Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сажа газовая применение

    Метан составляет сырьевую основу важнейших химических промышленных процессов получения углерода и водорода, ацетилена, кислородсодержащих органических соединений — спиртов, альдегидов, кислот. Получаемый при термическом разложении метана (реакция 1) мелкодисперсный углерод (газовая сажа) используется как наполнитель при производстве резины, типографских красок. Водород используется в различных синтезах, в том числе в синтезе аммиака. При высокотемпературном крекинге метана (реакция 2) получается ацетилен, необходимая высокая температура (1400—1600 С) создается электрической дугой. Одной из важных областей применения метана является получение так называемого синтез-газа — смеси оксида углерода(П) и водорода (реакции 3 и 4), используемого в дальнейшем для получения многих органических соединений. [c.69]


    Очистка газов от сажи в скрубберах, пенных уловителях и турбулентных промывателях происходит достаточно эффективно степень очистки газов достигает 90 и даже в некоторых случаях 95%. Этот способ очистки также позволяет освободить газы от содержащихся в саже-газовой смеси паров воды и повысить теплотворную способность газов от 450—550 до 650— 800 ккал/м и тем самым создать возможность сжигать их в качестве топлива. Наряду с этим мокрые способы очистки газов от сажи имеют серьезные недостатки. Главным из них является образование в аппаратах для улавливания большого количества смеси воды и сажи. Так, например, если применять пенные уловители для очистки газов, получающихся в производстве печной активной сажи, то в производстве мощностью 10 000 г сажи в год из аппаратуры будет выходить 0,09 м сек воды, содержащей 0,05 кг сажи. Такую воду спускать в канализацию нельзя, так как это приведет к загрязнению сажей рек или водоемов, большому расходу воды (325 м /ч для производства 10 000 г сажи в год) и большим потерям сажи (1300 т в год). Все способы выделения сажи из воды после аппаратов мокрой очистки газов требуют устройства сложных сооружений и поэтому такая очистка имеет ограниченное применение в сажевой промышленности. [c.236]

    Существуют способы получения полуактивных газовых печных саж, при которых наряду с природным газом используется и жидкое сырье. К природному газу прибавляют нефтяные остатки, каменноугольные смолы или побочные продукты, получаемые при переработке нефти. Известен способ производства печной сажи с применением в качестве сырья смеси природного газа с парами жидких углеводородов в соотношении 2 1 по массе. Добавление жидкого сырья значительно повышает производительность реакторов и выход сажи и в то же время улучшает ее свойства. [c.135]

    Производство печной сажи, так же как и производство канальной сажи, основано на сжигании природного газа. Различие между этими способами заключается в принципиально разных условиях сжигания газа и улавливания образовавшейся сажи. В производстве канальной сажи сжигание газа осуществляется при доступе достаточного количества воздуха, сажа образуется вследствие быстрого охлаждения и выноса из зоны горения частиц углерода, получившихся в пламени в результате термического распада углеводородов. В производстве же печной сажи газ сжигается при недостаточном количестве воздуха (не выше 50—60% от теоретически необходимого) и сажа из саже-газовой смеси выделяется электрофильтрами. Внешнее различие в оформлении этих двух методов заключается в применении различных систем горелок для сжигания газа. В производстве канальной сажи газ сжигают, как было указано выше, в десятках тысяч мелких горелок, снабженных специальными наконечниками в производстве печной сажи газ сжигают в небольшом числе больших горелок. [c.298]


    Лучшими сортами сажи являются, как было указано выше, газовые сажи. Газовые сажи применяют для производства красок в литографских работах, но главным потребителем их является резиновая промышленность. Применение газовой сажи вместо ламповой значительно повышает качество резины. Так, например, сопротивление на разрыв повышается в 12 раз, удлинение на 10% и упругость на 28% [35]. [c.245]

    Нефтепродукты и продукты переработки твердых топлив (Технические требования), Москва, 1961. Сборник стандартов и технических условий, в котором приведены технические характеристики товарных нефтепродуктов и продуктов переработки твердых топлив (керосин, масла, смазки, вазелины, парафины, церезины, озокериты, битумы, бензол, толуол, нафталин, сажа газовая и др.) и данные о их применении. Содержит также полезные сведения для химиков, работающих с нефтепродуктами, и для химиков-нефтяников. [c.194]

