Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Разделение противоточное

    Уравнения (6.16) и (6.19) позволяют рассчитать высоту зоны очистки, обеспечивающую заданную степень разделения противоточной колонны. Из приведенного выше общего решения можно получить ряд частных зависимостей. Так, если в исходном уравнении (6.12) пренебречь третьим членом, приняв (1 С 1(1г = 0, то получают зависимости, предложенные в работе [236]. При работе кристаллизатора без отбора (Р = 0), из общего решения получают зависимости, предложенные в работе [242]. [c.199]


    Разделение противоточной экстракцией смеси, состоящей из 60 вес. % компонента у и 40 вес. % компонента /. Среднее фазовое отношение 2,0 (8 = 1,60 =0,15) [c.136]

    Пусть имеем (рис. 24, а) противоточный массообменный аппарат, условно разделенный на части, достаточные для установления равновесия в каждой из них, т. е. каждая часть соответствует теоретической тарелке. Из диаграммы х—у (рис. 24, б) видно, что массопередача осуществляется из газовой фазы в жидкую. Проследим за изменением концентрации целевого [c.77]

    На рис. IX-11 изображено изменение концентрации экстрагируемого компонента в системе двух несмешивающихся жидкостей для процесса, проводимого в трехступенчатом противоточном каскаде, и процесса с добавлением порции чистого растворителя после каждой ступени разделения рафината К - и экстракта Е (лабораторный способ). [c.363]

    Термин ступень , примененный выше, относится к одной законченной операции смешения и разделения, при которой масло и растворитель достигают фазового равновесия. При противоточной экстракции эффективность экстрактора измеряется эквивалентным числом ступеней. Как правило, чем больше число ступеней в экстракционной системе, тем более избирателен процесс экстракции. Однако существенной разницы между пятью и восемью ступенями при очистке смазочных масел не наблюдается. Промышленные экстракционные колонны обычно эквивалентны трем или большему числу ступеней экстракции. [c.194]

    Проходят стадию опытной проверки новые методы разделения углеводородов метод противоточного распределения, метод разделения при помощи непористых мембран и др. [c.18]

    Противоточную промывку сгущенной суспензии можно выполнить на установке, состоящей из нескольких ступеней, причем каждая ступень включает смеситель для промывной жидкости и сгущенной суспензии и отстойник или гидроциклон для разделения смеси [255]. При некоторых обстоятельствах так можно промыть и полученный на фильтре осадок, который на ступенях промывки переходит в сгущенную суспензию. [c.244]

    В зависимости от технологического режима и качественной характеристики сырья содержание пропана в фазах рефлюкса и асфальтовой фазе меняются довольно в узких пределах. В среднем следует принять концентрацию пропана в фазе рефлюкса равной 0,6% (масс.), в асфальтовых фазах II и I ступеней разделения 0,55 и 0,50% (масс.) соответственно. Расчет противоточной экстракции осуществляется по описанной выше методике от ступени к ступени. После каждого единичного узла экстракции определяют состав отходящих потоков. Найденные составы используют для расчета последующих ступеней разделения. Расчет продолжают до тех пор, пока не установится устойчивое равновесие, т. е. количество вводимых в систему продуктов будет равно количеству выводимых. [c.231]


    Расчеты фазовых переходов по седьмому ряду противоточной схемы показали, что в процессе разделения наступило состояние, близкое к равновесному. Материальный баланс разделения по седьмому ряду представлен на рис. 4.6. [c.275]

    Расход растворителя при противоточной экстракции ограничивается некоторыми пределами и колеблется между минимумом и максимумом. При минимальном расходе вне одной из ступеней достигается состояние равновесия, и число ступеней растет до бесконечности. При максимальном расходе исходный раствор полностью растворяется в растворителе, и эффект разделения отсутствует. В обоих случаях проведение экстракции становится невозможным. [c.145]

