Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

углеводородов с прямыми цепями

    Обезболивающее действие различных газообразных углеводородов различно. Этилен и ацетилен действуют довольно сильно — сильнее, чем предельные углеводороды с прямой цепью. Однако самым сильным обезболивающим действием обладает циклопропан. В медицине он был впервые применен еще в 1929 году и используется до сих пор. [c.55]

    Большое количество парафиновых углеводородов с прямой цепью п слегка разветвленных наблюдается также в высококипящих фракциях нефти. Керосиновые и газойлевые фракции обычно содержат значительное количество нормальных парафиновых углеводородов (табл. 1). Твердый парафин, выделенный из тяжелых газойлевых и масляных фракций, состоит преимущественно из нормальных парафиновых углеводородов. [c.22]


    Допустимое содержание нормальных парафиновых углеводородов в топливах ограничивается главным образом температурой замерзания (от —40 до —60° С). Изопарафиновые углеводороды с сильно разветвленной структурой обладают несколько большей объемной теплотой сгорания, чем углеводороды с прямой цепью того же молекулярного веса, и более низкой температурой засты  [c.16]

    Обычно цис-изомеры алкенов имеют более высокие температуры кипения, чем транс-изомеры. Олефины имеют более высокие октановые числа, чем соответствующие метановые углеводороды с прямой цепью ( -гептен и 3-гептен имеют октановые числа, соответственно равные 65 и 95). [c.79]

    НИЯ 40—102°), изученных Россини ы его сотрудниками. В общем в легких керосинах не наблюдается преобладания парафиновых углеводородов с прямой цепью, изопарафиновых углеводородов, циклопентанов и цикло-гексанов. Однако керосин из мичиганской нефти содержит преимущественно парафиновые углеводороды с прямой цепью, а керосин из нефти месторождения Винклер очень богат изопарафиновыми углеводородами. Следует иметь в виду, что такое распределение четырех классов углеводородов было установлено для узких керосиновых фракций. Это не означает, что в более тян<елых бензиновых и газойлевых фракциях преобладают эти же типы углеводородов. [c.26]

    А диаметром может быть использован для сепарации нормальных парафинов от разветвленных или циклических углеводородов поры в этом случае велики настолько, чтобы пропустить углеводороды с прямыми цепями, но не в другие структуры [18]. О сепарации паров двуокиси углерода, ацетилена и ацетона от этилена см. [19]. О фракционировании ароматических углеводородов см. [20].О методах определения гранулометрического анализа лор и результатах его для некоторых адсорбентов см. [21—22]. [c.263]

    Эти несколько отрывочные наблюдения позволяют сделать некоторые выводы если топливо состоит в основном из парафиновых углеводородов с прямой цепью, то окисление в период, предшествующий воспламенению, начинается нри невысокой температуре, проходит бурно и сопровождается накоплением промежуточных продуктов, способствующих детонации. Топливо, содержащее вещества изомерного строения, подвергается окислению перед воспламенением только при сравнительно высоких температурах и окисляется оно много медленнее. Относительно небольшое количество продуктов окисления соберется к моменту, когда большая часть топлива уже будет уничтожена в результате нормального горения по этой причине любой взрыв, который произойдет с топливом разветвленного строения, не будет сильным. [c.408]


    Для химического превращения углеводородов часто необходимы высокие температуры, давление, катализаторы пли другие методы воздействия. Особой устойчивостью обладают углеводороды с прямой цепью. [c.13]

    Большое внимание уделено получению наиболее ценных топлив, в частности реактивного топлива. Эта задача достаточно сложна при переработке сланцевых смол, которые содержат много углеводородов с прямыми цепями. Между тем для обеспечения необходимой низкой температуры застывания (—60 °С) должна быть осуществлена глубокая изомеризация этих углеводородов, которая затрудняется в присутствии азотистых соединений. Только после тщательного изучения этих взаимозависимостей удалось предотвращать отравление катализаторов изомеризации и расщепления и получать реак- [c.46]

    При взаимодействии диенов с олефинами (диеновый синтез) происходят циклизация углеводородов с прямой цепью и ароматизация образующихся циклоолефинов  [c.38]

    Ранее уже говорилось, что прп пиролизе нефтепродуктов с щ лыо получения низших олефинов происходит ароматизация углеводородов с прямой цепью. В результате этого в жидких продук- [c.60]