    В практике анализа воздуха на содержание вредных примесей широко применяются методы абсорбционной спектрометрии, флуоресцентные методы, газовая хроматография, атомно-абсорбционная спектроскопия, нейтронно-активационный анализ, ядерный магнитный резонанс, масс-спектроскопия [14]. В промышленных масштабах производятся автоматические газоанализаторы, обеспечивающие непрерывный контроль уровня загрязнения атмосферы [4, 14, 15]. В СССР получили широкое применение газоанализаторы ГПК-1 и Атмосфера , предназначенные для непрерывного контроля содержания 502 в атмосфере и в воздухе производственных помещений. Разработаны специальные методы измерения скорости осаждения пыли, сажи и других аэрозолей [4, И]. Инструментальные методы оперативного контроля загрязненности атмосферы позволяют принимать действенные меры регулирования и ограничения промышленных выбросов в воздух. [c.25]

    Диаметр цилиндрической части реакционной камеры 1 м, длина 2,8 м. Диаметр борова 0,6 м. Скорость движения саже-газовой сиеси в реакционной камере 7—9 м/с. Время пребывания в реакционной камере 0,3—0,4 с. Сажа получается марки ПМ-75. В борове скорость саже-газовой смеси возрастает до 30 м/с. Производительность печи по саже 140—220 кг/ч при расходе сырья 500—700 кг/ч высокотемпературного коксования каменных углей. Пековые дистилляты (продукты, получаемые при окислении каменноугольного пека и его коксования), применяемые в производстве сажи печи, можно разделить на следующие виды печи с использованием постороннего топлива и печи без применения постороннего топлива. [c.173]

    В промышленных условиях используют гомогенные газовые реакции, имеющие достаточно высокую скорость. При температурах <600—800° С скорость реакции между газами обычно очень мала. При высокой температуре скорость таких реакций становится большой (превышает скорость обычной каталитической реакции), поэтому промышленное их использование экономически выгодно. Например, широкое применение в промышленности имеют следующие реакции, протекающие в гомогенной газовой фазе при высокой температуре синтез соляной кислоты из элементов крекинг метана в ацетилен или сажу крекинг углеводородов (пропан, бензин) в этилен и пропилен окисление, хлорирование и нитрование углеводородов. [c.53]

    Иным путем повышения эффективности процесса является применение воздуха, обогащенного кислородом, что позволяет поднять температуру процесса, а следовательно, и улучшить качество сажи При этом можно увеличить выход сажи из природного газа до 50— 60% и поднять производительность реакторов на 40%. Однако повышение температуры за счет снижения концентрации азота в обогащенном воздухе будет лимитировано стойкостью футеровки реакторов, и обогащение выше 35% может оказаться нецелесообразным. Увеличение производительности установок при работе на обогащенном воздухе потребует только увеличения пропускной способности оборудования на стадиях гранулирования, хранения и упаковки, так как объем саже-газовой смеси, проходящей улавливающее оборудование, может остаться прежним. [c.113]

    Полиизобутилен. В технике применяют вальцованные смеси полиизобутилена с порошкообразными наполнителями графитом, сажей и др. Для применения в качестве антикоррозионного обкладочного материала по металлу, бетону и т. п. выпускают листовой полиизобутилен марки ПСГ (ТУ 2987—52) толщиной 2,5—4,0 мм, шириной цо I м и длиной 10 ж и более. В состав полиизобутилена марки ПСГ входят полиизобутилен П-200, графит аморфный и сажа газовая в соотношении 1 1 1. [c.199]

    Имеется множество работ и патентов, связанных с техническим использованием реакции термического разложения метана (конверсия метана, получение сажи, процесс цементации из газовой фазы и многие другие применения реакции крекинга метана), изложение которых можно найти в специальной литературе. [c.87]


    Области применения сажи. Резиновая промышленность—главный потребитель сажи, В разные виды резины вводится 25—40% и даже 60% сажи. Начало усиленного развития производства газовой сажи, возникшего еще в 70-х годах прошлого столетия (для нужд лакокрасочной промышленности), приурочено к 1915 г., когда сажу стали применять в резиновой промышленности. Сажа, введенная в резину, улучшает механические свойства последней — прочность на разрыв, относительное удлинение при предельной нагрузке и др. Другие области применения сажи изготовление красок в лакокрасочной промышленности, типографской краски в полиграфическом деле, электроизоляционных материалов в электротехнике и т. д. [c.286]

