Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Экстракция следов определяемых элементов

    Экспериментальная проверка теоретически найденных условий субстехиометрической экстракции проводится, например, следующим образом. Готовят растворы носителя определяемого элемента и органического реагента (подходящей концентрации). Приготавливают затем серию растворов с увеличивающимся содержанием носителя и экстрагируют элемент из этих растворов, вводя во все растворы равные количества реагента, недостаточные для полного связывания элемента в наиболее разбавленном растворе. Экстракцию проводят одновременно и при одних и тех же условиях, проверяют время достижения равновесия. Каким-либо методом определяют элемент в экстрактах при этом содержание его должно быть во всех случаях одинаковым. [c.260]


    Экстракция следов металлов из органических материалов [1, 3]. В некоторых случаях следы металлов можно отделить от основного органического вещества либо растворением в подходящем растворителе, либо частичной или полной экстракцией органического вещества. Для этого обычно используют экстракционное устройство Сокслета с обратным холодильником. Так, металлические элементы, собранные в солянокислых экстрактах почв, определяли либо после перенесения их на электрод и подсушки на нем [4], либо из раствора методом распыления [5]. [c.50]

    Хотя экстракционные методы не очень селективны, как это видно из табл. 2.6 и 2.7, они в общем подходят для разделения, необходимого в спектральном анализе, так как основная часть элементов с развитым спектром удаляется, как правило, в достаточной степени и неполнота экстракции следов элементов (около 100%) не ухудшает воспроизводимости результатов. Спектральный анализ имеет также то преимущество, что позволяет после удаления основного компонента с развитым спектром определить одновременно много примесей из одной и той же спектрограммы. [c.63]

    В комплекс стандартов по определению тяжелых металлов входят международные стандарты ИСО 11047 и ИСО 11466. ИСО 11466 устанавливает метод экстракции следов элементов, том числе и свинца, царской водкой из почв, содержащих менее чем 20% органического углерода. Содержание следов элементов в экстракте определяют методом атомно-абсорбционной спектрометрии. ИСО 11047 устанавливает два метода атомно-абсорбционного определения кадмия, хрома, кобальта, меди, свинца, марганца, никеля и цинка в почве. Указанные элементы определяют методом атомно-абсорбционной спектрометрии как по отдельности, так и совместно в экстракте из почвы, полученном обработкой ее раствором царской водки (см. приложение 1). [c.57]

    Следует сказать, что в нашем распоряжении пока имеется совсем немного специфических методов определения, таких, как, например, метод ионоселективных электродов, позволяющий определять концентрацию (активность) некоторых отдельных ионов в присутствии многих других. Не так много н избирательных методов, при помощи которых можно определять интересующие нас компоненты смеси, не прибегая к их выделению (например, посредством экстракции или соосаждения), что, конечно, упрощает анализ и экономит время. Вот почему часто приходится прибегать к маскированию мешающих определению элементов. [c.16]


    Следы мышьяка, цинка, железа, молибдена и других элементов можно определять в вольфраме [590, 591]. При определении 1,4 1,5 и 2,0 мкг Мо в 0,1 г вольфрама было найдено соответственно 1,2 1,5 и 1,7 мкг Мо. Непосредственному определению молибдена мешают образовавшиеся при облучении потоком нейтронов радиоактивные изотопы вольфрама с относительно большим периодом полураспада. Поэтому сначала осаждают вольфрам и молибден а-бензоиноксимом из кислого раствора, затем отделяют молибден от большей части вольфрама экстракцией роданидных соединений пятивалентного молибдена бутилацетатом. Затем осаждают сульфид молибдена после добавления тартрата для удержания вольфрама в растворе. [c.244]

    Наиболее часто требуется определять бериллий в присутствии Ре, А1, М , 2п, Мп, Т1, 2г, реже Мо, У (в рудах и продуктах обогащения), Си, N1, Со, Ре, А1, М (в сплавах). Все возрастающее значение бериллия в ядерной технике вызвало необходимость разработки методов отделения его от и, ТЬ и элементов с большим сечением захвата нейтронов (редкоземельные элементы, бор). Особую трудность представляет отделение следов бериллия от больших количеств других элементов. Эта проблема возникает при определении содержания бериллия в биологических пробах, в воздухе, в горных породах, а также при выделении радиоактивных изотопов. В этих случаях обычно используют соосаждение микроколичеств бериллия с коллекторами, избирательную экстракцию или ионный обмен с применением маскирующих средств. Для более эффективного разделения часто комбинируют несколько методов. [c.125]

