Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Нуклеиновые кислоты ионообменная хроматография

    Нуклеотиды, нуклеозиды, пуриновые и пиримидиновые основания— нелетучие полярные соединения, имеющие приемлемую растворимость в водных растворах. Эти соединения способны ионизоваться в водных растворах, хотя в каждом отдельном случае это зависит от температуры, pH и ионной силы среды водных растворов. Все приведенные химические характеристики соединений указанного типа позволяют предположить, что в данном случае наиболее действенным способом разделения может быть ионообменная хроматография. Особенно важно, что степень ионизации зависит от трех переменных температуры, pH и ионности среды. Далее мы покажем, как, используя эти параметры, можно предложить практически бесконечное число вариантов методики разделения любой данной смеси компонентов нуклеиновых кислот. [c.302]


    Распределительную хроматографию на бумаге используют в качестве быстрого стандартного метода анализа нуклеиновых кислот. Ионообменная хроматография на колонках (см. стр. 446) нашла применение прежде всего для препаративного выделения мононуклеотидов и высокомолекулярных продуктов гидролиза дезоксирибонуклеиновых кислот. Опыты по фракционированию на крахмале [26, 31] или на адсорбенте [55, 56] не привлекли достаточного внимания. [c.442]

    При разделении нуклеиновых кислот используют те же методы, что и при фракционировании белков, однако имеются ограничения, обусловленные большим диапазоном величин молекулярной массы (2-10 —Ы0 ° Да), отклонениями от глобулярной формы, различиями в четвертичной структуре (двухнитевые, однонитевые, кольцевые), значительным отрицательным зарядом в нейтральной области pH. Поэтому методы гель-фильтрации и ионообменной хроматографии не получили широкого распространения при фракционировании нуклеиновых кислот и значительно уступают ультрацентрифугированию и электрофоретическому разделению в геле агарозы, полиакриламидном геле или их смеси. Поскольку величина отрицательного заряда нуклеиновых кислот и продуктов их расщепления мало зависит от pH, а отношение заряда к молекулярной массе сохраняется практически неизменным, разделение нуклеиновых кислот при электрофорезе определяется не их зарядом, а размером молекул. При наличии маркеров с известной молекулярной массой возможно определение молекулярной массы препаратов нуклеиновых кислот и их фрагментов. [c.171]

    В последние 15 лет были разработаны различные хроматографические методы, позволяющие фракционировать высокомолекулярные нуклеиновые кислоты для этой же цели применяют электрофорез. Хроматографией на бумаге и другими распределительными методами, а также ионообменной хроматографией удалось выделить продукты гидролиза нуклеиновых кислот. Определяя концентрации выделенных оснований, нуклеозидов, моно- и олигонуклеотидов, в настоящее время проводят количественный анализ с очень небольшим количеством гидролизата. [c.437]

    Настоящее, пятое издание книги существенно переработано и дополнено сравнительно с изданием 1961 г. Включены новые материалы о свободных радикалах, хелатных соединениях, органических перекисях, ионообменных смолах и хроматографии, стероидных гормонах, нуклеиновых кислотах и др. Из учебника исключены устаревшие и маловажные сведения. Существенно переработаны параграфы, касающиеся высокомолекулярных соединений, органических красителей, ядохимикатов и др. [c.13]


    Разделение производных нуклеиновых кислот хроматографией на ионообменных колонках [1481]. [c.290]

    Для фракционирования нуклеотидов ионообменные слои подходят еще лучше, чем целлюлоза или силикагель Г. Ионообменная тонкослойная хроматография производных нуклеиновых кислот описана в следующем разделе. [c.446]

    Выделение индивидуальных нуклеотидов из гидролизатов нуклеиновых кислот до недавнего прошлого представляло очень сложную задачу и требовало длительной кропотливой работы. Однако в настоящее время этот вопрос относительно просто решается применением хроматографии на ионообменных смолах, которая позволяет получать чистые индивидуальные нуклеотиды. [c.216]

    Эту технику нельзя, конечно, четко выделить отдельно, поскольку она зависит от набивки колонны это лишь развитие и совершенствование ранее описанных методов. Однако данный метод имеет столь большие преимущества в эффективности и в скорости разделения, что целесообразно отдельно рассмотреть области его применения. Были применены набивки для ионного обмена, адсорбции и гель-фильтрации использование всей этой техники описано Леонардом для разделения некоторых цитокининов (производных аденозина), включая их разделение ня цис- и транс-то-меры [34]. Применение в области нуклеиновых кислот находится еще в стадии становления, но со временем этому методу несомненно предназначено сыграть важную роль в разделении смесей нуклеозидов, а колонки для гель-фильтрации будут широко применяться при обессоливании элюатов нуклеозидов после ионообменной хроматографии. [c.75]