    Очевидно, что подавлению хлорирования способствует избыток сернистого ангидрида по отношению к хлору. В случае углеводородов с прямой цепью уже при мольном отношении ЗОг С1г= 1,1 1 доля реакции хлорирования составляет 3—5%, что вполне приемлемо для промышленной практики. Олефины и ароматические уг- [c.337]

    Для углеводородов с прямой цепью доля побочного процесса окисления незначительна, но у изопарафинов и ароматических соединений с боковыми цепями она возрастает. Это объясняется тем, что реакционная способность различных атомов водорода при сульфоокислении изменяется так же, как для сульфохлорирования втор->перв->трет , а окисление, наоборот, быстрее всего происходит при третичном атоме углерода. Поэтому изопарафины, а также олее )ины и ароматические углеводороды препятствуют сульфоокислению. В случае w-парафинов 12— jg, как при сульфохлорировании, образуется смесь с равновероятным расположением сульфокислотной группы при всех вторичных атомах углерода. [c.341]

    В настоящее время парафиновые углеводороды с прямой цепью выделяют из нефти и ее фракций при помощи мочевины. Как наблюдал впервые в Германии Ф. Бенген [10], мочевина (карбамид) дает с к-парафинами кристаллические аддукты, в то время как разветвленные парафиновые углеводороды, а также нафтеновые и ароматические этой способностью не обладают. Эти аддукты могут быть отделены от жидкой фазы фильтрованием или центрифугированием, промыты подходящим растворителем, а затем разрушены горячей водой. В результате отделяется маслообразная смесь парафиновых углеводородов нормального строения. Так как аддукты образуются только с нормальными парафинами, а изопарафины, имеющие в общем меньшее значение для дальнейшей химической переработки, одновременно отделяются, то этот новый способ с точки зрения химической переработки содержащихся в нефтях парафинов приобретает еще большее значение. [c.20]

    Парафинистый Тип жидкого нефтепродукта, полученного из парафинистой нефти, содержащей большую долю насыщенных углеводородов с прямыми цепями. Часто создает проблему низкотемпературной текучести. [c.10]

    Парафиновые углеводороды с прямой цепью имеют малый период запаздывания воспламенения, сгорают плавно, без стука в цилиндре, и для их воспламенения не требуется высокой степени сжатия. [c.645]

    Начиная с Ск — J7 метановые углеводороды с прямой цепь с твердые тела (см. табл.). [c.44]

    Температуры плавления метановых углеводородов с прямой цепью повышаются с увеличением числа атомов углерода в молекуле. При переходе от углеводорода с нечетным числом атомов углерода к углеводороду с четным числом атомов углерода увеличе- [c.44]

    Из бензиновых фракций метановые углеводороды с прямой цепью можно выделить с помощью молекулярных сит. Молекуляр-ное сито 5А избирательно поглощает только парафины нормального строения, что позволяет проводить количественное определение этих углеводородов в бензинах. [c.57]

    Способность масел сохранять подвижность при пониженных температурах определяется их химическим составом. Наличие высококипящих веществ, в первую очередь, парафиновых углеводородов с прямой цепью обусловливает застывание масел при понижении температуры. Подвижность масла теряется вследствие образования кристаллической структуры твердых углеводородов масла. Понизить температуру застывания масел наряду с удалением высокоплавких углеводородов технологическими приемами можно введением в них депрессорных присадок. При этом снижение температуры застывания достигается благодаря модифицированию кристаллической структуры твердых углеводородов с сохранением подвижности масла. [c.457]

    Интервал кипения крекинг-дистиллята соответствует температурам кипения насыщенных и ненасыщенных Сз—С17-углеводородов с прямой цепью. [c.135]


    Насыщенные углеводороды с прямой цепью ("нормальные") и число их возможных изомеров [c.20]

    Для технических целей наиболее нодходяш,им исходным материалом может служить гидрированный при высоком давлении когазин II синтеза Фишера-Тропша с кобальтовым катализатором. Гидрирование проводится примерно при 320° и 200 ат давления водорода над сульфидным никель-вольфрамовым катализатором. При этом получают с 99%-ным выходом смесь бесцветных вполне насыщенных углеводородов, очень мало разветвленных, так называемые меназины. При сульфохлорировании получается смесь всех теоретически возможных моносульфохлорпдов. Если в качестве исходного материала применяется смесь парафиновых углеводородов с прямой цепью и четным числом углеродных атомов в цени, то образуется равное количество всех возможных вторичных сульфохлоридов, так как сульфохлорирование любой из метиленовых групп одинаково вероятно. Первичных сульфохлоридов получается очень мало, во-первых, потому, что реакционная способность водородных атомов метильных групп меньше, чем водородных атомов метиленовых групп, а во-вторых, потому, что с увеличением длины молекулы парафиновых углеводородов число метиленовых групп значительно увеличивается. [c.138]