    Поскольку не существует способа для количественного анализа свободного углерода, был принят оптический способ, позволяющий получать относительно-количественные показатели. В красочной промышленности определяют окрашивающую способность черных красителей путем их растирания с окисью цинка и сравнения степени потемнения последней с каким-либо черным красителем, принятым за образец. Такой же способ был применен при определении цвета проб грязи, причем результаты сравнения показаны в таблице по строке Эквивалент газовой сажи . [c.19]

    Применение канального способа получения сажи при использовании того же, что и в. термическом способе газового сырья значительно повышает дефектность структуры и снижает степень упорядочения слоев. [c.195]

    К недостаткам метода внешнего нагрева следует отнести отложение ПУ на горячих стенках реактора и возможный недопустимо глубокий пиролиз в газовой фазе. Это связано с разогревом углеводородов до осаждения в виде ПУ до температур более высоких, чем поверхность осаждения. Данное обстоятельство обусловливает большую вероятность образования сажи, в том числе на поверхности ПУ. Выход сажи подавляется введением в состав реакционной смеси водорода и ограничением парциального давления углеводородов примерно до 10 кПа [7-4]. При применении метода прямого нагрева скорость образования ПУ выше, чем в случае передачи тепла к осаждаемой поверхности от внешнего источника, при 2100 С 0,24),3 мм/ч и менее 0,2 мм/ч соответственно. [c.427]

    Ознакомление с поверхностями твердых тел разной химической природы и геометрической структуры целесообразно начать с простейшего случая, а именно, с однородной поверхности одноатомного кристалла, причем такой, которая не содержит обрывов химических связей (они сейчас же будут насыщаться кислородом воздуха или другими химически активными примесями воздуха и создадут на поверхности центры специфической адсорбции). Идеальным примером такой поверхности является базисная грань полубесконечного кристалла графита. Эта поверхность в высокой степени инертна. Однако для практических применений в газовой хроматографии целесообразно иметь графитовый адсорбент с удельной поверхностью не менее 5—10 м /г. Для этого используются сажи, получаемые термическим разложением метана, выделяющийся при этом водород предохраняет углерод от окисления. Частицы образующейся термической сажи похожи на капли, а углеродные сетки кристаллитов в этих частицах невелики (около 2—3 нм). Хотя эти кристаллиты располагаются своими базисными гранями в основном перпендикулярно радиусу частицы такой сажи неоднородность ее поверхности еще очень велика, так как [c.14]

    УНС, применяемые в качестве красок в полиграфической промышленности, состоят из пигмента и вяжущих веществ. Оттиски, получаемые при применении красок в полиграфической промышленности, формируются в результате закрепления пигмента УНС на поверхности бумаги. В качестве пигмента обычно используют газовую канальную сажу или другие ее виды, обладающие высокой кроющей способностью, атмосферо- и светостойкостью. Вместе с вяжущими веществами (например, олифа) часто применяют отвердите-ли, пластификаторы и различные добавки, придающие оттискам определенную подцветку. [c.114]

    Для подогрева технологического газа перед подачей в конверторы можно использовать поверхностные теплообменники и подогрев реакционной смеси смешением с продуктами сгорания топливного газа. Применение поверхностных теплообменников связано с большим расходом металла. Подогрев смешением нецелесообразен, так как сжигание топливного газа с избытком воздуха может привести к тому, что избыточный кислород будет окислять серу до SOj, а при стехиометрическом количестве воздуха не будет обеспечена полнота сгорания углеводородов, что приведет к образованию сажи, следовательно, it загрязнению серы. Поэтому обычно применяют подогрев смешением с продуктами сгорания исходной газовой смеси. [c.146]

    Сжиженные газы — сырье для химических и нефтехимических производств. С высокими экономическими показателями сжиженные газы используют в качестве пиролизного сырья для получения олефиновых углеводородов, включая этилен, пропилен и бути-лены. Из отдельных фракций углеводородов получают газовую сажу, синтетические спирты и каучуки, различные пластические массы и много других продуктов, находящих все более широкое применение в народном хозяйстве и в быту. [c.25]

