Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Автоокисление определение

    Исследование процессов, происходящих в мономерном стироле при автоокислении, было проведено нами с Шиманской с целью определения оптимальных условий его хранения. При этом одним из показателей изменения стирола являлось количество пероксидов, образующихся в нем и вызывающих дальнейшие процессы, в том числе и полимеризацию. На рис. 6.5 показана полярограмма свежеперегнанного стирола (под вакуумом), а на рис. 6.6 и 6.7 — результаты полярографического исследования стирола после хранения в различных условиях. Так как пероксиды оказывают существенное влияние на сроки хранения стирола и на его активность, а также снижают оптическую прозрачность получающегося из него полистирола, становится понятным значение возможности контроля количества пероксидов с помощью полярографического метода. Полярографическому изучению и определению метаболитов винилхлорида посвящена работа [295]. [c.197]


    ОПРЕДЕЛЕНИЕ КИНЕТИЧЕСКИХ ПАРАМЕТРОВ АВТООКИСЛЕНИЯ [c.60]

    Для топлив с ингибитором т является еще одним параметром, характеризующим окисляемость топлив в режиме автоокисления. Для определения параметров бит изучают кинетику автоокисления топлива кислородом р02 = 98,1 кПа в газометрической установке. Интервал температур для измерений подбирают экспериментально для каждого топлива. Для топлив типа Т-6 и РТ, содержащих ингибирующие примеси, оптимальная область рабочих температур 120—140°С. При температурах ниже указанных — очень длительные периоды индукции, при более высоких температурах т настолько малы, что их измерить трудно. [c.62]

    Таким образом, в присутствии гидропероксидов молибден и дисульфид молибдена обладают и ингибирующей, и инициирующей функцией. При определенных условиях эти материалы могут выступать и в роли инициаторов окисления, хотя, как следует из опытов по автоокислению топлив, их инициирующая функция по сравнению с ингибирующим действием проявляется чрезвычайно слабо (см. табл. 6.4). [c.220]

    Самоокисление (автоокисление)—это медленное окисление органического вещества кислородом. Определение медленное означает, что окисление не сопровождается пламенем. Эти процессы повсеместно распространены и очень важны. К ним относятся высыхание лаков и красок при сушке на воздухе, старение резин и пластических масс, медленное сгорание органического топлива н многие промышленные окислительные процессы, где кислород используют в качестве окислителя. Кислород представляет собой бирадикал и не удивительно, что процессы самоокисления имеют радикальный характер. [c.273]

    В СССР важные исследования по жидкофазному автоокислению углеводо родов в гидроперекиси проведены К. И. Ивановым [4—9], П. Г. Сергеевым [10—15], Т. И. Юрженко [16—21], Б. В. Ерофеевым [22, 23] с сотрудниками, и другими учеными [24—26]. Эти исследования позволили создать методы получения высоких концентраций гидроперекисей, качественного и количественного определения их в растворах, выделения в чистом виде и превращения в продукты, представляющие практический интерес. [c.244]

    Продукты автоокисления углеводородов среднедистиллятных топлив начали исследовать с 1950 г. Выделенные из них кислородные соединения (несмотря на их малое содержание) представляли определенный интерес, обусловленный их химическим строением, физическими свойствами и стабильностью, достаточной для практического использования. Стало очевидным, что кислородные соединения нефтепродуктов со временем могут стать интересным [c.206]


    Этот короткий обзор некоторых основных особенностей реакций автоокисления показывает сложность составляющих его процессов. Принимая цепной характер описанных реакций окисления, ясно видно, что любое вещество, способное давать свободные радикалы, будет потенциальным катализатором и любое вещество, превращающее активные радикалы в неактивные или в молекулы, будет потенциальным ингибитором. Однако разнообразие возможных реакций, охватывающих инициирование, обрыв, перекрещивание с разветвленными реакциями — истинными или вырожденными,— требует детальной интерпретации для каждой реакции окисления и затрудняет обобщения, которые, вероятно, могут быть ошибочными. Изучение катализа и ингибирования этих реакций окисления проводилось либо с практической целью, как в случае ингибирования нежелательных процессов окисления материалов при их хранении или использовании, так и для катализа определенных окислительных процессов, либо для разъяснения результатов кинетических измерений и оценки некоторых констант скоростей. Обе эти задачи будут проиллюстрированы примерами в следующих разделах. [c.452]

    Ускорение автоокисления под действием оксикислот, входящих в состав кислых соединений топлива, было установлено также путем определения скорости поглощения кислорода бакинским крекинг-керосином. Предвари- [c.222]