    Стремительное развитие биоорганической химии, физической химии полимеров и молекулярной биологии дало хроматографии новый объект исследований — высокомолекулярные соединения. Возникла необходимость в разделении синтетических полимеров и биополимеров, нуклеиновых кислот, белков, а также вирусов, фагов, рибосом и пр. Достигнутый в этом направлении успех позволил одному из крупнейших специалистов в области молекулярной биологии Френсису Крику сказать, что хроматография наряду с рентгеноструктурным анализом, электронной микроскопией и ультрацентрифугированием обеспечила все наиболее крупные успехи молекулярной биологии. Здесь следует особо выделить методы фракционирования биополимеров на ионообменных целлюлозах [2] и основанную на биоспецифической сорбции афинную хроматографию [3]. [c.10]

    Метод, используемый в химии белков, иллюстрирует общие принципы ионообменной хроматографии, которые применимы также и к изучению других объектов, например нуклеиновых кислот. На первой стадии анализа белок гидролизуют 6 М соляной кислотой при 110°С в течение 12 ч или более. При этом бе- [c.373]

    Настоящее, пятое, издание учебника существенно переработано и дополнено сравнительно с изданием 1961 г. Включены новые материалы о свободных радикалах, хелатных соединениях, органических перекисях, ионообменных смолах и хроматографии, стероидных гормонах, нуклеиновых кислотах и др. Из учебника исключены устаревшие и маловажные сведения. [c.13]

    В пятое издание включены новые материалы о свободных радикалах, хелатных соединениях, органических перекисях, ионообменных смолах и хроматографии, ферроценах, нуклеиновых кислотах, стероидных гормонах и др. Исключены устаревшие и маловажные сведения и переработаны параграфы, касающиеся высокомолекулярных соединений и пластических масс, органических красителей, ядохимикатов и др. [c.432]

    Основные успехи разделения биополимеров в гетерогенных системах достигнуты при использовании равновесия между раствором и твердой фазой. Одними из наиболее ранних приемов, сохранивших свое значение и до настоящего времени, являются методы осаждения и кристаллизации. Еще большее значение в настоящее время играют процессы сорбции и их динамическая модификация — процессы хроматографии. Одноактная сорбция белков на окислах металлов и других минеральных сорбентах служит для очистки белков и ферментов уже несколько десятилетий. К этим процессам присоединилась избирательная сорбция белков ионообменными смолами. Одним из наиболее значительных достижений современной физической химии в области фракционирования сложных смесей веществ, в частности белков, нуклеиновых кислот, полипептидов, аминокислот и нуклеотидов, явилась хроматография, особенно в виде ее ионообменной модификации и гельфильтрации на сефадексах. [c.7]

    Наличие фосфатной грунны в нуклеотидах резко отличает последние от нуклеиновых оснований и нуклеозидов. Нуклеотиды — сильные двухосновные кислоты (рК1 1 и рКа 6) [20]. Разделение и анализ микроколичеств нуклеотидов обычно проводят хроматографией на бумаге, для больших количеств или для точного анализа применяется ионообменная хроматография. [c.326]


    Ионообменная хроматография была впервые применена в биохимии Кохом и его сотр. [4], которые использовали ее для разделения производных нуклеиновых кислот, а также Муром и Штейном [5], разделявшим таким методом аминокислоты. [c.232]

    Для разделения компонентов нуклеиновых кислот (т. е. оснований, нуклеозидов и нуклеотидов, а также самих нуклеиновых кислот) ионообменная хроматография применяется в весьма неодинаковой степени. Так, например, ионообменная хроматография — все еще типичный метод разделения нуклеотидов, однако для разделения оснований ее почти не применяют, отдавая предпочтение тонкослойной или бумажной хроматографии. При разделении нуклеиновых кислот ионитам также предпочитают другие сорбенты, в частности оксиапатит, диатомитовые земли, покрытые слоем метилальбумина. [c.327]