    Фракционированная экстракция основывается на том же самом принципе противоточно-перекрестного движения молекул целевого компонента между двумя фазами, что и фракционированная дистилляция. Между этими процессами можно провести далеко идущую аналогию [33]. В обоих процессах мы имеем дело с двумя фазами при дистилляции—с жидкой и парообразной, при экстракции—с двумя жидкими фазами, которые образуют не смешивающиеся друг с другом растворители. Обе фазы совершают замкнутые циклы. В состоянии равновесия компоненты исходного раствора присутствуют в обеих фазах в разных концентрациях. При дистилляции это происходит вследствие различных давлений пара компонентов, при экстракции—вследствие неодинаковой растворимости. Фазы направляются противотоком и во время движения относительно друг друга приводятся в соприкосновение либо ступенчато, либо непрерывно. Во время контакта фаз происходит—в поперечном направлении к основному движению—обмен компонентами, доходящий в соответствующих условиях до состояния равновесия или приближающийся к нему. Применяя соответствующее число ступеней или длину пути, можно добиться любой глубины обмена, а вместе с ним и разделения компонентов исходного раствора. [c.189]

    Выделяющиеся при высоких температурах смолы и высокомолекулярные ароматические углеводороды способны извлекать из раствора пропана благодаря влиянию дисперсионных сил остающиеся в нем нежелательные компоненты. В результате в верхней части деасфальтизационной колонны совмещаются процессы фракционирующего разделения пропаном и селективной экстракции избирательным растворителем (смолы, полициклические ароматические углеводороды). Этот процесс можно назвать ректификационной экстракцией . Фракционирование сырья растворителями, находящимися близко к критическому состоянию, имеет свои особенности по сравнению с противоточным экстракционным процессом при помощи избирательных растворителей. Главное различие заключается в том, что при существовании температурного градиента в обычной многоступенчатой экстракционной колонне самопроизвольно возникает внутренняя циркуляция только той жидкой фазы, которая подается на. более холодном [c.68]

    I приближение. Задаемся Ох = 1. По формуле (1.101) для противоточной секции, учитывая, что холодный поток разделен на две равные части, а потому для каждой секции со = 0,35, находим  [c.40]

    Противоточная экстракция обеспечивает хорошее разделение при высоком выходе рафината, в то время как при многократной экстракции выход рафината высокого качества невелик. Однократную экстракцию используют для грубого разделения смеси. [c.308]

    Часто разделение проводят в две стадии сначала суспензию для отделения большей части жидкой фазы сгущают, а затем для обезвоживания осадка его фильтруют, промывают, отжимают и отправляют на последующие операции. Кроме этого сгустители применяют при противоточной промывке осадков, для улавливания [c.208]

    Сушилка (рис. 97) состоит из туннеля /, длиной 10—70 м, в который периодически подают многополочные вагонетки 4, загруженные влажным материалом. Материал обычно засыпают в противни с толщиной засыпки 30—50 мм. Вагонетки располагают вплотную друг за другом и перемещают с помощью специального толкателя 8. Как правило, туннель разделен на зоны, работающие в определенном тепловом режиме. В зависимости от требований в туннельных сушилках можно осуществлять прямоточную или противоточную сушку. Для реализации поперечной циркуляции теплового агента необходима установка осевых вентиляторов, обладающих высокой производительностью. Скорость [c.248]

    Противоточная ВТ (с возможностью разделения на охлажденный и нагретый потоки) [c.12]

    Бланд [19а] определил также кривые ультрафиолетового и инфракрасного поглощения препаратов лигнина, выделенных из Eu alyptus regnans, разделенных противоточным распределением. Результаты его исследований показали сходство общих структур эвкалиптового и елового лигнинов. [c.251]

    В циклонных аппаратах выделение относительно более тяжелых частиц из сплошной фазы происходит за счет центробежной силы, которая создается при вращательном движении дисперсии. Аппараты этого типа применяются для выделения частиц из газовых дисперсий (аэроциклоны, или просто циклоны) и из суспензий (гидроциклоны). В одном корпусе часто устанавливают большое число аэро- или гидроциклонов. Такие аппараты называются -батарейными циклонами, мультициклонами, радиклонами и т. д. Имеется значительное число конструктивных модификаций циклонов, различающихся по направлению движения продуктов разделения (противоточные и прямоточные), по конструкции закручивающих устройств (с тангенциальным вводом, винтовые, розеточные), по конструкции корпуса (цилиндрические, конические, цилиндро-конические) и по другим признакам. На рис. III. 23 приведена типичная конструкция противоточного циклона с тангенциальным вводом, [c.236]