    Особыми преимуществами для окисления обладает парафиновое сырье, выделенное из продуктов синтеза по Фишеру—Тропшу, проводимого под средним давлением, поскольку оно в большей степени содержит углеводороды с прямой цепью, чем продукт, полученный при нормальном давлении. В результате жирные кислоты, в которые окисляют это сырье, имеют меньше примесей с разветвленной структурой, что очень важно, так как нежелательный, иногда резкий запах синтетического мыла главным образом зависит от присутствия кислот изостроения. Все же это сырье еще содержит до 15—20% углеводородов изостроения, тогда как в гаче, полученном при нормальном давлении, их находится 30—40 %. [c.445]

    Все попытки заменить галоид в монохлоридах, получаемых прямым (Лорированием парафиновых углеводородов с прямой цепью, на гидроксильную или другие функциональные группы оказались с технической точки зрения совершенно неудовлетворительными. При этом особый интерес представляли бы такие высшие углеводороды, как когазин I, когазин И, или очищенные нефтяные фракции. Однако промышленное осуществление таких превращении практически невозможно вследствие происходящего при этом чрезвычайно энергичного образования олефинов. [c.532]

    Ниже приведено число изомерных продуктов ди- и тризамещения, которые можно теоретически получить иэ углеводородов с прямой цепью. [c.542]

    В табл. 8 приведены данные по раснределению парафиновых углеводородов с прямой цепью и разветвленных, а также циклопентанов и цикло-гексанов в некоторых типичиых легких керосинах (с пределами выкипа- [c.25]

    Исследование углеводородов с прямой цепью методом инфракрасной спектроскопии показало, что непредельные соединения представляют собой олефины с двойной связью на конце, а также с двойной связью внутри цепи в траке-положении. Сопряженные диолефины не были обнаружены. Достаточное согласие, полученное для значений, рассчитанных из данных по инфракрасной спектроскопии для суммы олефинов с двойной связью на конце и с двойной связью внутри цепи в транс-положении, и значений, рассчитанных из бромных чисел для всех олефинов, указывает, что другие типы, как несопряженные диолефины или олефины с двойной связью внутри цепи в цис-положошш, присутствуют только в очень малых количествах. Соединения такого типа не могут быть обнаружены методом инфракрасной спектроскопхш. Эти результаты указывают на неполноту достижения термодинамического равновесия, хотя олефины с двойной связью внутри цепи в цис- 0 траис-полотениы присутствуют приблизительно н равных количествах. [c.66]

    Допускают, что реакция дегидрирования является первоначальной реакцией парафинов с серой затем сероводород освобождается, увеличивая количество образованных олефинов. Механизм реакции точно не установлен. Сульфирование ускоряется с увеличением молекулярного веса парафинов разветвленные парафины и циклопарафины сульфуризуются быстрее, чем соответствующие углеводороды с прямой цепью [723]. [c.148]

    На групповой состав углеводородов синтеза в сильной степени влияют вторичные реакции. Олефины, образующиеся при синтезе, могут тотчас же гидрироваться в насыщенные углеводороды. Катализатор синтеза одновременно вызывает смещение двойной связи от крайнего атома С к середине молекулы. При этом цис-и тракс-изомеры образуются в почти эквимолекулярных количествах [368, 369, 379, 381, 382]. Примерно 40—50% об. от фракции Се—С полученной над железным катализатором, составляют олефины с прямой ценью [383]. В незначительной степени образуются также нафтеновые и ароматические углеводороды. Парафиновые углеводороды 04—0 представлены всеми возможными моно-и диметилизомерными структурами, за исключением неонентана. С ростом молекулярного веса доля неразветвленных молекул постепенно падает, но даже во фракции Сц, содержится еще очень много углеводородов с прямой цепью. [c.595]