    Громадные изменения в добыче и направлениях использования природного газа, происшедшие за период 1945—1955 гг., видны из статистических данных, приведенных в табл. 3. В результате увеличения добычи как из газовых, так и нефтяных скважин сбыт газа увеличился на 140%. В связи с возможностью экономичного сбора громадных количеств попутного газа из нефтяных скважин потери газа резко уменьшились. В результате разработки более выгодных областей сбыта применение газа для производства газовой сажи сократилось. Миллионы новых бытовых потребителей перешли на газ для приготовления пищи и нагрева воды на газ переведено около 8 млн. установок центрального отопления. Большая часть дополнительного потребления падает на районы, лежащие [c.10]

    Марка листового полиизо- бутилена П0.1И- изобу- тилен (П-200) сажа газовая (ка- наль- ная) сажа лампо- вая графит (аморф- ный) тальк пара- фин вазели- новое масло применение [c.37]

    Часто для получения резиновых смесей, удовлетворяющирс определенным техническим и технологическим требованиям и содержащих газовую сажу, необходимо применение ускорителей, адсорбируемых сажей, так как действие других ускорителей менее эффективно. В этих случаях ускоритель вводится в рецепт в несколько более повышенных дозировках, чем это требовалось бы при отсутствии газовой сажи, либо ускоритель вводится в смесь в виде маток. [c.57]

    Известны способы получения печных саж, когда присадки вводят лишь в некоторые из работаю дих реакторов, далее смешивают саже-газовые пэтоки [125]. Равномерное распределение присадки в сырье достигается применением органических присадок [126], содержащих щелочные металлы. Присадки солей органических кислот в смеси со свободными органическими кислотами хорошо растворяются в высокоароматизированнохм сырье, причем концентрация присадки сохраняется - постоянной и в сырье, и в реакционной зоне. [c.120]

    Технические нормы на нефтепродукты, 16-е изд., Москва, 1957. Справочник, в котором приведены технические характеристики товарных нефтепродуктов (керосин, масла, смазки, ва-зелины, парафины, церезины, озокериты, битумы, бензол, толуол, нафталин, сажа газовая и др.) и данные о их применении. Содержит также полезные сведения для химиков, работающих с нефтепродуктами, и для химиков-нефтяников. [c.188]

    Отходами производства ацетилена являются сажа и смесь газообразных высщих ацетиленовых углеводородов. Если выделяемая из газов сажа по качеству не может быть использована в промышленности, ее следует сжигать. Сброс сажи в отвал не допускается, по санитарным и противопожарным нормам. Фракция высших ацетиленовых углеводородов (см. табл. 7, стр. 45) до настоящего времени не находит промышленного применения. Удаление в атмосферу этой газовой смеси, содержащей большое количество С2Н2 и его гомологов, воспрещается. Обычно данную газовую фракцию сжигают. Фракцию высших ацетиленовых углеводородов, как отмечено выше, для безопасности ее транспортирования с момента образования фракции надо разбавлять газом или паром. [c.137]

    При использовании неспецифичных адсорбентов — активного угля, сажи, элюирование углеводородов происходит в соответствии с молекулярной массой [44]. Получены совершенно неполярные углеродные молекулярные сита, при применении которых вода элюируется раньше метана [45]. Сл абоспецифичньши адсорбентами являются сополимеры стирола или этилстирола и дивинилбен-зола [46], также слабо удерживающие воду [47]. Хорошее разделение и быстрый анализ смесей низкокипящих углеводородов достигался при использовании адсорбционной газовой хроматографии на капиллярных колонках, наполненных алюмогелем [48], а также газожидкостного варианта [49, 50]. [c.116]

    Газовая канальная и антраценовая сажи, обеспечивающие удовлетворительный предел прочности при растяжении и высокое-сопротивление истиранию в резинах из натурального каучука и СКБ, оказались малопригодными в смесях с дивинил-стирольными каучуками, отличающимися значительной величиной эластического восстановления. Смеси получаются с грубой шероховатой поверхностью, большой усадкой, трудно шприцуются и каландруются. Значительно лучшими по технологическим свойствам являются высокодисперсные сажи, получаемые из жидкого сырья (нефтяного или каменноугольного масла). Сырьем обычно служит антраценовое масло или газойль каталитического крекинга с добавкой антраценового масла. Применение такого сырья для производства активной сажи экономически более целесооб- [c.153]