    Методы анализа фракций могут быть физическими, химическими и биологическими. Одним из лучших методов считается детектирование радиоактивных изотопов. Результаты измерений оформляют в виде кривой зависимости определяемой величины от объема злюата. По распределению пиков на хроматограмме судят о возможности объединения некоторых фракций, совершенно чистых, без примесей других компонентов. Методом ионообменной хроматографии можно разделять различные катионы и анионы, четвертичные аммониевые основания, амины, аминокислоты, белки, продукты гидролиза пептидов, физиологические жидкости, гидролизаты клеточных оболочек микробов, антибиотики, витамины, нуклеиновые кислоты. [c.361]

    Очеиь широко используют ионообменную хроматографию для анализа ионизирующихся органических соединений (кислоты, амины, аминокислоты, компоненты нуклеиновых кислот и т. д.). Для анализа аминокислот создан -, автоматические анализаторы, которые в процессе хроматографирования изменяют pH элюента, ионную силу, вводят необходимые реагенты и пр. [c.609]

    Использование гель-фильтрации для освобождения от радиоактивных предшественников неоднократно цитировалось при описании методов введения радиоактивной метки в белки и нуклеиновые кислоты [Остерман, 1983]. Нередко обессоливание используют и на заключительном этапе очистки для освобождения не только от соли, но и от прочих низкомолекулярных примесей. Например, в одной из работ по выделению РНК-полимеразы очисткой белка на биогеле А-1,5т завершалась целая серия операций, включавшая различные варианты переосаждений белка и ионообмениой хроматографии [Vaisius, Horgen, 1979]. [c.138]

    Возможности ионообменной хроматографии целых молекул нуклеиновых кислот, естественно, ограничены кругом сравнительно низкомолекулярных НК (тРНК, рибосомальные 5S РНК, ядерные РНК) в последнее время к ним присоединились и плазмиды бактерий. Это ограничение обусловлено чересчур прочной многоточечной связью высокомолекулярных НК даже со слабыми анионообменник ами. [c.323]

    Что касается самого процесса ТСХ, то здесь можно усмотреть далеко идущую аналогию с жидкостной хроматографией на колонках. Неподвижную фазу образует н идкость, связанная со слоем фиксированного на подложке гранулированного сорбента, свойства и характеристики которого близки, а иногда даже идентичны таковым для материалов, используемых в качестве носителей неподвижной фазы в колоночной хроматографии. Здесь используются те же производные целлюлозы или силикагеля, к которым надо добавить только полоски ацетилцеллюлозы. Подвижную фазу образует жидкий элюент с аналогичными, рассмотренным ранее свойствами. Неизменной остается и сущность хроматографического процесса, базирующегося на равновесном распределении вещества между неподвижной и подвижной фазами. Как и в любом хроматографическом процессе (гель-фильтрация в тонком слое была рассмотрена в гл. 4), для целей хроматографического фракционирования это распределение должно быть сильно сдвинуто в пользу неподвижной фазы. Из всех вариантов хроматографпп для разделения компонентов белков и нуклеиновых кислот методом ТСХ (сами биополимеры очень редко выступают здесь в качестве объектов) практически пспользуют только два нормальнофазовую распределительную и ионообменную. [c.458]

    Ионообменную хроматографию широко применяют в медицине, биологии, биохимии [11—15], для контроля окружающей среды, при анализе содержания лекарств и их метаболитов в крови и моче, ядохимикатов в пищевом сырье, а также для разделения неорганических соединений, в том числе радиоизотопов, лантаноидов, актиноидов и др. Анализ биополимеров (белков, нуклеиновых кислот и др.), на который обычно затрачивали часы или дни, с помощью ионообменной хроматографии проводят за 20-40 мин с лучшим разделением. Применение ионообменной хроматографии в биологии позволило наблюдать за образцами непосредственно в биосредах, уменьшая возможность перегруппировки или изомеризации, что может привести к неправильной интерпретации конечного результата. Интересно использование данного метода для контроля изменений, происходящих с биологическими жидкостями [11]. Применение пористых слабых анионообменников на силикагелевой основе позволило разделить пептиды [12]. [c.32]

    Подробный анализ процесса хроматографии нуклеиновых кислот и их продуктов гидролиза на ионообменнике был опубликован Коном [14, 22, 23], а также Собером и Петерсоном [81]. Рандерат впервые описал фракционирование низкомолекулярных осколков нуклеиновых кислот (нуклеиновых оснований, нуклеозидов и мононуклеотидов) на эктеола [68, 69, 73] и на слоях ДЭАЭ [72, 73]. Он установил, что нуклеотиды можно разделить методом ионообменной ХТС значительно быстрее и лучше, чем при использовании других методов кроме того, метод ХТС значительно чувствительнее метода хроматографии на бумаге. [c.447]