    Во второй части рассматриваются аффинная, тонкослойная и газовая хро матография, разделение противоточным и электромиграциовным иетодаии. [c.4]

    Для интенсификации процесса адсорбции в псевдоожиженном слое применяются адсорберы ступенчато-противо-точного типа (рис. 134, б) в которых осуществляется противоток адсорбента и разделяемой смеси. Стуг[0нчато-противоточный адсорбер разделен перфорированными решетками 1 на ряд секций, причем на каждой решетке создается кипящий слой. Газ подается снизу через штуцер 2, а адсорбент сверху через стояк 3. Газ поднимается через газораспределительные отверстия решеток, создавая на них кипящие слои. Псевдоожиженный адсорбент перетекает с тарелки на тарелку по переточным трубам 6. Применяемая конструкция нереточных труб обеспечивает постоянство уровня адсорбента на тарелках. [c.260]

    Термодиффузионный эффект настолько мал, что для достижения эффективных результатов при разделении необходимо использовать принцип мультипликации . Для этой цели Клузиус и Дикел [8] разработали устройство, принцип действия которого основан на сочетании термодиффузии и принципа противоточного конвекционного потока. Ш 1дкая смесь помещается в очень узкую щель (около 0,3 мм) между двумя вертикальными стенками, обычно цилиндрической формы, которые поддерживаются при различных температурах. Разность плотностей жидкости ва горячей и на холодной стенках вызывает движение смеси вверх на горячей и вниз на холодной стенке. Как и в других процессах фракционировки, основанных на принципе противотока, например дистилляция, одновременность установления равновесия (или стационарного состояния) перпендикулярно к направлению массопередачи и противотоку массопередачи повышает эффективность разделения. Процесс разделения начинается на обоих концах колонки и перемещается к ео середине. [c.392]

    Удаление разрушенного катализатора осуществляют путем водной экстракции. Для этого процесса разработано специальное оборудование, в котором происходит смешение высоковязких растворов полимера с водой, разделение полученной эмульсии, экстракция в прямоточно-противоточных системах. Отмывка полиме-ризата от катализатора проводится непосредственно после его разрушения, так как при хранении неотмытого раствора развиваются процессы структурирования полимера. [c.221]

    Ректификационные установки служат для разделения жидких однородных смесей на составляющие вещества или группы составляющих веществ в результате противоточного тепло- и массообме-на жидкой смеси и ларо1а этой смеси. Процесс ректификации можно осуществить в том случае, когда кипящая смесь выделяет пары, содержащие те же компоненты, но в другой пропорции обычно в ларах процент содержания компонентов, кипящих прн данном давлении при более низкой температуре (легкоктящие компоненты), больше, чем в жидкой смеси. Ректификация может осуществляться в ректификационных колоннах периодического я непрерывного действия. Типы и конструкции колонных аппаратов приводят ся в главе третьей. [c.29]

    В противоточно-центробежиой зоне разделения (рис. 7.18, б) газ движется по спирали. Мелкие частицы, для которых аэродинамическая сила газа Р больше це1ггробежной силы Рц, движутся к центру, а крупные —к периферии. Условие равновесия частиц граничного размера Р,, --- Р нли [c.224]

    Наименьшей ячейкой мембранного массообменного устройства является мембранный элемент, состоящий из напбрного и дренажного каналов, разделенных селективно-проницаемой перегородкой. Тип элемента определяется геометрией разделяющей поверхности (плоские, рулонные, трубчатые, волоконные) и организацией движения потоков газа (прямо-и противоточные, с перекрестным током, с рециклом разделяемой смеси и т. д.). Напорный канал элемента плоского типа образован селективно-проницаемыми стенками, ориентированными горизонтально или вертикально. В элементах трубчатого типа напорный канал ограничен внутренней поверхностью одной трубки или наружной поверхностью нескольких соседних трубок. Разделительная перегородка обычно состоит из собственно мембраны, пористой подложки и конструктивных деталей, обеспечивающих механическую прочность и жесткость. Массовые потоки в мембране и пористой подложке ориентированы по нормали к разделяющей поверхности. [c.10]