    Из продуктов окисления углеводородов сильными ингибиторами окисления оказались спирты и смесь карбонильных, сернистых, азотистых и кислородных соединений сложных структур. Ингибирующий эффект фенолов был небольшой, намного меньше, чем у спиртов. Спирты при определенной их концентрации полностью приостанавливают процесс автоокисления, который начинается вновь лишь после отделения адсорбционных смол, в которых они содержатся. Влияние спиртов на скорость автоокисления крекинг-керосина было показано на рис. 29. Под влиянием ингибирующих соединений автоокисление приостанавливается задолго до полного израсходования углеводородов, окисляющихся в данных условиях. [c.224]

    Определение инициирующей способности в модельных реакциях автоокисления кумола и н-декана [c.38]

    В лабораторной практике давно сложился способ сравнения тормозящего действия разных ингибиторов и их смесей по длительности тормозящего действия - периоду индукции, который равен отрезку времени от начала опыта до поглощения определенного количества кислорода или достижения определенной хорощо измеряемой скорости окисления. Поэтому три разных случая воздействия ингибиторов на автоокисление RH можно выразить следующими неравенствами (х - период индукции введенной смеси ингибиторов)  [c.413]

    Выгруженный из реторт горячий древесный уголь поглощает кислород из воздуха, при этом он еще более разогревается, в результате чего может произойти самовозгорание угля Наибольшую способность к самовозгоранию имеют угли, выжженные при низких температурах и содержащие до 30 % летучих веществ, температура самовозгорания таких углей ниже 150 Угли с небольшим содержанием летучих веществ могут само возгораться при температуре выше 250 °С Самовозгорание дре весного угля — результат его автоокисления, развивающегося лавинообразно, с быстрым повышением температуры под влия нием имеющихся в угле парамагнитных центров Это цепной разветвленный процесс, имеющий определенные критические параметры Если при контакте угля с воздухом эти параметры не будут превышены, то уголь не воспламенится [c.54]

    Ряд работ посвящен применению полярографического метода определения пероксидов при изучении процессов автоокисления мономеров и деструкции полимеров (см. разд. 6.3). [c.162]

    Поскольку из трех валентностей А1—С (третья реагирует значительно медленнее, чем две первые) легко реагирует с СО только первая (см. следующую главу, стр. 310), автоокисление алюминийорганических соединений играет такую же роль для идентификации и определения положения алюминия, как карбонизация для алкильных соединений щелочных металлов и магния. [c.298]

    Определение органических перекисей и установление их строения приобрели большое значение при изучении полимеров, каучуков, жиров и продуктов их автоокисления и сгорания. Полярография является одним из основных методов, применяемых в этих исследованиях. Полярографическое поведение перекисей определяется кислородной группой и строением непосредственно окружающих ее частей, но не всем соединением в целом. [c.388]

    Полярографически была измерена кинетика автоокисления метилметакрилата на воздухе с образованием перекисного полимера 1 1 [67]. Эту методику использовали также для определения количества бутилового эфира пировиноградной кислоты, образующегося при термической деструкции полимерной перекиси. [c.390]

    Катализаторы ускоряют автоокислепие, сокращают индукционный период, но многие из них вызывают распад образовавшихся гидроперекисей и способствуют дальнейшему более глубокому окислению до кетонов и третичных спиртов [56]. Так, стеарат и ацетат кобальта обладают способностью инициировать автоокислепие и обрывать реакционные цепи, а поэтому в присутствии определенных концентраций этих солей протекает инициирование процесса автоокисления, а с увеличением концентрацни скорость окисления снижается или замедляется [60]. Также нафтенаты ко- [c.498]


    Определение это подчеркивает то основное положение, что главной особенностью процессов автоокисления является не столько самопроизвольное возникновение (часто кажущееся), сколько самопроизвольное их развитие. [c.9]

    Для определения влияния условий автоокисления изопр(опило-вого эфира на состав образующихся перекисей, в частности, для проверки предположения, не отличается ли характер таковых прк окислении, форсированном ультрафиолетовым светом от перекисей, возникающих в естественных условиях старения эфира, были поставлены опыты окисления эфира в следующих условиях  [c.137]

    Помимо чисто практического значения знание у, позволяет сделать определенные выводы о механизмах зарождения цепей в окисляющемся топливе и распада гндропероксида на радикалы, измерить константы скоростей распада на радикалы гидропероксида и других ингибиторов окисления. На начальной стадии автоокисления топлива инициирование осуществляется за счет реакций зарождения цепей, на более поздней — в результате распада гидропероксида на радикалы. При наличии в топливе специально введенного инициатора (I) он также является источником свободных радикалов. В общем случае [c.63]

    От соотнощения удельных скоростей гомолитического и гетеролитического распада гидропероксида зависит окисляемость топлива при автоокислении. Факторы, способствующие повыще-нию скорости распада на молекулярные продукты, понижают окисляемость топлива. Для определения константы скорости распада гидропероксида на свободные радикалы измеряют любым из описанных выше методов и,- rooh при разных концентра- [c.70]