    Лш1 Риман В, Уо ПОН Г, Ионообменная хроматография в аналнти-ческой химин, пер с т-т. М, 1973 Сенявин М М, Ионный обмен в технологии и анализе неорганических веществ, М, 1980, Мархот М, Ионо-обменникн в аналитической химии, пер. с англ, ч. 1-2, М, 1985, Остерман Л. А., Хроматография бетков и нуклеиновых кислот, М, 1985. [c.264]

    Все перечисленные изомеры мононуклеотидов хорошо известны. Смесь 2 - и З -фосфатов образуется при гидролизе рибонуклеиновых кислот наилучшим с препаративной точки зрения является щелочной гидролиз. Как будет подробно рассмотрено ниже, образование смеси 2 - и З -фос-фатов является следствием механизма гидролиза нуклеиновых кислот, и поэтому принципиально невозможно направить этот процесс таким образом, чтобы получить только 2 - или только З -замещенные изомеры. Эти изомеры с чрезвычайной легкостью переходят один в другой, и их разделение стало возможным лишь в последнее время в связи с развитием техники ионообменной хроматографии. [c.215]

    В настоящее время применяют ряд усовершенствованных методов разделения нуклеиновых кислот на фракции из суммарного препарата, полученного описанным методом. Это прежде всего хроматография на геле фосфата кальция, ионообменная хроматография (в качестве адсорбентов используют ДЭАЭ-целлюлозу, ДЭЛЭ-сефадекс и др.), ультрацентрифугирование в градиенте плотности сахарозы, хроматография по сродству на белковых носителях, фильтрация через гели агарозы и сефарозы, гель-электрофорез и др. [c.97]

    Для разделения сложных смесей, содержащих вещества разных классов (основания, нуклеозиды, нуклеотиды и их поли-фосфаты, олигонуклеотиды, включая олигонуклеотиды, различающиеся порядком основании, и т. п.), с которыми имеют дело, например, при выделении кислоторастворнмой части клеток или тканей или при анализе ферментативных гидролизатов нуклеиновых кислот, применяют исключительно ионообменную хроматографию. В случае необходимости дальнейшее фракционирование проводят по многостадийной схеме, с использованием указанных выше методик. При этом наблюдаются те же закономерности, что и при анализе нуклеотидов (см. предыдущий раздел), поэтому в дальнейшем будет приведено лишь несколько примеров. [c.58]

    Кон, впервые сообщивший в 1949—1950 гг. о ионообменной хроматографии осколков нуклеиновых кислот на синтетических обменных смолах [16—18], затем указал, что разделение этих веществ нужно проводить методом анионо- или катионообменной хроматографии [23]. Он применил оба вида хроматографии для разделения пуринов и пиримидинов [16], нуклеозидов и нуклеотидов [17—19, 24, 46]. [c.446]

    Хроматографическое поведение различных продуктов расш епления нуклеиновых кислот в данном растворителе можно предсказать с некоторой точностью из физических данных. Рандерат [73] считает это суш ественным преимуш еством аналитической ионообменной хроматографии в тонком слое по сравнению с распределительной и адсорбционной хроматографией. Рандерат [73] указал на то, что метод ХТС на модифицированной целлюлозе можно также использовать для микропрепаративного разделения. [c.447]

    Недавно две фирмы выпустили на рынок ионообменный порошок для хроматографии в тонком слое. Рандерат [73] использовал продукт фирмы Serva-Entwi klungslabor . Пока нет данных об их особых свойствах ионообменников серии MN и об их применении для фракционирования продуктов расш епления нуклеиновых кислот. [c.447]

    Нуклеиновые кислоты являются одним из наиболее сложных типов биополимеров. В природе встречаются двунитевые и од-нонитевые, циркулярные и сверхспиральные ДНК, рибосомаль-ные, информационные и транспортные РНК, гибриды РНК— ДНК. В процессе исследований приходится иметь дело с синтетическими монотонными или смещанными полинуклеотидами. Нуклеиновые кислоты всех типов являются полианионами даже при нейтральных значениях pH. Все эти факторы позволяют использовать при фракционировании все виды хроматографии ионообменную, адсорбционную, распределительную и гель-проникающую, а также все типы хроматографических сорбентов (см. табл. 38.2). [c.67]