    Химическая стабильность бензинов определяется составом и строением углеводородов [8]. Парафиновые, нафтеновые и ароматические углеводороды в условиях хранения и транспортирования окисляются относительно медленно. Наибольшей склонностью к окислению обладают непредельные углеводороды. Способность последних взаимодействовать с кислородом воздуха зависит от их строения, числа двойных связей и их расположения. Менее стабильными являются диолефиновые углеводороды с сопряженными двойными связями и MOHO- и диолефиновые углеводороды, содержащие бензольное кольцо. Олефиновые углеводороды с двойной связью в конце углеродной цепи окисляются труднее, чем олефины с двойной связью в середине цепи. Циклические олефины окисляются легче, чем олефины с открытой цепью, а олефины с разветвленной цепью окисляются легче, чем аналогичные углеводороды с прямой цепью. [c.24]

    Наибольшей адсорбируемостью на активированном угле обладают парафиновые углеводороды нормального строения, которые характеризуются неравномерным распределением сил межмолекулярного взаимодействия. Наибольшее значение имеют силы, направленные перпендикулярно оси молекул нормальных парафинов. Такой характер распределения сил взаимодействия, а также значительные дисперсионные молекулярные силы в направлении, перпендикулярном оси углеводородной цепи, обусловливают ряд явлений, свойственных углеводородам с прямыми цепями способность ориентироваться параллельно Друг другу с образованием жидких кристаллов и совместная кристаллизация углеводородов разных гомологических рядов. Высказана [4, 5] гипотеза, согласно которой наибольшая адсор бируемость нормальных парафиновых углеводородов на угле обусловлена их взаимодействием с поверхностью угля под влиянием тех же дисперсионных сил, направленных перпендикулярно к оси углеводородной цепи. [c.261]

    Кроме нормальных парафинов на активированиом угле могут адсорбироваться изопарафины, имеющие прямой участок в цепи, нафтеновые и ароматические углеводороды с боковыми цепями нормального строения, однако их адоорбируемость значительно ниже. Различие в адсорбируемости на угле парафинов нормального строения, с одной стороны, и изопарафинов и циклических углеводородов с прямыми цепями, с другой стороны, объясняется стерическим фактором, появляющимся из-за наличия разветвленности или колец в молекулах углеводородов. Стерический фактор, по-(видвмому, оказывает большее влияние при наличии колец, чем при разветвленности цепей, поэтому наиболее слабо на активированном угле адсорбируются нa фтeны, наиболее прочно — нормальные парафины, а изопарафины занимают промежуточное положение. Наличие длинных боковых -цепей у нафтеновых углеводородов приближает их по адсорбционной способности к парафинам нормального строения, а адсорбционная способность изопарафинов зависит от -степени разветвленности нх молекул, причем при сильной разветвленности эти углеводороды по адсорбируемости приближаются к нафтенам. Поэтому на активированном угле нельзя полностью отделить нафтеновые и изопарафиновые углеводороды от парафинов нормального строения, а можно получить фракции, обогащенные нафтеновы ми, изопарафиновыми и нормальными парафиновыми углеводородами. [c.263]

    Диеновые углеводороды с прямой цепью гидрируются быстрее олефинов. В зависимости от строения диена водород может присоединяться вначале в 1,4-положение или одновременно в 1,4- и 1,2-положення, причем часто удается остановить реакцию на этой стадии. [c.497]

    Если Б карбюраторном двигателе восп.таменение горючей смесп является принудительным, то в дизельном двигателе горючая смесь топлива и воздуха самовоспламеняется в сжатый нагретый воздух (давление ЗО кгс1с.и , температура 550—600°) впрыски- тся топливо. Чем легче самовоспламеняется топливо, Т0м легче запуск двигателя, те 1 равномернее нарастание давления при его сгорании. Наиболее желательным компоненто.м дизельных топлив являются парафиновые углеводороды с прямой цепью, так как они легче воспламеняются. За эталон хорошего дизельного топлива принят цетан igHa , цетановое число которого принято равным 100, Меньшим цетановым числом обладают изопарафины и нафтены, еще меньшим — ароматические углеводороды. Цетановое число а-метилнафталина принято равным нулю, [c.55]

    В реактивных топливах метановые углеводороды с прямой цепью должны отсутствовать, так как их кристаллизация при поии- [c.55]

    Для выделения метановых углеводородов нормального строения нз нафтено-парафиновой фракции керосина 170 г этой фракции, 70 г метанола, 100 г мочевины перемешивают в течение получаса при комнатной температуре. Образовавшийся комплекс н-нарафинов с мочевиной отфильтровывают н после разршения комплекса горячей водой получают н-парафнны. Следует отметить, что н-парафиновые углеводороды, выделенные с помощью мочевины, могут содержать примеси слаборазветвленных парафиновых углеводородов, так как мочевина может образовать комплекс с изопарафинами, имеющими пе-разветвленную цепь, состоящую нз восьми и более углеродных атомов. Примесь разветвленных углеводородов можно удалить действием на углеводороды хлорсульфоновой кислоты, которая реагирует с изопарафинамн по третичному атому углерода, не затрагивая при этом углеводороды с прямой цепью. [c.57]

