Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Хроматография низкомолекулярным

    Завершая обсуждение современного состояния жидкостной хроматографии низкомолекулярных органических соединений, ее применения в анализе лекарственных средств, авторы считают необходимым остановиться вкратце на тех направлениях, которые, вероятно, будут определять развитие этой области науки и практики в ближайшие годы. [c.351]

    Колонки для гель-хроматографии нуклеиновых кислот готовят обычным образом по аналогии с хроматографией низкомолекулярных веществ. Первое время гель-хроматографию на сильно сшитых сорбентах использовали вместо диализа для отделения высокомолекулярных полинуклеотидов от низкомолекулярных веществ с целью обессоливания, очистки [117], [c.80]


    ХРОМАТОГРАФИЯ НИЗКОМОЛЕКУЛЯРНЫХ СОЕДИНЕНИИ [c.242]

    Современные способы позволяют достаточно полно выделять большинство типов ГАС из легких и средних дистиллятов нефти. Идентифицировать и количественно определять компоненты таких сравнительно низкомолекулярных концентратов можно значительно удобнее и эффективнее с помощью газовой, нежели жидкостной хроматографии. [c.34]

    Нерастворимыми в указанных выше углеводородах могут быть как относительно высокомолекулярные соединения, обладающие высокой степенью ароматичности, так и сравнительно низкомолекулярные вещества, имеющие поляр 1ые функциональные группы. Такое явление наблюдалось при разделении асфальтенов на гель-хроматографе и экстракции большие набором растворителей разной полярности. Кроме того, определение средней молекулярной массы асфальтенов сильно осложняется большой склонностью молекул асфальтенов к ассоциации, поэтому молекулярная масса одних и тех же асфальтенов, но определенная разными методами, молсет различаться иа несколько порядков. [c.210]

    Мягкие гели. Гели этого типа являются органическими высокомолекулярными соединениями, обладающими незначительным числом поперечных связей. Они способны поглощать большие количества растворителя, набухая и увеличивая при этом собственный объем. Их пористость возрастает пропорционально объему поглощенного растворителя. Как следствие этого емкость мягких гелей снижается, а сам гель подвергается деформации. Поэтому мягкие гели, как правило, применяются для разделения смесей низкомолекулярных вешеств и при малых скоростях потока. Более широкое применение они нашли в тонкослойной хроматографии. [c.230]

    Однако в равной степени гель-хроматография применяется для разделения смеси вешеств средней молекулярной массы и даже низкомолекулярных соединений. В этом случае большое значение имеет то, что гель-хроматография позволяет вести разделение при комнатных температурах, что выгодно отличает ее от газо-жидкостной хроматографии, требующей нагревания для перевода анализируемых веществ в паровую фазу. [c.233]

    Хроматография является наиболее универсальным и поэтому важнейшим из всех методов разделения сложных многокомпонентных смесей. Этим обусловлена решающая роль, которую этот метод сыграл в химических исследованиях объектов живой природы, т. е. в биохимии, так как живые организмы состоят из тысяч различных биологических полимеров и низкомолекулярных органических соединений различной степени сложности. [c.337]


    Качественное и количественное определение содержания низкомолекулярных примесей в сочетании с пиролизом и газовой хроматографией качественный и количественный анализ (ограниченное применение для анализа высокомолекулярных веществ) [c.416]

    Молекулярно-ситовая хроматография находит широкое применение также во фракционировании близких по размерам молекул низкомолекулярных веществ (олигомеров, [c.80]

    Чаще всего об этом приходится заботиться при очистке или фракционировании ферментов. Нередко их хроматографию приходится вести на холоду, хотя для целей самого хроматографического процесса это и невыгодно — увеличивается вязкость элюента, ухудшается разрешение пиков (низкомолекулярные вещества хроматографируют при комнатной, а иногда и при повышенной, до 50—60°, температуре в этом случае особое внимание должно быть уделено деаэрации обменника н элюента и опасности смены температур из-за возможности появления пузырей газа, как было подробно сказано в гл. 3). [c.292]

    Скорость элюции, используемая в ионнообменной хроматографии на колонках низкого давления, варьирует в широких пределах от 50—100 мл/см -ч при фракционировании аминокислот, нуклеотидов и других низкомолекулярных соединений до 2—5 мл/см -ч для крупных белков. Ее приходится подбирать эмпирически. Признаком существенного превышения оптимальной скорости элюции служит асимметрия хроматографических пиков — растягивание их заднего фронта. [c.294]

