Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Размывание в неподвижной фазе

    Как мы видели, в газохроматографической колонке, кроме молекулярной диффузии вдоль потока газа, происходят еще процессы переноса молекул интересующего нас компонента со струями газа, омывающими зерна насадки (вихревая диффузия), и процессы массообмена с неподвижной фазой. Выше было показано, что все эти процессы вместе можно описать как эффективную диффузию с коэффициентом Это дает нам возможность использовать для кривой размывания с=-[(х, о интеграл уравнения [c.583]


    Эффективность хроматографического разделения. В процессе хроматографирования вещество, перемещаясь вдоль слоя сорбента, распределяется между подвижной и неподвижной фазами. При этом зона вещества размывается. Чем больше размывание зон двух соседних комионентов, тем труднее их разделить. [c.188]

    В жидкостно-адсорбционной хроматографии вследствие медленности процессов доставки вещества из объема подвижной фазы (малое значение коэффициента диффузии в жидкости) к поверхности неподвижной фазы (адсорбента) вклад в размывание, обусловленный малой скоростью массопередачи, может быть значительным. Особенно ои возрастает вследствие медленности диффузии в адсорбенте, т. е. определяется внутренней массопередачей. [c.72]

    Уравнения (П.5) и (И,6) показывают, что высота тарелки возрастает линейно с ростом линейной скорости движения подвижной фазы. Это означает, что размывание зоны, обусловленное вкладом медленности процесса внешней и внутренней массопередачи, возрастает, а эффективность колонки падает с ростом линейной скорости подвижной фазы а. Кроме того, нз уравнений (П.5) и (П.6) следует, что между эффективностью колонки и величиной Rr существует довольно сложная зависимость. Если вещества слабо адсорбируются, Н довольно мало, и, следовательно, эффективность высока. Для веществ со средней величиной удерживания Н возрастает, достигает максимума, а для веществ, способных сильно адсорбироваться, снижается. Однако в этом случае становятся весьма заметными нежелательные последствия высоких значений времени пребывания молекулы в неподвижной фазе ts. [c.73]

    С другой стороны, мало пригодны в качестве твердых носителей и материалы со слишком тонкими порами (0,25-10 —1,0-Ю мм). Так как поры заполняются неподвижной фазой и отношение поверхности к объему становится малым, массообмен замедляется и размывание увеличивается. [c.180]

    Если рассматривать влияние неподвижной фазы на размывание для одного гомологического ряда, как это было сделано в работе [24], и считать, что размывание определяется внутреннедиффузионной массопередачей, то критерий разделения связан с числом 2 атомов углерода в молекуле гомологов соотношением [c.69]

    На величину размывания при определяющей роли внутренней диффузии влияет коэффициент диффузии в жидкости и, следовательно, вязкость неподвижной фазы.  [c.69]

    Коэффициент диффузии в жидкости оказывает влияние на вели-,чину Н через член, учитывающий внутреннедиффузионную массопередачу, причем рост коэффициента диффузии вызывает уменьшение Н. Так как коэффициент диффузии обратно пропорционален вязкости жидкости, очевидно, что неподвижные фазы должны обладать достаточно низкой вязкостью. Обычно нижняя температурная граница применения неподвижных фаз определяется их температурой плавления и слишком высокой вязкостью. При высокой вязкости равновесие между газообразной и жидкой фазами устанавливается чрезвычайно медленно, что вызывает значительное размывание. [c.69]


    С другой стороны, мало пригодны в качестве твердых носителей и материалы с слишком тонкими порами (0,25-10- — 1,0-10- мм). Так как поры заполняются неподвижной фазой и отношение поверхности к объему становится малым, массообмен замедляется и размывание увеличивается. Путем соответствующей обработки узкие поры могут быть расширены 134, с. 70]. V [c.72]

    В теории теоретических тарелок реальный хроматографический процесс заменен идеальным, по которому хроматографическая полоса размывается вследствие равновесных процессов между подвижной и неподвижной фазами. Нетрудно видеть, что такое рассмотрение размывания хроматографической полосы не вскрывает сущности процесса, поэтому характеристика размывания чисто формальная. [c.52]