    Критические явления в ингибированном окислении углеводородов. Автокаталитический характер окисления (образующийся гидропероксид — автоинициатор) и обратная связь между скоростью автоинициирования и концентрацией ингибитора являются причиной критических явлений при ингибированном автоокислении углеводородов [205]. В определенных условиях длительность тормозящего действия ингибитора при незначительном (на несколько процентов) увеличении его концентрации резко возрастает (в десятки и сотни раз). Концентрация ингибитора, при которой наблюдается такой переход, называется критической. [c.113]

    На рис. 7.4 показана кинетика автоокисления топлив Т-6 и РТ присадки) прн 130 °С до послс хранения. Значения параметров /), т, / [InH], расспгтамные з этих данных, а также параметра а, определенного в опытах по окислению проб топлива в присутствии инициатора, приведены в табл. 7.14 ИЗ]. Из этих данных видно, что топливо РТ через 292 ч хранения при 60 °С уже не содержит ингибитора окисления. Период индукции автоокисления равен нулю, а на оси ординат экспери- [c.251]

    Процессы автоокисления вносят сравнительно небольшой вклад в суммарную концентрацию фенолов в нефтепродуктах. Так, авторы работы [650] нашли, что при 36-часовом окислении очищенного от фенолов дистиллята 140—240°С продувкой воздуха (5 л/ч) при комнатной температуре фенолы образуются вновь, но их в 10 раз меньше, чем в исходном сыром прямогоином продукте. Показано, что при автоокислении дизельных топлив фенолов образуется намного меньше (более чем в 10 раз), чем спиртов с ОН-группой, удаленно] от ароматического цикла [651 ]. Результаты этих экспериментов вселяют надежду, что значительная часть обнаруженных нефтяных фенолов имеет своим источником пластовую нефть. В то же время, по данным [652], результаты определения концентрации фенолов неустойчивы и по певыявленным причинам могут расходиться в 3—4 раза даже для нефтей из скважин, поставляющих нефть из одного и того же продуктивного пласта па одном и том же месторождении. [c.105]

    При очень малой величине о кинетика автоокисления описывается более простой линейной зависимостью [37, 47] Л[С>21 = ЬЬ. Этот закон является следствием цепной реакции с квадратичным обрывом цепей при автоинициировании по реакции первого порядка. Параметр Ь характеризует темп автоускорения процесса автоокисления топлив, его величину определяют как тангенс угла наклона экспериментальной прямой в координатах Ь. Знание параметра Ь позволяет сравнить различные образцы топлив по склонности к автоокислению, вычислить к коон коон 4Ь /а ), рассчитать глубину окисления при заданном времени. При проведении опытов по определению величины Ь необходимо, чтобы окисление протекало в кинетическом режиме и в режиме цепной реакции (Л / 1), в условиях, когда распад гидропероксида происходит медленно в сравнении со скоростью его образования. [c.70]

    Константы скорости вырожденного разветвления были использованы для определения Wj, что позволило рассчитать остальные кинетические параметры автоокисления ЛГКК кз ,, ф, и ф2 (табл. 3.11) [88]. [c.100]

    Катализаторы ускоряют автоокисление, сокращают индукционный период, но многие из них вызывают распад образовавшихся гидроперекисей и способствуют дальнейшему бопее глубокому окислению до кетонов и третичных спиртов [56]. Так, стеарат и ацетат кобальта обладают способностью инициировать автоокиспе-ние и обрывать реакционные цепи, а поэтому в присутствии определенных концентраций атих солей протекает инициирование процесса автоокисления, а с увеличением концентрации скорость окисления снижается или замедляется [60]. Также пафтенаты ко-бальта, хрома, марганца, никеля и других металлов вызывают часто образование нерадикальных соединений и способствуют более глубокому окислению [61]. Однако исследователи в наше время хорошо овладели техникой эксперимента жидкофазного окисления и научились направлять процесс таким образом, что основными продуктами окисления являются гидроперекиси. Некоторые физико-химические константы выделенных гидроперекисей алкилароматических и гидроароматических углеводородов даны в табл. 140. [c.248]

    В начале развития термического крекинга, когда процесс парофазного крекинга еще имел важное значе1П1е, алкилировашпяе фенолы добавляли для стабилизации бензинов против изменения окраски и автоокисления. В настоящее время алкилфенолы применяют в качестве ингибиторов авиационных бензинов к автомобильным бензинам добавляют также определенные производные аминов. [c.636]