    Влияние способа организации потоков в напорном и дренажном каналах мембранного модуля многими исследователями изучалось на примере разделения воздуха [5—7]. Так, проведен [5] расчет процесса разделения воздуха ( 1 м /с) на мембране толщиной 25 мкм, коэффициент проницаемости которой по кислороду принят равным 169-10 моль-м/(м -с-Па). В расчетах коэффициент проницаемости азота через мембрану изменяли таким образом, чтобы идеальный фактор разделения составлял 2, 5 и 10. Величина Рг=Р21Р составляла 0,2, причем Рг и Р принимали равными соответственно 0,1 и 0,5 МПа. Результаты расчетов представлены на рис. 5.7 и 5.8. Как и следовало ожидать, наиболее полное разделение газовой смеси можно получить, применяя противоточную схему [c.170]

    Требуемая мембранная поверхность при противоточной и поперечноточной схемах ниже, чем при других вариантах организации процесса это особенно заметно при разделении на высокоселективных мембранах. В случае низкоселективных мембран ( =2,0) требуемая поверхность мембран для всех вариантов процесса примерно одинакова. [c.171]

    При расчете противоточного процесса деасфальтизацин используем продукты разделения гудрона туймазинской нефти фракция 1 — парафино-нафтеновая, фракция 2 — легкая ароматика, фракция 3 — средняя ароматика, фракция 4 — тяжелая ароматика, фракция 5 — коагулят. Характеристика фракций этого гудрона представлена в табл. 4.2. [c.231]

    Для каждой из указанных выше систем (с целью получения оптимальных условий по извлечению и разделению комионен-тов) было рассчитано от 40 до 180 различных вариантов противоточной экстракции. [c.78]

    Из противоточных тарелок в настоящее время наиболее широко распространена решетчатая тарелка с параллельным расположением щелей в плоском листе [149], Значительно реже применяют в США решетчатые тарелки из листовой стали. Опыты, проведенные на колоннах диаметром 1,5 с решетчатыми тарелками турбогрид , которые запатентованы фирмой Shell Development Со,, показали, что их производительность более высокая по сравнению с колпачковыми тарелками перепад давления составил /з перепада давления колпачковых тарелок при производительности 60—100% одинаковая эффективность разделения на единицу высоты колонны. Широко применяют в химической промышленности США ситчатые волнистые тарелки и значительно реже — ситчатые плоские тарелки [150, 151], За последние годы в химическую промышленность США внедряются трубчатые тарелки. [c.131]

    Достоинство противоточных тарелок—простота конструкции и высокая производительность особенно при повышенных нагрузках по жидкости, В оптимальных условиях работы противоточные тарелки обеспечивают также сравнительно высокую эффективность разделения, Большим недостатком противоточных решетчатых тарелок является неупорядоченные места стока жидкости с тарелок, что в колоннах большого диаметра молсет привести к заметному снилсению эффективности тарелок и, следовательно, к еще большему сокращению диапазона устойчивой их работы, [c.131]

    Укажем еще на два метода расчета числа теоретических ступеней, которые не зависят от конструктивных особенностей колонны и поэтому могут применяться как для тарельчатых, так и для насадочных колонн, а также для колонн с другими видами насадок. Меркель [167] разработал метод, в соответствии с которым процессы противоточного массообмена представляют в энталь-пийной диаграмме Н—х—г/. По ней находят изменение состава жидкости и пара, их количества, а также подводимую и отводимую теплоту (рис. 80). К сожалению, получено незначительное число энтальпийных диаграмм, и применение этого метода ограничивается небольшим числом смесей. Некоторые сведения по этому методу можно найти в литературе [73, 75, 103]. Биттер [261 ] дал сводку различных приемов вычислений для определения числа теоретических ступеней разделения при ректификации бинарных смесей эти приемы основаны только на уравнениях рабочих линий и служат основой для графических методов решения с применением энтальпийной диаграммы. [c.126]