    Ионообменная ЖХВД позволяет вести хроматографию низкомолекулярных веществ с большой скоростью — до 800 мл/см -ч. Уже не раз подчеркивалось, что скорости такого порядка нельзя применять при хроматографии белков. Линейные размеры гранул для ЖХВД уменьшены по сравнению с обычными ионообменниками в. 5 — 10 раз, а скорость поперечной диффузии тяжелых макролго-лекул, естественно, остается той же самой. Соответственно и скорость элюции при хроматографии белков можно увеличить лишь пропорционально линейным расстояниям диффузии, т. е. до 10— 50 мл/см -ч. [c.295]

    Успехи в использовании равновесия между растворами и твердыми фазами при разделении биологических полимеров связаны с тем, что здесь используются преимущественно водные растворы, в которых эти вещества обладают наибольшей устойчивостью, а также кристаллические и сорбированные состояния, при переходе в которые молекулы биополимеров весьма часто изменяют свои характеристики полностью обратимо. Известно, что сильные воздействия на макромолекулы могут привести к де-натурационным изменениям. В связи с этим в качестве сорбентов применяют мягко действующие на биополимеры карбоксильные смолы, некоторые типы анионитов, ионообменники — производные жесткоцепного полимера целлюлозы и сефадексы — сшитые производные декстрана. В отличие от этого хроматография низкомолекулярных, сравнительно стабильных веществ (аминокислот) [c.7]

    Все целлюлозоиониты являются слабыми кислотами или основаниями. Поэтому их соли, особенно со слабыми основаниями или кислотами, сильно гидролизованы. В связи с этим при хроматографии низкомолекулярных веществ на колонках эти вещества передвигаются вдоль колонки почти с такой же скоростью, как и растворитель. Белки, как амфотерные соединения, также представляют собой слабые кислоты или основания, но они сорбируются на целлюлозоионитах значительно интенсивнее, так как вследствие большого числа зарядов на поверхности белковой молекулы между белками и цел-люлозоионитом образуется много связей. [c.56]

    Динамическая модификация метода адсорбции — хроматография существует около 70 лет. Однако методы хроматографии низкомолекулярных веществ не могли быть непосредственно применены для хроматографии таких высокомолекулярных соединений, как белки, нуклеиновые кислоты и особенно вирусов. Этому предшествовала большая экспериментальная работа но выбору и синтезу сорбентов и разработке новых хроматографических методов. Из методов адсорбционной хроматографии наиболее удачным оказался метод хроматографии на фосфате кальция, предложенный Тизелиусом в 1954 г. [799]. Оя был использован для очистки вируса гринна, герпеса, иолиов уса, энцеф ало миокардита, арбо виру сов и многих других. Но наибольшего успеха достигли Петерсон и Собер [636], В 1956 г. они синтезировали ионообменники на основе целлюлозы. Принципиальным преимуществом целлюлозных сорбентов по сравнению с ионообменными смолами явилась возмож- [c.44]

    Наряду с методом сольвентной обработки остатков низкомолекулярными растворителями широко используются методы [28] жидкостной хроматографии. Эти методы, особенно в варианте препаративного выделения различных групп компонентов остатков, позволяют кроме выявления структуры оценить. количественно концентрацию однотипных компонентов различных остатков и обеспечивают возможность последующего детализованного анализа каждой выделенной фракции по злементному составу, физико-химическим свойствам и другим показателям. Для препаративного разделения на группы компонентов нефтяные остатки подвергаются деасфальтизации с использованием в качестве растворителя гептана. Деасфалыированный остаток, или [c.31]


    Никель появляется во фракциях с температурой кипения около 300° и его распределение подчиняется тем же закономерностям, что и распределение железа [786, 959]. Кобальт при перегонке нефти целиком концентрируется в остатке (500°) [786, 880]. При разделении нефти на компоненты кобальт полностью попадает в асфальтены, главным образом в их высокомолекулярную часть (4000— 8000 и 8000—22 000 по данным гель-хроматографии) [76]. Видимо, он связан в комплексы с тетрадентатными лигандами. Распределение железа и никеля по молекулярно-весовым фракциям носит бимодальный характер. Природа низкомолекулярных соединений никеля достаточно изучена они представлены комплексами с порфиринами. При возрастании молекулярной массы фракции растет доля непорфириновых соединений никеля. По своей природе они, по-видимому, аналогичны непорфириновым соединениям ванадия [8, 76]. Для высокомолекулярных соединений железа также справедливо то, что сказано о непорфириновом ванадии. Природа низкомолекулярных соединений железа в нефти до сих пор не ясна. Наличие нафтенатов железа исключается [926, 927, 973], но допускается возможность существования железо-порфириновых комплексов, аналогичных найденным в сланцах [390, 794, 798]. Предполагается также существование кобальт-порфиринов в концентрациях ниже предела обнаружения. Это может объяснить присутствие небольшого количества кобальта в низкомолекулярных фракциях смол и асфальтенов (300—1000) [76]. [c.179]

