в учебниках по физике и физической химии. [c.16]


    Анализ спектров комбинационного рассеяния проводится на спектрографе ИСП-51 или на дифракционном спектрометре ДФС-12. [c.160]

    Спектры комбинационного рассеяния часто оказываются чрезвычайно полезным дополнение к ИК-спектроскопии. Аппаратура, используемая при снятии Раман-спектров, в принципе очень проста. Монохроматическое излучение, например от ртутной лампы низкого давления, проходит через образец, и свет, рассеянный под прямыми углами к входящему лучу, анализируется оптическими спектрометрами, как это показано на рис. 2-5. [c.41]

    Линии комбинационного рассеяния обычно настолько узки, что их перекрывание минимально и нет необходимости в коррекции по методу базовой линии. Но когда такая коррекция желательна, можно использовать ту же самую методику, что используется и в ИК-спектрометрии. [c.748]

    Спектрометр комбинационного рассеяния. В отличие от всех абсорбционных методов спектры комбинационного рассеяния наблюдают перпендикулярно направлению распространения первичного монохроматического светового излучения. Сосуд с пробой (цилиндрическая или плоская кювета) освещают [c.237]

    В последнее время в анализе органических соединений все большее значение приобретают физико-химические методы исследования спектроскопия в инфракрасной, видимой, ультрафиолетовой областях спектра, комбинационное рассеяние света, ядерный магнитный резонанс, масс-спектрометрия, хроматография и др. Эти методы используются для классификации, определения строения и идентификации органических соединений. [c.228]

    Применяя методику поляризационных измерений, Д. Ф. Киселев и Л. П. Осипова [389] составили таблицы интенсивностей для линий комбинационного рассеяния а-кварца. Эти измерения, вообще говоря, могут проводиться несколькими методами. 1. Кристалл освещается линейно поляризованным светом, а на пути рассеянного света поочередно устанавливается поляроид с направлением поляризации, параллельным и перпендикулярным щели спектрометра. 2. Кристалл поочередно освещается линейно поляризованным светом с направлением поляризации, параллельным и перпендикулярным направлению наблюдения этот метод осуществляется обычно с использованием трубчатых поляроидов. 3. Кристалл освещается неполяризованным светом, а на пути рассеянного света поочередно устанавливаются поляроиды с направлением поляризации, параллельным и перпендикулярным щели прибора. Каждый из этих методов позволяет по измеренным значениям интенсивности составить таблицу интенсивностей, компоненты которой пропорциональны квадратам компонент тензора рассеяния (методы измерения, расчетов и введения необходимых поправок описаны в работах [389, 393] см. также добавление к книге [44]). Пользуясь таблицей интенсивностей, легко найти абсолютные значения компонент тензора рассеяния. Определение знаков составляющих этого тензора иногда может быть выполнено на основании простых соображений симметрии, но в ряде случаев требует дополнительных расчетов и измерений. [c.422]

    Значительно более перспективны методы хроматографии инфракрасной спектроскопии, исследование спектров комбинационного рассеяния масс-спектрометрия [c.955]

    Промышленные углеграфитовые материалы состоят из нерегулярно агрегированных дефектных кристаллитов. Сами кристаллы могут содержать набор ар -(преимущественно), зр - и ар-связей, определяющих их свойства. Исследование и количественная оценка распределения этих связей (особенно зр и зр ) методом спектрометрии комбинационного рассеяния (Ра-ман-спектроскопии) представляют значительный интерес при изучении механизма формирования структуры и свойств. [c.24]

    По своим теоретическим основам и типу получаемой информации к методу ИК-спектрометрии близко примыкает метод, использующий явление комбинационного рассеяния (КР) света (иногда этот метод называют также раман-спектроскопией). [c.221]

    Методы анализа основаны на предварительной калибровке прибора по эталонам — чистым образцам и (или) искусственным смесям тех углеводородов, которые могут присутствовать в анализируемом продукте. Анализ жидкостей по инфракрасным спектрам значительно быстрее, точнее и чувствительнее анализа по спектрам комбинационного рассеяния (при фотографической регистрации), но требует наличия эталонов. При анализе газов спектры комбинационного рассеяния пе имеют практического значения. Методы масс-спектрометрии в этой области в общем имеют большие возможности, чем инфракрасные, но при определении индивидуальных алкенов, например бутенов, преимущества на стороне инфракрасной спектроскопии. [c.498]