    Основное отличие состоит в том, что в роторных колоннах жидкая смесь испаряется в кубе и массообмен происходит при противоточном движении паровой и жидкой фаз, за счет чего обеспечивается высокая степень разделения. Однако как в роторных испарителях, так и в роторных ректификационных колоннах с помощью ротора обеспечивается циркуляция пленки жидкости и тем самым предотвращается обеднение ее поверхности низкокипящим компонентом. Проблемы механической турбулизации тонких слоев жидкости обсуждены в работе Яносфпа [134]. [c.278]

    В отличие от рассмотренных колонн Беннер с сотр. [69] предложил другое конструктивное решение. Он поместил вращающийся металлический конденсатор в колонну с обогреваемыми стенками. Эффект разделения в этой колонне возникает как за счет противоточного взаимодействия фаз в поле центробежных сил, так и за счет ряда последовательно протекающих и взаимосвязанных процессов парциальной конденсации и испарения. Байрон с сотр. [70] описал колонну аналогичной конструкции, он разработал лежащую в основе этого принципа разделения теорию термической ректификации (см. рис. 283 и разд. 5.4.3). [c.365]

    На рис. 3.11 приведена классификация контактных устройств. В соответствии с этой классификацией все контактные устройства разделяются на три класса насадочные, роторные и тарельчатые. В нефтеперерабатывающей промышленности основным типом контактных устройств являются тарельчатые устройства, которые, благодаря их простоте, относительно низкой стоимости, надежности и удобству в эксплуатации, нашли широкое применение практически во всех процессах разделения. По направлению движения контактирующих фаз тарельчатые контактные устройства разделяются на противоточные, перекрестноточные, перекрестно-прямоточные и прямоточные. Наиболее характерны для противоточного типа решетчатая провальная тарелка (рис. 3.12), для перекрестного — колпачковая, для перекрестнопрямоточного — клапанная прямоточная (рис. 3.13), для прямо [c.326]

    Преимущества насадочных контактных устройств перед тарельчатыми общеизвестны и заключаются прежде всего в исключительно малом перепаде давления на одну ступень разделения. Среди них более предпочтительны регулярные насадки, поскольку они имеют регулярную заданную структуру и их гидравлические и массообменные характеристики более стабильны по сравнению с насыпными. Гидродинамические условия эксплуатации насадок при перекрестном контакте фаз существенно отличаются от таковых при противот е. При перекрестном токе жидкость движется сверху вниз, а пары -горизонтально, следовательно, жидкая и паровая фазы проходят различные независимые сечения, площади которых можно регулировать, а при противотоке - одно и то же сечение. Поэтому перекрестноточный контакт фаз позволяет регулировать в оптимальных пределах плотность жидкостного и парового орощений изменением толщины и поперечного сечения насадочного слоя и тем самым обеспечить почти на порядок превыщающую при противотоке скорость паров (в расчете на горизонтальное сечение колонны) без повышения гидравлического сопротивления и значительно широкий диапазон устойчивой работы колонны при сохранении в целом по аппарату принципа и достоинств противотока фаз, а также устранить такие дефекты, как захлебывание, образование байпасных потоков, брызгоунос и другие, характерные для противоточных насыпных насадочных или тарельчатых колонн. Экспериментально установлено, что перекрестноточный насадочный блок конструкции УНИ, выполненный из металлического сетчато-вяза-ного рукава, высотой 0,5 м эквивалентен одной теоретической тарелке и имеет гидравлическое сопротивление в пределах всего 1 мм рт.ст. (0,13 103 Па), т.е. в 3 - 5 раз ниже по сравнению с клапанными тарелками. Это достоинство особенно ценно тем, что позволяет обеспечить в зоне питания вакуумной колонны при ее оборудовании насадочным слоем, эквивалентным 10 - 15 тарелкам, остаточное давление менее 20 - 30 мм рт.ст. и, как следствие, значительно углубить отбор вакуумного газойля или отказаться от подачи водяного пара в низ колонны. [c.51]


Смотреть страницы где упоминается термин Разделение противоточное: [c.120]    [c.260]    [c.231]    [c.231]    [c.291]    [c.199]    [c.17]    [c.119]    [c.127]    [c.206]    [c.246]    [c.152]   
Газовая хроматография в практике (1964) -- [ c.177 ]

Газовая хроматография в практике (1964) -- [ c.177 ]




ПОИСК







© 2024 chem21.info Реклама на сайте