    В промышленности адсорбцию применяют для отбензииивания попутных и природных углеводородных газов, при разделении газов нефтепереработки для получения водорода и этилена, осушки газов и жидкостей, выделения низкомолекулярных ароматических углеводородов из бензиновых франкций, для очистки масел н т. п. Явление адсорбции используется в хроматографии, в противогазах и т. д. [c.315]

    Кроме отмеченной выше сорбции низкомолекулярной фракции пека в поры, избирательное поглощение его высокомол( ку-лярной части поверхностью нефтяного кокса замедленного коксования наблюдалось при использовании гельпроникающей хроматографии [2-135]. Было установлено, что с увеличением удельной поверхности частичек от 0,51 до 3,36 м /г наблюдается полная сорбция фракции пека с относительной молекулярной массой более 500. Сорбция отдельных фракций пека на поверхности обусловливает неадекватность процессов пиролиза пека отдельно и в смеси с углеродными частичками. Сходные данные, полученные в [2-136], показывают, что с повышением содержания высокомолекулярных фракций пека, нерастворимых в толуоле, сорбционная способность нефтяных коксов возрастает. [c.141]

    Задачи работы разделить высоко- и низкомолекулярные вещества методом жидкостной хроматографии в колонках с гелем спектрофотометрически определить белок и низкомолекулярную примесь. [c.235]

    Наличие в пористых сополимерах СТ с ДВБ бензольных колец, в отличие от сополимеров, содержащих только насыщенные углеводородные группы, должно было бы сделать их слабо специфическими. Однако из-за обилия метиленовых и концевых метильных групп сополимеры СТ с ДВБ практически неспецифичны. Поэтому эти пористые сополимеры удобно использовать в газовой хроматографии для определения примесей полярных низкомолекулярных веществ. На рис. 6.1 представлены хроматограммы на колонне, заполненной пористым сополимером СТ с ДВБ (хромосорбом 102), аммиака и воды, а также определения примеси воды в этаноле и бензоле. Поскольку этанол и особенно бензол сильно адсорбиру- [c.113]

    Гель-хроматография применяется, как уже указывалось, при обессиливании растворов (малые по размеру ионы солей проникаю в поры ге я и удерживаются там), для группового разделения высокомолекулярных и низкомолекулярных органических соединений (например, глицериде в жирных кислот с молекулярной массой около 200—500), в анализе биологических объектов (часто с использованием буферных систем с целью предотвратить разрушение ферментоп), для определения молекулярной массы белков (в том числе содержащихся в сыворотке К]ювп, в спинн( -мозговой жидкости), углеводородов и др)гих вещеста. [c.285]

    Как и все полимеризаты и поликонденсаты, полимерные силиконы состоят из смеси соединений с различным молекулярным весом, и поэтому состав пх может несколько изменяться от партии к партии. Обусловленные этим колебания в величинах удерживания, однако, невелики из-за того, что, как уже говорилось, удерживание слабо зависит от вязкости. Влияние содержания низкомолекулярных фракций более важно для высокотемпературной газовой хроматографии. В последнем случае необходимо проводить термическое кондиционирование колонок при температурах, превышаюш,их рабочие температуры колонки (см. гл. III). Следует помнить, однако, что нри высоких температурах кондиционирования не только удаляются возможные примеси летучих фракций, но в значительной степени могут пронсходить деполимеризация и крекинг, хотя этп процессы, вероятно в результате образования сетчатых структур, вскоре прекраш,аются (Ротцше, 1964) остаюш,аяся пленка неподвпжной фазы ничуть не ухудшает эффективности разделения, сокращается лишь минимально допустимое количество пробы. Кондиционированная силиконовая фаза устойчива затем в течение длительного времени при температурах ниже температуры кондиционирования. [c.193]