    В последнее время все большее применение находят самоочищающиеся плиты, не только электрические, но и газовые, на внутренние поверхности стенок которых наносится слой катализатора, способствующего окислению жира и сажи. Наряду с электрическими запально-защитными устройствами и терморегуляторами могут применяться запальные устройства, которые питаются от батареи или при работе которых используется пьезоэлектрический эффект. В последнем случае при открытии крана на плите под давлением потока газа пьезокристалл воспроизводит искру. Возможно применение запальных устройств, в которых осуществляется самогенерация электрического тока в специальном нагреваемом пилотной горелкой термоэлементе, воздействующем на соленоид [c.198]

    Существует ряд стабилизаторов дисперсий, вполне пригодных. для описываемых суспензий, но, по-видимому, они не привлекли к себе должного внимания. Вопрос стабилизации углеродных дисперсий весьма тн тельно разработан ван-дер-Ваарденом (см, ссылку 10), который пришел к выводу, что частицы газовой сажи адсорбируют преимущественно ароматические углеводороды, причем, эта тенденция у них настолько сильна, что уже адсорбированные ими алифатические углеводороды вытесняются ароматическими. Стабилизация алифатического углеводородного растворителя достигается путем применения ароматического соединения с одной или несколькими алкиловыми группами боковой цепи. Эти защитные завесы из алкиловых групп вокруг каждой из частиц препятствуют сближению последних, благодаря чему предотвращается флокуляция. Еще раньше Ребиндер и другие (см. ссылку 11) показали, что карбоновые кислоты производят ста- бнлизирующее действие. на суспензию углерода в бензоле- Катионообменные моющие средства также стабилизируют углеродные [c.32]

    Лигнин выделяется в больших количествах при получении клетчатки из древесины, являясь неизбежным отходом этого производства. В связи с этим предпринимались многочисленные поиски путей наиболее целесообразного использования лигнина в технике. Эта задача сегодня также еще далека от разрешения. Наиболее перспективные применения лигнина — это использование его в качестве наполнителя при изготовлении строительных деталей, для замены газовой сажи при изготовлении резин, в качестве заменителя фенола при изготовлепии фенолформальдегидных смол. Из лигнина можно также получать активированный уголь. [c.314]

    Вулканизаты натрий-дивиниловых каучуков, так же как к других некристаллизующихся синтетических каучуков, в отличие от вулканизатов из натурального каучука без наполнителей имеют низкий предел прочности при растяжении. При применении в качестве активного наполнителя газовой канальной сажи предел прочности при растяжении повышается до 160 кгс1см при относительном удлинении 450—600%. Предел прочности при растяжении вулканизатов в значительной степени зависит от пластичности каучука и тем выше, чем меньше сто пластичность. [c.104]

    В резиновых смесях часто применяют не один, а одновременно несколько наполнителей, в том числе несколько разных саж. Такое комбинированное применение одновременно нескольких наполнителей дает возможность обеспечить необходимые свойства вулканизатов, хорошие технологические свойства сырых резиновых смесей, а также снижение расходов при производстве резиновых изделий. Комбинируя различные виды саж в резиновой смеси, можно добиться получения не только прочных, но и эластичных вулканизатов при хороших технологических свойствах резиновой смеси. Так, например, хотя газовая канальная сажа и обеспечивает высокий предел прочности при растяжении, хорошее сопротивление истиранию и раздиру, но вулканизаты при этом имеют пониженную эластичность и повышенное теплообразование при многократных деформациях. Замена части газовой канальной сажи на ламповую или форсуночную приводит к некоторому понижению предела прочности при растяжении и сопротивления истиранию, но в то же время улучшает каландруемость и шприцуемость резиновых смесей и повышает эластичность вулканизатов. [c.168]