    Идентификацию предельных углеводородов осуществляют обычно с помощью физико-химических методов (масс-спектрометрии, ИК-спектроскопии, комбинационного рассеяния света). [c.232]

    При всех аппаратурных усовершенствованиях в связи с возрастающей автоматизацией она осталась методом, пригодным для непосредственного использования рядовым химиком-экспериментатором и не требующим группы специалистов для обслуживания приборов, как ИК-спектроскопия или спектроскопия комбинационного рассеяния, масс- и резонансная спектрометрия и другие методы. Химик может сам в короткое время овладеть теоретическими и практическими элементами метода в такой степени, что сможет в достаточной мере самостоятельно обслуживать все приборы. В значительной степени этим объясняется наиболее широкое применение газовой хроматографии в научно-исследовательских лабораториях и для химического контроля технологических процессов. [c.26]


    Молекулярный и функциональный К. а. проводят с помощью инфракрасной спектроскопии, комбинационного рассеяния спектроскопии, ядерного магнитного резонанса, электронного парамагнитного резонанса. Особое место в совр, К. а. занимает масс-спектрометрия и хромато-масс-спектрометрия (ниж. предел обнаружения-10 % по массе). [c.360]

    Количеств, информацию о строении молекул дают дифракционные методы (рентгеновский структурный анализ, электронография и нейтронография), а также микроволновая спектроскопия. Качеств, сведения о строении молекул можно получить по колебательным спектрам, масс-спектрам, спектрам ЯМР и ЭПР (см. Инфракрасная спектроскопия, Комбинационного рассеяния спектроскопия, Ядерный магнитный резонанс, Масс-спектрометрия, Электронный парамагнитный резонанс). [c.445]

    На рис. 15.9 показана экспериментальная установка для получения спектров комбинационного рассеяния. Излучение, рассеянное образцом, фокусируется на щели спектрометра. Интенсивность измеряется как функция длины волны при помощи фотоумножителя. На рис. 15.10 приведен полученный таким способом спектр КР жидкого ССЦ. [c.477]

    ИК-спектроскопия и КР- (комбинационного рассеяния, или рамановская) спектроскопия принадлежат к группе молекулярных колебательных методов, которые вместе с ЯМР-спектроскопией (спектроскопией ядерного магнитного резонанса), масс-спектрометрией, и хроматографией составляют основу современного органического анализа, включающего структурный анализ, микроанализ и анализ поверхности. [c.164]

    В некоторых случаях другие методы могут оказаться более экспрессными или более чувствительными. Например, ядерный магнитный резонанс (ЯМР) зачастую дает больше информации о строении молекул некоторых классов растворимых органических веществ без спектров сравнения или стандартов. Стандарты менее важны также в масс-спектрометрии, где объем исследуемого образца может быть и меньше, но вещество должно быть летучим, однако область применения метода порой уже, чем в случае ИК-спектроскопии. Газовая хроматография, масс-спектрометрия и ультрафиолетовая (УФ) спектроскопия имеют превосходную чувствительность к следовым количествам (естественно, в пределах их чувствительности). Кроме того, для некоторых веществ эти три метода способны давать и превосходные количественные результаты. Спектроскопия комбинационного рассеяния (КР) света может быть использована в аналитических целях аналогично ИК-спектроскопии, но чаще как дополняющий, а не конкурирующий метод [6]. Таким образом, ясно, что аналитик должен сознавать возможности и ограничения всех доступных методов. [c.13]

    На большинстве ИК-спектрометров применяется диаграммная лента, градуированная как в единицах длин волн, так и в единицах волновых чисел, однако при обсуждении полученных данных обычно используют шкалу волновых чисел (в см О, поскольку в таком случае удобнее связывать основные колебательные моды с соответствующими обертонами, а также полосы поглощения в ИК-спектрах и в спектрах комбинационного рассеяния. [c.39]

    Ультрафиолетовая и инфракрасная спектроскопия. Методы комбинационного рассеяния и ЯМР. Масс-спектрометрия [c.28]