    Использование гель-фильтрации для освобождения от радиоактивных предшественников неоднократно цитировалось при описании методов введения радиоактивной метки в белки и нуклеиновые кислоты [Остерман, 1983]. Нередко обессоливание используют и на заключительном этапе очистки для освобождения не только от соли, но и от прочих низкомолекулярных примесей. Например, в одной из работ по выделению РНК-полимеразы очисткой белка на биогеле А-1,5т завершалась целая серия операций, включавшая различные варианты переосаждений белка и ионообмениой хроматографии [Vaisius, Horgen, 1979]. [c.138]

    По незамещенным силанолам может происходить неконтролируемая сорбция белков или малых молекул, например ионов при так называемой ион-парной хроматографии (см. ниже), от чего страдают разрешающая способность и воспроизводимость хроматографического процесса. Во избежание этого силикагель после модифика ции обрабатывают еще и низкомолекулярным модификатором гидрофобной природы — триметилхлорсиланом. О том, какой эффект дает такая дополнительная обработка, молено судить по следующему примеру. Для фенилтиогндантоинового производного аргинина (ФТГ-Arg) на колонке Ultrasphere ODS , не обработанной триметилхлорсиланом, при элюции 50%-ным метанолом значение составляет 4,33. После такой обработки задержание ФТГ-Arg на колонке уменьшается настолько, что ему отвечает значение = 1,67. Между тем для ФТГ-Val подобного эффекта не наблюдается. Очевидно, что положительно заряженный остаток аргинина взаимодействует с отрицательным зарядом ионизированной силанольной группы. Из этого примера ясно, что экспериментатору следует знать, был ли имеющийся в его распоряжении сорбент дополнительно об- [c.189]

    Активированный уголь (прогретый в инертной атмосфере до 700—1000°) широко используется для очистки растворов, например буферных или солевых, от разного рода низкомолекулярных органических примесей, которые хорошо, а иногда и необратимо им сор бируются. Для адсорбционной хроматографии не только биологических макромолекул, но и их мономерных звеньев активированный уголь не применяется ввиду плохой воспроизводимостп его сорбционных характеристик и значительной необратимой сорбл,пи. Основную роль в сорбции на активированном угле играют лондо-новские дисперсионные силы. [c.224]

    Для высокомолекулярных ионов или амфолитов, например белков, имеет смысл говорить об эффективной емкости обменника, которая зависит от соотношения размеров молекул амфолита и среднего расстояния между ионогенными группами, а также от степени доступности всего объема пористой матрицы обменника для этих молекул. Заметим, что большое значение полной (низкомолекулярной) емкости ионообменннка может оказаться невыгодным для хроматографии белков или нуклеиновых кпслот, поскольку в этом случае возможна многоточечная фиксация макромолекул. В такой ситуации может оказаться целесообразным снижение полной емкости обменника за счет выбора значения pH, отвечающего неполной его ионизации эффективная емкость для макромолекул при этом может остаться максимальной. [c.255]

    Возможности ионообменной хроматографии целых молекул нуклеиновых кислот, естественно, ограничены кругом сравнительно низкомолекулярных НК (тРНК, рибосомальные 5S РНК, ядерные РНК) в последнее время к ним присоединились и плазмиды бактерий. Это ограничение обусловлено чересчур прочной многоточечной связью высокомолекулярных НК даже со слабыми анионообменник ами. [c.323]

    Эти соображения в определенно степен сохраняют свою силу и при использовании низкомолекулярных лигандов, если в ходе аффинной хроматографии на них будут сорбироваться белки. Разумеется, ситуация здесь лучше, так как на поверхности белка может быть лишь небольшое число аффинных центров связывания, а действующие здесь силы уступают ковалентным связям, поэтому денатурации белка при посадке на аффинный сорбент опасаться не приходится (мы сейчас оставляем в стороне возможность связыва- [c.386]


Смотреть страницы где упоминается термин Хроматография низкомолекулярным: [c.154]    [c.10]    [c.15]    [c.76]    [c.32]    [c.320]    [c.176]    [c.56]    [c.307]    [c.101]    [c.141]    [c.80]    [c.156]    [c.254]    [c.58]    [c.249]    [c.286]   
Практическое руководство по жидкостной хроматографии (1974) -- [ c.129 , c.130 ]




ПОИСК







© 2025 chem21.info Реклама на сайте