    Электропроводящие наполнители могут применяться в качестве одного из компонентов электропроводящих покрытий. Другими компонентами являются связующее (например, поливинилхлорид, полиэтилен, полиизобутилен, поливинилацетат и др.) и растворитель или диспергирующий агент. При различных способах нанесения покрытия (окраска, разбрызгивание, окунание, пульверизация и др.) электропроводящий наполнитель должен распределяться по поверхности так, чтобы между его отдельными частицами сохранялся устойчивый контакт. Лаки на основе чистого серебра имеют самую высокую электропроводность. Электропроводность лаков на основе сажи несколько ниже, но может быть повышена подбором соответствующего связующего. В этом отношении хорошие результаты показали полимерные связующие — полиэтилен и полиизобутилен. Высокую проводимость имеют покрытия, содержащие мелкодисперсную сажу. Например, электропроводящая краска, состоящая из 100 вес, ч. поливинилхлорида и 20 вес. ч. диоктилфталата, растворенных в 400 вес, ч. метилэтилкетона, 25 вес, ч, газовой сажи и 10 вес, ч, метилового спирта, образует покрытие с р = 20 Ом. Электропроводящее покрытие, состоящее из 60—70% фурфуролацетонового полимера, 15—20% ацетиленовой сажи, 4—5% ацетона, 5—7% фурфурола и 10—20% отвердителя (от массы фурфурола), после нанесения на поверхность полимера и отверждения образует слой с pv от 10 до 100 Ом-см. Для покрытия пластмасс нашли применение пленки на основе окиси олова. В качестве покрытий могут быть использованы также некоторые пленкообразующие полимеры с хорошими антистатическими свойствами (например, полидиметилакриламид, поливинилпентаметилфосфорамид, полиакриламид и др.). [c.442]

    В элементарном состоянии углерод встречается в природе в двух аллотропных формах алмаз — одно из самых твердых веществ, — часто образующий красивые прозрачные сверкающие кристаллы, используемые в качестве украшений, и графит —мягкое черное кристаллическое вещество, находящее применение в качестве сухой смазки и при производстве графитов для карандашей. Борт (алмазные осколки) и черный алмаз ( карбонадо ) представляют собой несовершенные кристаллические формы алмаза, которым не свойственна спайность, характерная для кристаллов алмаза. Они обладают несколько меньшей плотностью, нежели кристаллический алмаз, и отличаются от него более высокой прочностью и несколько большей твердостью. Их применяют при изготовлении алмазных сверл и пил, а также других режущих и шлифовальных устройств. Алмазы находят применение и в других областях именно благодаря своей высокой твердости. Так, алмазы с просверленными в них отверстиями используют для вытягивания проволоки. Древесный уголь, кокс и газовая сажа состоят из микрокри- [c.173]

    Термические — это методы переработки ТГИ, связанные с воздействием высоких температур без доступа воздуха или с применением реагентов, но главным является температурное воздействие. К ним относятся а) коксование (получаются кокс, газ, каменноугольная смола, ароматические соединения, фенолы, пиридин) б) полукоксование (полукокс, первичная смола, газовый бензин, газ) в) окуско-вание (бытовое топливо, рудотопливные брикеты) г) энерготехнология (твердое топливо и восстановители, первичная смола) д) газификация (газ дпя синтеза, восстановительный и бытовой газы) е) гра-фитация и производство технического углерода (углеграфитовые материалы, сажа). [c.124]

    Существенным недостатком полиэтилена явдяется его быстроб-старение, которое, однако, резко замедляется при введении в по-. лимер "различных пpoтивo тapитeлeЙJ таких, как фенолы, амины и газовая сажа. /Подвергая полиэтилен радиохимическому сШТь ванию (с. 645), можно расширить температурную область его применения с одновременным повышением прочности и стойкости к растворителям. [c.284]

    В последние годы в зарубежной литературе появились сообщения о некоторых новых вариантах кулопометрического анализа. Например, предложен новый способ кулонометрии [650], в котором определяемые органические и неорганические вещества количественно адсорбируются на электроде, изготовленном из ацетиленовой газовой сажи , и подвергаются на нем электролитическому восстановлению или окислению. Такая методика исключает трудности, связанные с необходимостью обеспечивать тесный контакт между электродом и реагирующими веществами в процессе электролиза. Метод применим к веществам, плохо растворимым в водных растворах. Адсорбцию определяемого соединения можно осуществлять не только из жидкой, но такжр и из газовой фазы, что особенно важно для применения этого способа к определению малых количеств веществ в воздухе и газовых смесях. Анализируемый раствор пропускают через сажевый элект- [c.70]


Смотреть страницы где упоминается термин Сажа газовая применение: [c.17]    [c.63]    [c.117]    [c.35]    [c.85]    [c.130]    [c.437]    [c.437]   
Химия углеводородов нефти и их производных том 1,2 (0) -- [ c.230 , c.276 ]




ПОИСК





Смотрите так же термины и статьи:

Газовая сажа

Применение газовой сажи



© 2025 chem21.info Реклама на сайте