    Макромолекулы, такие, как белки, полисахариды и нуклеиновые кислоты, внутри своих индивидуальных групп отличаются по физико-химическим свойствам лишь незначительно поэтому их выделение, основанное на различиях в этих свойствах, например, с помошью ионообменной хроматографии, гель-фильтрации или электрофореза сопряжено с известными трудностями и требует много времени. Вследствие этого в ходе выделения существенно падает их активность из-за денатурации, расщепления, ферментативного гидролиза и т. п. Одним из наиболее характерных свойств этих биологических макромолекул является их способность обратимо связывать другие вещества. Например, ферменты образуют комплексы с субстратами или ингибиторами, антитела— с антигенами (против которых получены), а нуклеиновые кислоты, такие, как информационная РНК, гибридизуются с комплементарными ДНК и т. д. Образование специфических диссоциирующих комплексов биологических макромолекул служит основой метода их очистки, известного как аффинная хроматография. [c.9]

    Развитие ТСХ шло несколькими путями. Во-первых, всемерно расширялась область ее применения, от эфирных масел и алкалоидов — первых объектов ТСХ, исследователи перешли к анализу полярных соединений (аминокислоты и их производные, феполрл и др.) и, наконец, к высокомолекулярным соединениям — синтетическим полимерам и полимерам природного происхождения — белкам и нуклеиновым кислотам. Неорганические соединения стали также исследоваться методами ТСХ. Во-вторых, расширялся диапазон используемых адсорбентов. Вслед за окисью алюминия и силикагелем нашли применение окись магния, силикат магния, ионообменные кристаллы, целлюлоза и ее ионообменные производные, сефадексы, пористые стекла. Очень интересное направление в развитии ТСХ связано с работами Ванга [5—7], предложившего для хроматографии пористую полиамидную пленку, которая наряду с хорошими гидродинамическими характеристиками обладала необходимой устойчивостью, позволяющей ее использовать многократно. В-третьих, исследовались теоретические аспекты ТСХ, связанные с динамическими характеристиками этого процесса [8—11], особенностями поведения многокомпонентного элюента на хроматографической пластинке, который разделяется на аь -тивном адсорбенте, образуя отдельные зоны разного состава (так называемая нолизональная хроматография) [12, 13] и, наконец, с вопросами [c.134]

    Кянга являете. шестым стереотипным изданием с пятого переработанного и дополненного издания учебника органической химии Б. А. Павлова и А. П. Терентьева. В пятое издание были включены. материалы о свободных радикалах, хелат-ных соединениях, органических перекисях, ионообменных смолах и хроматографии, ферроценах, нуклеиновых кислотах, стероидных гормонах и др. обновлены и переработаны параграфы, касающиеся высокомолекулярных соединений и пластических масс, органических красителей, ядохимикатов, номенклатуры органических соединений и др. [c.2]

    Ионообменное разделение основных пуриновых и пиримидиновых оснований, присутствующих в смесях нуклеиновых кислот, было впервые проведено Кохом [4], использовавшим сродство к катиону этих соединений в растворах кислот. Колонка заполнялась смолой дауэкс 50, а элюентом служила 2 н. соляная кислота. Длительность разделения составила 16 ч. Кох также разделял методом катионообменной хроматографии соответствующие нук-леозиды. Дальнейшие исследования [20] позволили сократить длительность анализа обычных рибонуклеозидов до 1 ч. [c.233]

    В настоящее время при помощи хроматографии производят полное удаление солей из воды (получение дистиллированной воды без перегонки), разделение сложных смесей аминокислот и гидролизатов белков (см. рис. 56), разделение сложных смесей фосфоса-харидов, пуриновых и пиримидиновых оснований (рис. 57), фракционирование белков (цитохрома, рибонуклеазы, инсулина и др.), фракционирование нуклеиновых кислот и различных полимеров, отделение пепсина, трипсина, алкогольдегидрогеназы, очистку антител, выделение стрептомицина, хлортетрациклина, полимиксина и других антибиотиков, а также алкалоидов, гормонов, антигиста-минных веществ. Большой интерес представляет также терапевтическое использование ионообменных смол для регулирования состава ионной среды в желудочно-кишечном тракте и для диагностических целей. [c.116]


Смотреть страницы где упоминается термин Нуклеиновые кислоты ионообменная хроматография: [c.176]    [c.100]    [c.286]    [c.451]    [c.40]    [c.58]    [c.59]    [c.58]    [c.7]    [c.218]   
Методы общей бактериологии Т.3 (1984) -- [ c.197 , c.198 ]




ПОИСК





Смотрите так же термины и статьи:

Ионообменная хроматографи

Нуклеиновые кислоты

Хроматография ионообменная



© 2025 chem21.info Реклама на сайте