    Спектры комбинационного рассеяния (КР), так л е как ИК-спектры поглощения, являются колебательными спектрами. Спектры КР являются эмиссионными спектрами, их получают, интенсивно освещая образец монохроматическим светом и распределяя отралсен-ный свет по длинам волн в спектрометре. В спектре отраженного света наблюдают линию, соответствующую использованному (воз- [c.54]

    Нами в течение ряда лет проводятся систематические исследования колебательных спектров соединений РЗЭ. В настоящей статье излагаются основные результаты главным образом наших исследован ий ряда соединений РЗЭ с тетраэдрическими анионами ЗОа , ЗеО , РО , Ке04, МоОГ-Исследования проводились методами ИК-спектроскопии и спектроскопии комбинационного рассеяния (КР). ИК-спектры поглощения получены на спектрофотометре 11В-10 (область 400—3600 см ) с использованием обычных методик подготовки образцов (суспензии в вазелиновом масле и таблетки с КВг). Спектры КР мелкокристаллических порошков записывались на спектрометре ДФС-12 при возбуждении спектральной линией ртути (X = 4358 А). Детали эксперимента и описание полученных спектров можно найти в наших сообщениях [1—7]. [c.286]

    Продукты, образованные в результате опытов, идентифицировались методом комбинационного рассеяния света (КРС), который является эффективным методом идентификатши соединений при наличии спектра КРС эталонного соединения. В проведенном исследовании спектры КРС регистрировались на оснащенном микроскопом спектрометре и - 1000 )оЫп Ууоп. Для возбуждения использовалось излучение 448 нм аргонового лазера. [c.114]

    Элементный К. а. можно проводить хим. методами с испольэ. р-ций обнаружения, характерных для неорг. ионов в р-рах или атомов в составе орг. соединений. Эти р-ции обычно сопровождаются изменением окраски р-ра (см. также Капельный анализ), образованием осадков (см., напр.. Микрокристаллоскопия) или выделением газообразных продуктов. К. а. неорг. в-в часто требует систематич. хода, при к-ром с помощью хим. р-ций иэ смеси последовательно выделяют небольшие группы ионов (т. н. аналит. уш ы элементов), после чего проводят р-ции обнаружения. В дробном К. а. каждый элемент открывают непосредственно в смеси по специфич. р-ции. Хим. методы имеют практич. значение при необходимости обнаружения только 1—2 элементов. Многоэлементные фиэ. методы, напр, эмиссионный спектральный анализ, активационный анализ, рентгеноспектральный анализ (см. Рентгеновская спектроскопия), позволяют обнаружить ряд элементов после проведения небольшого числа операций. Молекулярный и функциональный К. а. проводят с помощью инфракрасной спектроскопии, комбинационного рассеяния спектроскопии, масс-спектрометрии, ядерного магнитного резонанса и хроматографии, Используют также хим. методы и методы, основанные на измерении таких физ. характеристик в-ва, как, напр., плотность, р-римость, т-ры плавления и кипения. [c.250]

    Элементарные реакции. Для установления М. р. привлекают как теоретич. методы (см. Квантовая химия, Динамика элементарного акта), так и мiioгoчи лeнныe эксперим. методы. Для газофазньк р-ций >io молекулярных пучков метод, масс-спектрометрия высокого давления, масс-спектрометрия с хим. ионизацией, ионная фотодиссоциация, ион-циклотронный резонанс, метод послесвечения в потоке, лазерная спектроскопия-селективное возбуждение отдельных связей или атомных групп молекулы, в т.ч. лазерно-индуцированная флуоресценция, внутрирезонаторная лазерная спектроскопия, активная спектроскопия когерентного рассеяния. Для изучения М. р. в конденсир. средах используют методы ЭПР, ЯМР, ядерный квадрупольный резонанс, хим. поляризацию ядер, гамма-резонансную спектроскопию, рентгено- и фотоэлектронную спектроскопию, р-ции с изотопными индикаторами (мечеными атомами) и оптически активными соед., проведение р-ций при низких т-рах и высоких давлениях, спектроскопию (УФ-, ИК и комбинационного рассеяния), хемилюминесцентные методы, полярографию, кинетич. методы исследования быстрых и сверхбыстрых р-ций (импульсный фотолиз, методы непрерывной и остановленной струи, температурного скачка, скачка давления и др.). Пользуясь этими методами, зная природу и строение исходных и конечных частиц, можио с определенной степенью достоверности установить структуру переходного состояния (см. Активированного комплекса теория), выяснить, как деформируется исходная молекула или как сближаются исходные частицы, если их несколько (изменение межатомных расстояний, углов между связями), как меняется поляризуемость хим. связей, образуются ли ионные, свободнорадикальные, триплетные или др. активные формы, изменяются ли в ходе р-ции электронные состояния молекул, атомов, ионов. [c.75]

