Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Плавления температура зависимость от давления

    О химических превращениях в системе можно судить по характеру изменения разнообразных физических свойств — изменения температур плавления и кристаллизации, давления пара, вязкости, плотности, твердости, магнитных свойств, электрической проводимости системы в зависимости от ее состава. Результаты исследования обычно изображают в виде диаграммы состав — свойство (по оси абсцисс — состав, по оси ординат — свойство). [c.136]


    Теплоту плавления можно определить по уравнению (V. 12). Однако ввиду отсутствия сведений об изменении температуры плавления в зависимости от давления следует пользоваться [c.113]

    Физико-химический анализ основан на изучении зависимости между химическим составом и какими-либо физическими свойствами системы (плотность, вязкость, растворимость, температура плавления, температура кипения и др.) с применением геометрического метода изображения полученных результатов. Найденные опытным путем данные для нескольких состоянии системы наносятся в виде точек на диаграмму состав—свойство , на оси абсцисс которой откладывается состав системы, на оси ординат — свойство. Сплошные линии, проведенные через эти точки, отображают зависимость свойства от состава системы н позволяют устанавливать соотношение любого произвольно взятого состава системы с исследуемым свойством. Плавный ход сплошных линий соответствует постепенному увеличению или уменьшению исследуемого фактора (состава, температуры, давления и т. п.), не влекущему за собой изменения качественного состава системы. Резкие перегибы и пересечения линий указывают на превращения и химические взаимодействия веществ. Анализ линий и геометрических фигур на диаграмме состав—свойство позволяет судить о характере химических процессов, протекающих в системе, а также устанавливать состав жидкой и твердой фаз, не прибегая к разделению системы на составные части. [c.272]

    По зависимости давления насыщенного пара от температуры и плотности данного вещества А с молекулярной массой М в твердом и жидком состояниях ( ТВ и ж в кг/м ) в tpoйнoй точке (тр.т) 1) постройте график зависимости Ig Р от 1/Т 2) определите по графику координаты тройной точки 3) рассчитайте среднюю теплоту испарения и возгонки 4) постройте график зависимости давления насыщенного пара от температуры 5) определите теплоту плавления вещества при температуре тройной точки 6) вычислите dT/dP для процесса плавления при температуре тройной точки 7) вычислите температуру плавления вещества при давлении Р Па 8) вычислите изменение энтропии, энергий Гиббса и Гельмгольца, энтальпии и внутренней энергии для процесса возгонки 1 моль вещества в тройной точке 9) определите число термодинамических степеней свободы при следующих значениях температуры и давления а) Ттр.т. Ртр.т б) Т .т.к. Р = I атм в) Т в.т. Ртр.т- Необходимые для расчета данные возьмите из таблицы (см. с. 167). [c.166]


    Однако уравнение (IV, 60) не охватывает зависимости давления насыщенного пара от температуры во всем интервале температур— от температуры плавления до критической. С одной стороны, теплота испарения зависит от температуры, и интегрирование должно производиться с учетом этой зависимости. С другой стороны, насыщенный пар при высоких температурах нельзя считать идеальным газом. Поэтому уравнение, охватывающее зависимость р= = ДГ) в широком интервале температур, неизбежно становится эмпирическим. [c.146]

    Зависимость температуры плавления калия от давления (атм), по Бриджмену, выражается уравнением [c.154]

    Согласно принципу соответствия, отдельным фазам на диаграмме будут соответствовать геометрические элементы твердой фазе— площадь над кривой аОЬ, жидкой фазе — площадь над кривой ЬОс, газовой фазе (пар)—площадь под кривой аОс. Граничные кривые соответствуют сосуществованию фаз Оа — твердой и газовой (зависимость давления насыщенного пара от температуры при наличии твердой фазы), Ос — жидкой и газовой (зависимость давления насыщенного пара от температуры над жидкостью), ОЬ — твердой и жидкой (зависимость температуры плавления от давления). [c.185]