    Изучая роль кислорода в полимеризации винильных групп Барнес, Элофсон и Джонс [292] определили с помощью полярографического метода поведение пероксидов, получающихся в процессе полимеризации метилметакрилата, стирола и винилацетата. Богданецкий и Экснер [293] провели полярографическое изучение продуктов автоокисления метилметакрилата под. влиянием кислорода воздуха на фоне 0,3 М Li l в смеси бензол метанол 1 1 были обнаружены две волны первая — пероксида метакрилового эфира, вторая — метилового эфира пи-ровиноградной кислоты. При этом полярографический метод дает возможность обнаружить следы пероксида, которые не обнаруживаются другими методами. Полярографическое определение пероксида было использовано авторами для изучения кинетики его распада в щелочной среде и для контроля процесса очистки мономера от пероксидов адсорбцией на оксиде алюминия. Изучен также процесс автоокисления бутилметакрилата и показано, что пероксидный продукт представляет собой сополимер бутилметакрилата с кислородом при мольном соотношении 1 1, который при нагревании распадается на формальдегид и эфир пировиноградной кислоты. Кинетику распада этого пероксида изучали по изменению волны эфира пировиноградной кислоты в течение всего процесса. [c.196]

Таблица 6.3. Влияние условий реакции на результаты определения пероксидного числа автоокисленных веществ иодидом натрия в изопропаноле Таблица 6.3. <a href="/info/480165">Влияние условий реакции</a> на <a href="/info/321755">результаты определения</a> пероксидного числа <a href="/info/1305931">автоокисленных веществ</a> <a href="/info/70212">иодидом натрия</a> в изопропаноле
Таблица 6.12. Влияние размеров пробы и продолжительности реакции на результаты колориметрического определения пероксидов в автоокисленном метилпентадиене Таблица 6.12. <a href="/info/982143">Влияние размеров пробы</a> и <a href="/info/267793">продолжительности реакции</a> на результаты <a href="/info/8045">колориметрического определения</a> пероксидов в автоокисленном метилпентадиене
    Моррис, Хольман и Фонтель [94] смогли показать методом ХТС, что метиловые эфиры трижды сопряженноненасыщенных жирных кислот в газохроматографическом процессе изомеризуются, а эфиры смежноненасыщенных оксикислот дегидратируются. Ненасыщенные гидроперекиси из метиловых эфиров — первичные продукты автоокисления — также дегидратируются в газохроматографическом процессе и мешают, таким образом, определению эфиров более ненасыщенных кислот. [c.160]

    При окислении акролеина в начальной стадии йод задерживает процесс автоокисления, а в конечной — ускоряет. Тиофенол ускоряет автоокисление льняного масла в начальной стадии и приостанавливает его, когда скорость достигает определенной величины. В щелочной среде этилксантогенамид тормозит окисление сульфита, в кислой — ускоряет процесс. Даже такие катализаторы автоокисления, как ионы переменной валентности, могущие инициировать цепные реакции,— медь и железо, могут при некоторых условиях тормозить окисление. [c.271]

    Для определения содержания метилметакрилата измеряют волну от —1,8 до —2,0 в, после чего вводят фосфатный буфер (pH 7) и наблюдают волну гидрохинона. Перекиси и эфиры пировиноградной кислоты, образующиеся при автоокислении мономера, можно измерять с точностью до 2% (для перекисей) и 5% (для эфиров) при минимальных концентрациях 0,04 мМ перекисного кислорода и 0,001% эфиров [34]. Анализ проводят в смеси бензол — метанол 1 1 (по объему), содержащей 0,3 М L1 1, Описано также прямое определение перекисей в мономере исследована смесь, содержащая 25% мономера, 50% метанола и 25% воды [23]. [c.380]

    Экспериментальные исследования Всесоюзного теплотехнического института, приведенные в этой книге и относящиеся к промежуточным продуктам и промежуточным реакциям автоокисления углеводородов и простых эфиров, выполнены автором в сотрудничестве с В. К. Савиновой, Е. Г. Михайловой, В. П. Жаховской и Т. А. Благовой в нефтяной лаборатории ВТИ в период 1939—1948 гг. Определения элементарного состава выделенных перекисей были сделаны в топливной лаборатории ВТИ под руководством А. И. Карелина.  [c.5]

    Образующаяся при автоокислении 2,7-диметилоктана в качестве главного продукта перекись HjaOg (эта формула хорошо подтверждается данными элементарного анализа и определения моле- [c.103]


Смотреть страницы где упоминается термин Автоокисление определение: [c.63]    [c.64]    [c.65]    [c.280]    [c.217]    [c.257]    [c.260]    [c.271]    [c.275]    [c.459]    [c.144]   
Промежуточные продукты и промежуточные реакции автоокисления углеводородов (1949) -- [ c.7 , c.9 ]




ПОИСК





Смотрите так же термины и статьи:

Автоокисление



© 2025 chem21.info Реклама на сайте