    Теория эффективной диффузии. Роль продольной и вихревой диффузии и кинетики распределения между газом и неподвижной фазой в размывании хро- [c.296]

    С каждой новой порцией газа-носителя концентрация данного компонента на первых тарелках уменьшается, так как свежие порции газа-носителя встречают на первых тарелках все меньшие концентрации данного компонента в неподвижной фазе. В результате такого передвижения компонента по хроматографической колонке он размывается по нескольким тарелкам, причем на средних тарелках его концентрация максимальная, а на соседних значительно меньше максимальной. Вследствие размывания компонента по нескольким тарелкам его максимальная концентрация на средних тарелках окажется ниже исходной концентрации. [c.90]

    Чем медленнее передвижение растворителя D по отношению к неподвижной фазе D , тем больше будет времени для установления равновесия в данном объеме, тем меньше высота теоретической тарелки. Однако при очень малых скоростях протекания появляется размывание вследствие продольной диффузии. [c.172]

    С одной стороны, хроматографический процесс можно рассматривать с точки зрения формы изотермы , т. е. зависимости между концентрацией вещества в подвижной фазе и его поглощением (сорбцией) на неподвижной фазе (процессы, ответственные за разделение веществ при хроматографировании), а с другой — с точки зрения времени установления равновесия в процессе массообмена между сорбентом и поглощаемым веществом (процессы, влияющие на степень размывания хроматографических полос и ухудшающие разделение). [c.19]

    Молекулярная диффузия в подвижной и неподвижной фазах. Чем больше скорость потока, тем меньше размывание из-за этой причины. [c.7]

    При исиользовании обычных капиллярных колонок длиной 25-30 м и внутренним диаметром 0,32 мм и объеме пробы 1 мкл размывание зоны визуально не наблюдается, поскольку форма пика в таких условиях не ухудшается. Только тщательный анализ хроматограммы позволит выявить размывание зоны. В работе К. Гроба-младшего [24] приведен типичный пример размывания зоны в пространстве. К. Гроб анализировал метиловые эфиры Жирных кислот Се — С1з (в виде растворов в различных растворителях). Псиользовали ввод пробы без деления потока. Для сравнения проводили ввод пробы с делением потока. Па рис. 3-21,а приведена хроматограмма, полученная при вводе пробы с делением, потока — при этом размывания зон не происходит. Хроматограмма на рис. 3-21,6 (раствор анализируемой смеси в н-гексане) получена при вводе пробы без деления потока и температуре 25°С. Растворитель конденсируется в начале колонки, а анализируемые вещества распределяются на смоченной растворителем зоне. Размывание ников составляет примерно 30%, за исключением эфира С , который полностью концентрируется в том месте, где происходит исиарение последней порции растворителя (эффект растворителя). При 60° эффект растворителя минимален и размывания ника в пространстве не происходит (рис. 3-21, в). Размывание зон С и С обусловлено размыванием во времени и отсутствием эффекта растворителя. Как указывалось выше, размывание пробы в пространстве часто нельзя наблюдать визуально, поскольку форма Пиков не искажена. С другой стороны, если растворитель недостаточно хорошо смачивает неподвижную фазу, что имеет место нри исиользовании полярных растворителей (метанола) на неполярных фазах, форма пиков на хроматограмме искажена. Это объясняется тем, что длина зоны, смоченной растворителем, слишком велика [c.44]

    На практике в большинстве случаев можно пренебречь размыванием зоны в пространстве. При объеме пробы 1 мкл снижение эффективности с избытком компенсируется теми преимуществами, которые имеет непосредственный ввод пробы в колонку. При вводе проб большого объема или использовании полярных растворителей рекомендуется использовать метод пустого капилляра. Длина участка колонки, на который не нанесена неподвижная фаза, должна составлять 50-100 см на каждый микролитр введенной пробы. [c.53]