    П. Вычислите температуру плавления, давление насыщенного пара при этой температуре и теплоту плавления серебра по данным зависимости давления насыщенного пара (Па) от температуры, если [c.153]

    Зависимость температуры плавления нафталина от давления выражается уравнением [c.30]

    Все свойства вещества, описанные в двух предыдущих разделах, могут быть представлены с помощью фазовой диаграммы-графика зависимости давления от температуры, указывающего условия, при которых твердая, жидкая или паровая фаза является термодинамически устойчивой формой вещества, и те условия, при которых две или даже все три фазы находятся в равновесии друг с другом. Показанная на рис. 18-6 фазовая диаграмма СС>2 типична для веществ, которые расширяются при плавлении, что случается чаще всего. Уже знакомая нам кривая зависимости равновесного давления пара от температуры простирается от тройной точки, где твердая, жидкая и паровая фазы находятся в равновесии, до критической точки. Вдоль этой линии жидкость и газ находятся в равновесии. Жидкость является устойчивой фазой выше этой кривой, а пар-устойчивой фазой ниже нее. [c.131]

    Введение. Агрегатные состояния веществ. В большинстве случаев каждое вещество может, в зависимости от внешних условий (температуры и давления), находиться в газообразном, жидком и твердом состояниях, т. е. в том или ином агрегатном состоянии. Однако для некоторых веществ не все три агрегатных состояния достижимы. Так, карбонат кальция при легко доступных давлениях практически не удается получить ни в жидком, ни в газообразном состояниях, так как он разлагается при нагревании на окись кальция и двуокись углерода раньше, чем наступит его плавление или испарение, а окись кальция практически нелетуча. С другой стороны, возможны такие условия, при которых данное вещество может находиться одновременно в двух или даже в трех состояниях. Так, вода при 0,010°С и давлении мм рт. ст. находится в устойчивом равновесии в трех состояниях — льда, жидкой воды и водяного пара. [c.91]

    Вгз. Все значения АН° и Д5° относятся к 1 моль Вгг. В работе опреде-, лена зависимость температур плавления брома от давления (до 10 000 кГ/см ). [c.344]

    На диаграмме состояния (фа зовая диаграмма) воды при не слишком высоких давлениях (рис 8 1) имеются следующие экспериментально полученные ли НИИ ос — зависимость давления насыщенного пара над жидкой водой от температуры ао — зависимость давления насыщенного пара над льдом от температуры оЬ — зависимость температуры плавления от давления [c.3150]

    Кристаллизация расплавов при высоких гидростатических давлениях обычно протекает при переработке пластмасс методом литья под давлением. Оказывается, что давление существенно влияет на все аспекты кристаллизации и механические характеристики формирующихся при этом структур. В соответствии с законом Клаузиуса— Клапейрона зависимость равновесной температуры плавления от гидростатического давления (Т, )р описывается следующим выражением  [c.58]

    Определить теплоту плавления метана при 90,67° К, если зависимость температуры плавления метана от давления в интервале 101,33- 20 266 кн/м выражается уравнением [c.130]

    Т. 4.5. 4,15 кДж. 4.6. 2, з-10-2 м кмоль, 5.1. Числом термодинамических степеней свободы называется число независимых параметров, которые можно изменять, не меняя числа и вида фаз в системе. 5.2. Рис. 29. 5.3. Температура плавления с ростом давления может расти, а может и падать. Характер зависимости определяется знаком Д1 пл = 1 ш—Vtb если ДК>0, то температура плавле- [c.95]

    Линия а а 2 соответствует двухфазному равновесию между жидкостью и кристаллами. Ее называют кривой плавления, так как она изображает зависимость температуры плавления от внешнего давления. На рис. 42 ход кривой а а соответствует росту температуры плавления с повышением давления. Экспериментально кривую а а ч можно проследить до очень высоких давлений, однако критическая точка при этом не обнаруживается. Отдельно остановимся на другом возможном ходе кривой а а ч. Реально возможен случай, когда повышение давления приводит к понижению температуры плавления, что имеет место, если процесс плавления сопровождается уменьшением объема. До последнего времени во многих учебниках и монографиях этот случай рассматривается как исключительный, характерный только для воды и висмута. Между тем большое число полупроводников (германий, кремний, соединения A gB , А В и многие другие) кристаллизуются подобно воде и висмуту с расширением. [c.266]