    Аналитические применения лазеров основаны по крайней мере на одном из следующих свойств монохроматичность, когерентность, высокая плотность мощности (или поток). Примером использования монохроматичности служит резонансная ионизационная масс-спектрометрия (РИМС, см. разд. 8.5) и спектроскопия комбинационного рассеяния (см. разд. 9.2 и 10.5). Высокий поток используют для лазерной абляции (см. разд. 8.1 и 8.5). [c.688]

    Рамановская спектроскопия. Экспериментальные спектры комбинационного рассеяния света (КР) некоторых индивидуальных гомологов н-парафинов получены Т Н. Мороз (Институт геологии и геофизики СО РАН, Новосибирск). Они изучены при комнатной температуре в диапазоне 1400-1500 сл/ спектрометр Ramanor U1000, Аг+514/5 нл<. [c.120]

    Малая ширина полосы (в пределах от 1 до 10 см ) и высокая концентрация мощности перестраиваемых лазеров столь привлекательны, что, без сомнения, в ближайшие несколько лет появятся ИК-спектрометры нового поколения для специальных целей. Главными системами, используемыми в настоящее время, являются лазеры на полупроводниковых диодах (ПД), лазеры с переворотом спина с использованием комбинационного рассеяния (ПСКР) и параметрические генераторы (ПГ). [c.32]

    Метод менее стандартизован и автоматизирован по сравнению с другими типами хроматографии, однако позволяет получать богатую, зачастую уникальную информацию. Первый полностью автоматизированный прибор для ТСХ был сконструирован и выпущен в продажу фирмой Вакег в 1972 году, однако до сих пор используется ручной вариант ТСХ. Тем не менее современные методы ТСХ включают автоматизированное многократное проявление, проявление с ускорением потока подвижной фазы, сочетания с ВЭЖХ, электронной и инфракрасной спектроскопией, спектрометрией комбинационного рассеяния. Разработаны [53] программы библиотечного поиска по величинам /2/и ультрафиолетовым спектрам. [c.106]

    В последние годы возможности колебательной спектрометрии как многомерного метода анализа и исследования значительно увеличены благодаря появлению спектрометрии комбинационного рассеяния с Фурье-преобразованием, более эффективному использованию измерений в ближней ИК-области, улучшению разрешения во времени менее 1 с в ИКС с Фурье-преобразованием, увеличению чувстви- [c.221]

    Многие химики-аналитики считают, что из числа всех спектров поглощения наиболее полезными являются инфракрасные спектры. Это связано с тем, что с помощью обычно используемых спектрометров для многих веществ нельзя наблюдать характеристического поглощения в ультрафиолетовой области спектра, тогда как в инфракрасной области все вещества дают характеристическое поглощение. Подробное рассмотрение теории и интерпретации инфракрасных спектров и спектров комбинационного рассеяния дано в монографии Герцберга [864]. Можно рекомендовать также КНИГУ Рэндала, Фаулера, Фьюзона и Дэнгла [1521], пользование которой не требует математической подготовки. Различные вопросы, связанные с применением инфракрасных спектров в качественном и количественном анализах, описаны в работах Бернса, Гоура и др. [173, 174]. [c.47]


Смотреть страницы где упоминается термин Комбинационного рассеяния спектрометрия спектрометрия: [c.506]    [c.516]    [c.99]    [c.238]    [c.114]    [c.224]   
Химическое разделение и измерение теория и практика аналитической химии (1978) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Комбинационное рассеяние



© 2025 chem21.info Реклама на сайте