    В заключение следует отметить, что минимизировать размывание заднего фронта ника помогают прежде всего правильный выбор неподвижной фазы колонки, поддержание чистоты в системе, соблюдение рекомендаций производителя по установке колонки и других частей системы. Необходимо также по возможности не проводить никаких действий, которые могут повлиять на термическое поведение системы, внутренние объемы узлов, пути прохождения газов, и тщательно выбирать рабочие режимы температуры. [c.101]


    Хроматографическое разделение определяется различной сорбцией компонентов смеси, что связано с природой сорбента и разделяемых веществ. На основании сведений по термодинамике сорбции (адсорбции, растворения или ионного обмена) можно судить о возможности разделения смеси веществ. Теоретический подход, объясняющий размывание, основан на изучении форм изотерм сорбции — графической зависимости количества вещества в неподвижной фазе с, от его концентрации в подвижной фазе при постоянной температуре. Изотерма может быть линейной (а), выпуклой [c.273]

    В изложенной выше теории равновесной хроматографии были рассмотрг-ны только те искажения хроматографической полосы (обострение фронта и растягивание тыла или наоборот), которые вызывались отклонениями изотермы распределения (адсорбции или растворения, от закона Генри. Но даже и при соблюдении закона Генри хроматографическая полоса при движении вдоль колонки должна размываться. Это происходит вследствие продольной диффузии (вдоль и навстречу потока газа) молекул компонентов газовой смеси, переноса и диффузии их вокруг зерен насадки, а также диффузии в поры (так называемой внутренней диффузии). Кроме этого, молекулы компонента смеси, попап-шие в неподвижную фазу, должны отставать от его молекул, переносимых в потоке газа, вследствие конечной скорости адсорбции и десорбции на твердой или жидкой иоверхности, наличия поверхностной диффузии (вдоль поверхности), а в случае газо-жидкостной хроматографии еще и вследствие диффузии (поперечной и продольной) внутри неподвижной жидкой пленки, а также ввиду адсорбции и десорбции на носителе неподвижной жидкости. Все эти разнообразные диффузионные и кинетические явления приводят к тому, что в отношении элементарных процессов удерживания в неподвижной фазе и возвращения в движущийся газ-носитель разные молекулы данного компонента окажутся п разных условиях и, следовательно, будут перемещаться вдоль колонки с разными скоростями, что неизбежно приведет к размыванию хроматографической полосы—к снижению и расширению пика. Уже одно перечисление причин размывания хроматографической полосы показывает, насколько сложны диффузионные и кинетические процессы в колонке. Учитывая некоторую неопределенность геометрии колонок, по крайней мере колонок с набивкой (колебания в форме и размерах зерен, в их пористости и упаковке, в толщине пленки неподвижной жидкости, в доступности ее поверхности или поверхности адсорбента в порах, можно оценить влияние диффузионных и кинетических факторов на форму хроматографической полосы лишь весьма приближенно. Однако даже такая приближенная теория очень полезна, так как она позволяет выяснить хотя бы относительную роль различных диффузионных и кинетических факторов, влияющих на размывание, и указать тем самым пути ослабления этого влияния. [c.575]

    II в порах адсорбента или носителя, так и со сложными процессами массообмена между газом и неподвижной фазой. Удобно, однако, описать все эти процессы единообразно как процессы диффузии, приписывая и процессу массообмена эквивалентный по результатам процесс диффузии с соответствующим эффективным коэффициентом диффузии. Это позволяет представить суммарньп процесс размывания хроматографической полосы как процесс, эквивалентный процессу диффузии с эффективным коэффициентом диффузии, равным сумме эффективных коэффициентов диффузии отдельных его стадий. После этого для нахождения формы хроматографической полосы можно воспользоваться известным уравнением молекулярной диффузии, введя в него этот суммарны эффективный коэффициент. [c.580]

    Массообмен с неподвижной фазой. Если для упрощения пренебречь процессами диффузии в порах зерен насадки (так называемой внутренней диффузией), что справедливо для крупнопористых адсорбентов и носителей, то надо в е же еще учесть, что в реальном процессе адсорбция и десорбция на поверхности неподвижной фазы происходят с конечной скоростью, т. е. в течение некоторого, причем разного времени. Это также ведет к размыванию полосы. Простейшее уравнение кинетики массообмена газа с неподвимшой фазой имеег [c.581]