    Температура кипения вещества в отличие от температуры плавления очень сильно зависит от давления. Зависимость давления паров от температуры выражается уравнением Клаузиуса — Клапейрона  [c.80]

    Опыты с парафином и нафталином дали изменения температуры плавления в зависимости от давления, приведенные в табл. 31. [c.103]

    Почему кривая, выражающая зависимость температуры плавления льда от давления, на рис. 4.1 наклонена влево  [c.68]

    Равновесие между жидкой и газовой фазами вещества математически описывается уравнением зависимости давления насыщенного пара над жидкостью от температуры, а графически изображается кривой давления насыщенного пара над жидкостью (рис. 1.3, а, кривая ж=г ). Равновесие между кристаллом и паром описывается уравнением зависимости давления насыщенного пара над кристаллом от температуры и изображается кривой давления пара над кристаллом (кривая к = г ). Равновесие между жидкостью и кристаллом выражается зависимостью между температурой плавления вещества и давлением и изображается так называемой кривой плавкости (кри-иая к = ж ). [c.21]

    На рис. 1.3 показана диаграмма состояния, типичная для значительного большинства элементарных веществ. На ней отмечены области существования твердой, жидкой и паровой фаз в зависимости от температуры и давления. Точка О на диаграмме — тройная точка, соответствующая температуре равновесия твердой и жидкой фаз при давлении, равном давлению их насыщенного пара (температура плавления, или кристаллизации). Кривая ОВ показывает зависимость температуры плавления от давления. Как видно из диаграммы,для большинства элементарных веществ (у которых при плавлении плотность уменьшается) с увеличением давления температура плавления повышается. [c.38]

    Линия a k соответствует двухфазному равновесию между жидкостью и паром. Как уже указывалось, оно является моновариант-ным, т. е. характеризуется одной степенью свободы. Это означает, что можно произвольно изменять только один из параметров состояния— давление или тем пературу, тогда как другой определяется из диаграммы. Из диаграммы также следует, что линия a k характеризует зависимость давления насыщенного пара данного вещества от температуры и ее же можно трактовать как зависимость температуры кипения вещества от внешнего давления. В этой связи кривая a k получила название кривой кипения или кривой испарения. Со стороны повышенных температур и давлений эта кривая заканчивается в критической точке с координатами Ть и Ри, характеризующей такое состояние вещества, в котором исчезает различие между жидкостью и паром. Это состояние нонвариантное, так как к обычным условиям равновесия добавляется условие идентичности фаз, которое уменьшает число степеней свободы на единицу. Нонвариантными для данного вещества будут также критическое давление и критический объем. Обычно при значениях параметров, превышающих критические, принято говорить о состоянии надкритическом, однофазном, избегая приписывать этому состоянию наименование жидкость или пар. Точки, ограничивающей кривую a k снизу, со стороны пониженных температур и давлений, не существует. Жидкость может пребывать в переохлажденном состоянии ниже точки плавления а. Линия a k i, являющаяся участком кривой a k, пролонгированным за тройную точку в область твердого состояния S, изображает зависимость давления насыщенного пара от температуры над переохлажденной жидкостью. Переохлажденная жидкость менее устойчива, чем твердая фаза при той же температуре. Поэтому давление паров над переохлажденной жидкостью выше, чем над твердой фазой при той же температуре (кривая a k i лежит выше кривой а а ]). Однако такой критерий различной устойчивости фаз применим только к однокомпонентным системам. У двух- и многокомпонентных систем эти отношения сложнее. [c.265]