    Дизельные топлива оцениваются по температуре их воспламенения и характеризуются цетановым числом. Максимальный показатель воспламеняемости, условно принятый равным 100, имеет цетаи — насыщенный углеводород с прямой цепью и углеродным числом С16, минимальный показатель, принятый равным О,— ненасыщенный эквивалент цетана. [c.332]

    Парафиновые углеводороды нормального строения и другие комплексообразующие соединения можно извлекать карбамидом не только из первичного сырья (различные фракции прямой перегонки), но и из сырья вторичного происхождения. Так, Л. А. Гухман и Н. С. Лисицина [93] доказали возможность извлечения углеводородов с прямой цепью из различных продуктов термической переработки нефти (коксования, термического и каталитического крекинга). [c.47]

    Разработан способ [262] удаления алифатических углеводородов с разветвленной ценью из их смеси с углеводородами с прямой цепью пропусканием этой смеси через слой пористых твердых частиц продукта, полученного конденсацией алифатического альдегида с карбамидом и тиокарбамидом. [c.185]

    Образование карбамидного комплекса с целью фракционирования было применено Шленком [257] для разделения парафинов, входящих в состав смазочных масел. Подавая все необходимое количество карбамида двумя порциями, он подучил две фракции парафинов с температурами застывания 46 и 62° С. В связи с тем, что при однократной обработке избытком карбамида смеси технических парафинов нельзя отделить достаточно селективно парафиновые углеводороды с прямой цепью от остальных углеводородов, Ломмерцхеймом [296] было проведено разделение технического парафина осаждением комплекса при добавлении небольших порций карбамида. В качестве сырья использовали парафин, выделенный из веретенного и машинного масел, и парафин других сортов. В качестве растворителей применяли для карбамида — метанол, для технического парафина — бензин с большим содержанием изопарафиновых углеводородов. К бензиновому раствору технического парафина (с концентрацией не более 7%) отдельными порциями прибавляли насыщенный раствор карбамида в метаноле. После удаления образовавшегося комплекса добавляли новую порцию раствора карбамида. По описанной методике можно разделить технический парафин на парафиновые углеводороды с прямой цепью и па углеводороды различной степени разветвлен-ности. [c.201]

    Однако несмотря на то, что фракционирование углеводородов с прямой цепью, основанное на методах карбамидной депарафинизации, представляет значительный интерес, эти работы не получили пока развитпя в промышленном масштабе, что объясняется следуюш,ими технологическими трудностями. Во-первых, для осуществления фракционного разделения н-парафинов, основанного, согласно цитированным работам [169, 257, 296, 297], на введении в сырье небольшой порции карбамида (или его раствора), требуется многостадийный технологический процесс с включением в него таких операций, как образование комплекса, отделение образовавшегося комплекса от непрореагировавшей части сырья, промывка комплекса, его сушка, разрушение этого комплекса и отделение н-парафинов. [c.204]

    J — разветвленные алифатические углеводороды 2 — алифатические углеводороды с прямыми цепями, сложные эфиры и моноциклические ароматические углеводороды 3 — алифатические кислоты и спирты / — полициклические (особенно конденсированные) ароматические углеводороды S — эфиры многоатомных спиртов б — полиси-локсаны. [c.405]

    Вплоть до последнего времени не было оснований считать, что метод производства многоядерных ароматических углеводородов из нефти может конкурировать с методом их получения из каменноугольной смолы. Однако в настоящее время с помощью процесса катарол (стр. 110) нефтяные углеводороды с прямой цепью превращают в смесь продуктов, напоминающую по составу каменноугольную смолу. Некоторые нефтяные компании предполагают выделять нафталин и метилнафталины из тяжелых остатков каталитического крекинга. При перегонке их будут отбирать в интервале от верхней границы кипения бензина и до нижней границы кипения газойля [56]. [c.268]


Смотреть страницы где упоминается термин углеводородов с прямыми цепями: [c.16]    [c.56]    [c.282]    [c.129]    [c.44]    [c.57]    [c.69]   
Углеводороды нефти (1957) -- [ c.0 ]




ПОИСК







© 2025 chem21.info Реклама на сайте