    Как следует из уравнения (1.15), эффективный коэффициент вихревой диффузии определяется двумя факторами размерами зерен адсорбента и коэффициентом нихр, учитывающим степень равномерности и плотности упаковки. Регулярность набивки, размеры частиц, их форма и изодисперсность могут способствовать уменьшению различий в скоростях потока подвижной фазы и тем самым уменьшению вклада вихревой диффузии в размывание. Таким образом, вихревая диффузия определяется в первую очередь не природой подвижной фазы, а геометрической характеристикой неподвижной фазы. Учитывая обычные размеры зерен в высокоскоростной жидкостно-адсорбционной хроматографии ( з 10 см) линейную скорость подвижной фазы (а—Ю см с- ) и коэффициент молекулярной диффузии в жидкой фазе (5 —10- см -с- ), можно рассчитать примерный вклад вихревой диффузии в ВЭТТ. Он оказывается равным 10 см, т. е. на порядок больше, чем вклад продольной диффузии. [c.72]

    Согласно этой теории причина размывания хроматографических полос обусловлена диффузией в газе и порах сорбента, а также массообменом между газом и неподвижной фазой. Сама диффузия имеет сложный характер. В реальной хроматографической колонке могут происходить следующие виды диффузии а) молекулярная диффузия, обусловленная тепловым движением молекул б) вихревая диффузия, вызываемая завихрением газа вокруг зерен насадки в) недостаточная скорость массопередачи из газовой фазы к поверхности неподвижной жидкости (в ГЖХ) или к поверхности твердого адсорбента (в ГАХ), обусловленное внешней диффузией, или замедленной внешнеди( узионной массопередачей недостаточная скорость миграции молекул адсорбированного вещества с поверхности неподвижной фазы внутрь неподвижной фазы, обусловленное замедленной внутренней диффузией или замедленной внутридиффузионной массопередачей. Последние два вида диффузии направлены поперек [c.52]

    Разделение двухкомпонентной смеси обусловлено в основном двумя факторами а) различием коэффициентов распределения б) фактором размывания- хроматографических полос разделяемых веществ, обусловленным влиянием вихревой и мЬ 1екулярной диффузии, а также конечностью скорости массопередачи между подвижной и неподвижной фазами. [c.62]

    Согласно диффузионно-массообменпой теории (теория эффективной диффузии) причина размывания хроматографических полос обусловлена диффузией в газе и порах сорбента, а также массооб-меном между газом и неподвижной фазой. Сама диффузия имеет сложный характер. В реальной хроматографической колонке могут наблюдаться следующие виды диффузии  [c.95]

    Отправной точкой бурного развития многих методов хроматографического анализа является работа лауреатов Нобелевской премии А. Мартина и Р. Синд-жа. Ими был предложен и разработан метод распределительной хроматографии (1941 г.). Для описания размывания хроматографической зоны они использовали модель теоретических тарелок, применявшуюся ранее в теории дистилляции. В 1946 г. Р. Синдж предложил метод жидкостной хроматографии с липофиль-ной неподвижной фазой, известный сейчас как жидкостная хроматография на обращенной фазе. [c.583]

    При 100°С эффект растворителя не проявляется ни для метиленхлорида, ни для диэтилового эфира. Углеводороды С , ie и Сп (температуры кипения соответственно 270, 286 и 302°С) эффективно улавливаются в начальной части (на нескольких первых сантиметрах) колонки. Пики этих соединений имеют правильную форму. Пе удается полностью избежать размывания ника углеводорода i4 (температура кипения 254°С), однако форма пика практически не искажена. Толщина слоя неподвижной фазы также играет определенную роль нри термическом фокусировании. Па рис. 3-18 приведена хроматограмма парофазного анализа сополимера стирола, метилметакрилата и бутилакрилата. 1 мл равновесной паровой фазы вводили без деления потока в капиллярную колонку (50м х 0,25мм) с неподвижной фазой OV-101 (толщина нленки фазы 1 мкм). Продолжительность продувки составляла 60 с. Температура колонки во время ввода пробы составляла 20°С, затем по истечении 1 мин температуру колонки сразу повышали до 60°С и программировали температуру до 120°С со скоростью в град/мин. Па рис. 3-18,а показана хроматограмма равновесной паровой фазы над сополимером, в который ввели но 1 10" % метилметакрилата и стирола и 1 10 % бутилакрилата. Эти соединения прекрасно концентрируются, в то время как ники, элюируемые раньше, имеют искаженную форму за счет размывания зоны во времени. Па рис. 3-18, показана хроматограмма смеси без добавки. [c.44]