    Жидкое состояние вещества — это состояние, промежуточное между твердым (кристаллическим) и газообразным. При определенном давлении жидкое состояние конкретного вещества термодинамически устойчиво в определенном интервале температур, который зависит от величины давления и от природы жидкости. Верхний температурный предел устойчивого жидкого состояния — температура кипения, выше которой жидкость при постоянном давлении находится в газообразном состоянии (в виде пара). Нижний предел устойчивого существования жидкости — температура кристаллизации. Зависимость температур кипения и кристаллизации от давления выражается термодинамическим уравнением Клаузиуса—Клапейрона. Температура кипения и температура плавления, измеренные при давлении, равном 101,3 кПа, называются нормальными. [c.222]

    Зависимость температуры плавления олова от давления (н/м ) описывается выражением [c.133]

    Температуры и теплоты плавления кристаллов. Температура плавления кристаллов данного вещества зависит от внешнего давления, от присутствия примесей и для высокодисперсных порошков— также от степени дисперсности. Эт11 зависимости мы будем рассматривать позднее здесь же ограничимся температурами плавления только чистого вещества и только при атмосфер-> ном давлении. Температура плавления при атмосферном давлении называется также точкой плавления. Ее называют иначе температурой (или точкой) отвердевания данного вещества. Для веществ с низкой температурой плавления (ниже 15—20° С) ее называют также температурой (точкой) замерзания. [c.150]

    Рассмотрим применение уравнения (VIII, 6) к равновесию твердое тело — жидкость, т. е. к определению зависимости температуры плавления от внешнего давления. Зная, что изменения объема в этих процессах незначительны и во много раз меньше, чем в процессах испарения или конденсации, можно заключить, что чувствительность температур плавления к изменению внешнего давления должна быть весьма слабой. [c.255]

    Плавление и кристаллизация. Поскольку испарение кристаллов характеризуется бслыиим изменением чнтальпии и энтропии, чем испарение жидкостей, зависимость упругости пара от температуры для кристаллов более резко выражена, чем для жидкостей. Следовательно, кривые, выражающие эту зависимость для одного и того же вещества в кристаллическом и жидком состояниях (рис. 13), обязательно пересекутся. Тогда при достаточно низкой температуре давление насыщенного пара кристаллов будет меньше, чем у жидкости, и, наоборот, при достаточно высокой температуре давление пара кристаллов будет больше, чем у жидкости. Совершенно очевидно, что нз конденсированных состояний веитества устойчивым будет то, у которого давление насыщенного пара меньше. Таким образом, при достаточно низкой температуре устойчивым будет кристаллическое состояние, а при достаточно высокой температуре— жидкое. При температуре, которая соответствует точке пересечения этих кривых зависимости, давление пара кристаллов и жидкости становится одинаковым и, следователЬно, при этой температуре кристаллы и жидкость, обладая одинаковой устойчивостью, находятся в равновесии. Точка, соответствующая этой температуре и давлению насыщенного пара кристаллов и жидкости, [c.99]

    Подпрограмма INPUT, представленная в главе VII, обеспечивает ввод данных о свойствах чистых компонентов и их бинарном взаимодействии во все основные программы расчета многокомпонентных систем и в программы обработки данных о бинарных смесях. Для каждого учитываемого компонента требуется информация, включающая следующие свойства чистых компонентов 1) критические параметры и данные, необходимые для оценки неидеальности паровой фазы (см. ниже) 2) мольный объем жидкости при одной температуре или, что более предпочтительно, при трех температурах, перекрывающих диапазон ее возможных составов 3) константы зависимости давления паров чистых компонентов от абсолютной температуры (предпочтительно, чтобы они были справедливы для наиболее широкого диапазона температур от точки плавления до критической температуры). [c.74]