    Явление размывания зон в пространстве было впервые описано в 1981 г. [23]. Размывание зон в пространстве является прямым следствием эффекта растворителя. За счет эффекта растворителя зоны анализируемых веществ, размывание которых произошло во времени, вновь фокусируются на толстом слое растворителя. Однако нри конденсировании слой растворителя на первых нескольких сантиметрах колонки становится слишком толстым и вследствие этого неустойчивым. Газ-носитель проталкивает пробку растворителя в колонку, в результате чего образуется зона, смоченная растворителем (рис. 3-20). Затем компоненты пробы распределяются по всей длине этой зоны. Таким образом, ширина образующейся зоны вещества равна ширине зоны, смоченной растворителем. Для проб объемом 1 мкл длина зоны, смоченной растворителем, составляет примерно 20-30 см при условии, что неподвижная фаза полностью смачивается растворителем (нри анализе на неполярных диметилсиликоновых фазах в качестве растворителя используется изооктан, а на полярных фазах — полиэтилен-гликолях — этилацетат). [c.44]

    Размывание зоны в пространстве можно подавить путем фокусирования неподвижной фазой с применением капилляра или "бреши" (пробела) в удерживании (retention gap, RG) [25, 26]. Пустой капилляр — это определенный начальный участок колонки, который не нанесена неподвижная фаза. В этой части колонки значения к всех анализируемых веществ будут близки к нулю. При испарении растворителя все вещества, распределенные по смоченной растворителем зоне, переносятся на неподвижную фазу где происходит их удерживание. Па рис. 3-22 приведена схема, иллюстрирующая механизм RG. Па практике "пустой" участок колонки получают, смывая неподвижную фазу или подсоединяя к аналитической колонке отрезок деактивированного кварцевого капилляра. [c.46]

    Более того, проба распределяется вдоль зоны, смоченной растворителем, отнюдь не однородно. Наибольшая концентрация определяемых веществ имеет место в начале и конце зоны, смоченной растворителем [49]. Если длина смоченной зоны невелика (например, при вводе 1 мкл пробы и хорошей смачиваемости неподвижной фазы растворителем), то в ходе хроматографирования происходит реконцентрирование определяемых веществ. Однако размывание зоны при этом составит 5-8% [48]. Если длина смоченной зоны велика, что наблюдается при большом объеме проб и плохой смачиваемости, то реконцентрирование становится невозможным и на хроматограмме появляются искаженные или расщепленные пики. Фокусирование или концентрирование может быть достигнуто в зоне пустого капилляра. Так, зоны растворенных веществ на рис. 3-30 сужены за счет фокусирования неподвижной фазой. [c.53]

    Чем толще пленка неподвижной фазы (1, и меньше коэффициент диффузии вещества в неподвижной фазе О,, тем сильнее размывается пик за счет замедления массопереноса в неподвижной фазе. Поскольку фактор емкости колонки к пропорщюнален объему неподвижной фазы, размывание с увеличением объема неподвижной фазы V, должно уменьшаться. Если при [c.279]


Смотреть страницы где упоминается термин Размывание в неподвижной фазе: [c.576]    [c.182]    [c.70]    [c.19]    [c.70]    [c.95]    [c.9]    [c.11]    [c.145]    [c.47]    [c.279]    [c.281]   
Практическое руководство по жидкостной хроматографии (1974) -- [ c.35 ]




ПОИСК





Смотрите так же термины и статьи:

Фаза неподвижная



© 2025 chem21.info Реклама на сайте