    С помощью уравнения (235) можно вычислить лишь изменение энтропии, и нельзя сделать никаких выводов о ее абсолютном значении. На основе измерений теплового эффекта реакций при постепенном понижении температуры Нернст установил так называемый тепловой закон (который рассматривают также как третий закон термодинамики) по мере приближения температуры к абсолютному нулю изменение энтропии стремится к нулю. Справедливость теплового закона достоверно подтверждена на опыте. Планк предложил считать энтропию любого вещества при абсолютном нуле равной нулю. Тем самым открывается возможность точно рассчитать энтропию любого вещества при любых температуре и давлении, воспользовавшись уравнениями (244а) и (2446). Например, рассмотрим изменение энтропии воды в зависимости от температуры при постоянном давлении (рис. Б.22). При абсолютном нуле энтропия льда в соответствии с тепловым законом Нернста равна нулю. При возрастании температуры энтропия изменяется пропорционально Р, при дальнейшем повышении температуры обнаруживается более сложная зависимость от Т. В точке плавления энтропия скачкообразно увеличивается на величину энтропии плавления. В интервале О—100 °С энтропия снова непрерывно увеличивается, а при 100 °С обнаруживает скачок, равный энтропии испарения. При температуре 100°С энтропия пара постелен- [c.239]

    Линия ОС — это линия температурной зависимости давления насыщенного пара над жидкой водой (или, иначе, кривая испарения) линия ОА — температурная зависимость давления насыщенного пара надо льдом (кривая возгонки) наконец, линия ОВ — кривая плавления. Любая точка на линиях ОА, ОВ и ОС отвечает двухфазной системе. Так, любая точка на линии ОВ отвечает равновесию между твердой и жидкой фазами на линии ОА — равновесию между льдом и паром на линии ОС — равновесию между жидкой водой и паром. Очевидно, что, находясь на любой из этих линий, нельзя произвольно менять оба параметра р и Т, не нарушая фазового состояния системы, но один из этих параметров (любой) можно в известных пределах менять произвольно. Двухфазная система моновариантна. Например, если, находясь в любой точке на кривой ОС, повысить давление, не изменяя температуры, то равновесие нарушится и весь пар превратится в жидкость. Аналогично на линии ОА повышение давления при неизменной температуре превратит весь пар в лед, а на линии ОВ такое повышение давления при Т — onst вызовет плавление льда. Однако если в какой-нибудь точке, например, на линии ОС произвольно повысить температуру и одновременно повысить давление так, чтобы новое состояние соответствовало бы новой точке на этой [c.111]

    Ма рис. 3.14 представлена диаграмма состояния чистого растворителя, т. е. однокомпонентной системы (кривые / и 2) и раствора (кривые 7 и 2 ). Кривая 2 характеризует зависимость давления насыщенного пара чистой жидкости от температуры, кривая 2 — такая же зависимость для давления пара над раствором. Кривая 3 — кривая возгонки кристаллов, она пересекается с кривой 2 в точке О, из которой исходит кривая 1 — кривая плавления или, точнее, кривая начала отвердевания раствора. Эта кривая располагается левее кривой / плавления чистого вещества. Следовательно, при одном и том же давлении появление первых кристаллов из раствора прк охлаждении происходит при более низкой температуре, чем температура плавления чистого вещества. [c.115]

    Кроме кривых испарения и возгонки на диаграмме состояния имеется еще кривая плавления ОА, соответствующая зависимости температуры плавления от внe цнeгo давления. Вдоль кривой плавления происходит переход твердой фазы в жидкую. Для веществ типа воды, у которых удельный объем твердой фазы больше удельного объема жидкой фазы, температура плавления при повышении давления уменьшается, и кривая плавления имеет направление, указанное на рис. 40. Для большинства других веществ удельный объем твердой фазы меньше удельного объема жидкой фазы, поэтому кривая плавления имеет иное направление с повышением давления температура плавления растет. [c.163]


Смотреть страницы где упоминается термин Плавления температура зависимость от давления: [c.159]    [c.344]    [c.345]    [c.156]    [c.52]    [c.177]    [c.74]    [c.152]    [c.108]    [c.133]    [c.164]   
Учебник физической химии (1952) -- [ c.206 ]

Учебник физической химии (0) -- [ c.216 ]




ПОИСК





Смотрите так же термины и статьи:

Давление зависимость от температуры

Температура зависимость от давлени

Температура плавления

зависимость от температур



© 2024 chem21.info Реклама на сайте