    Аммонийная соль нитрозофенилгидроксиламина (купферон), Купферонат серебра малорастворим в хлороформе поэтому экстрагируются только следы серебра. Также незначительно экстрагируются марганец, никель, цинк и кадмий, а щелочноземельные металлы и уран(У1) полностью остаются в водном растворе вместе с серебром. Т1(1У), гг(1У), У(У), Ре(1П), Мо(У1), Рс1(П), 8Ь(П1) практически полностью экстрагируются хлороформом из сильнокислых растворов, содержащих купферон. Для других элементов определены pH 50%-ной экстракции (рН,д) В1 — 0,4, Оа 0,3, Си 0,03, ТЬ 0,2, Зс 0,2, Т1(1П) 0,5, 1п 0,5, Н (И) 0,85, РЬ 2,06, Ве 2,07, У 2,9, Со 3,18, 1 а 3,4 и А1 3,51 [1522]. Приведенные данные были получены при извлечении металлов из водных растворов, содержащих 10 — 10 г-ион металла и 5-10 — 5-10 моль/л купферона. [c.155]

    Данные, приведенные выше, показывают, что метод позволяет определять уран в присутствии больших количеств других элементов. Если в растворе присутствует Мо и W, то добавление в водную фазу перед экстракцией винной кислоты устраняет их мешаюш ее влияние. В присутствии ионов фтора в высаливаю-ш,ий раствор следует прибавлять нитрат алюминия. Для определения урана в растворах, содержавших большие количества мешающих элементов, чем указано выше, полученный экстракт перед реэкстракцией из него урана рекомендуется промывать один раз равным объемом 40%-ного раствора NH NOs с pH 3, содержащим комплексон П1. Промывание проводится в такой же экстракционной колонке, которая применяется для экстракции и реэкстракции. [c.288]

    Несмотря на это, представляется целесообразным обсудить в этом разделе некоторые проблемы, которые особенно важны для экстракционной хроматографии. Так как цель экстракционной хроматографии состоит в разделении, то прежде всего рассмотрим факторы, которые влияют на величины коэффициентов распределения и определяют извлечение элементов. Поскольку подавляющее большинство методов разделения основано на образовании комплексов, следует прежде всего уделить внимание взаимосвязи закономерностей экстракции и комплексообразования. [c.18]

    Титрование обоих элементов желательно проводить при одном и том же значении pH. Следовательно, оно должно быть выбрано таким образом, чтобы обеспечивалась экстракция и того, и другого элемента. В работе [668] следы серебра и цинка определяли при двух различных pH, что менее удобно. [c.209]

    Следы никеля и некоторых других элементов в уране определяют полярографически на фоне аммиачно-тартратного буферного раствора [783] или пиридина [1099]. В первом случае следы элементов концентрируют экстракцией урана из азотнокислого раствора трибутилфосфатом (чувствительность 0,1—0,01 мкг/мл). Во втором— экстрагируют дитизоном сами примеси, в том числе и никель. [c.164]

    Экстракция субстехиометрическим количеством дитизона была использована для определения следов медн в облученной двуокиси германия [1150]. Используя субстехиометрический принцип в изотопном разбавлении, удалось определить медь в концентрации до 10"> i 1,1л в присутствии преобладающих количеств многих элементов [847]. [c.214]

    Если сначала провести экстракцию дитизоната кадмия из щелочного раствора (отделение от свинца, висмута и основной массы цинка при большом количестве последнего), затем разрушить дитизонат кадмия и перевести кадмий в водный раствор обработкой 0,01 н. соляной кислотой (отделение от меди, никеля, кобальта, серебра, ртути вопреки утверждению автора, считают, что такая обработка достаточно быстра и эффективна) и затем снова экстрагировать дитизонат кадмия из щелочной среды (отделение от последних следов примеси цинка), то таким способом можно количественно отделить и определить кадмий в присутствии всех обычно встречающихся вместе с ним элементов (см. дополнение редактора к списку литературы, стр. 794).  [c.793]


    Для одновременного группового определения большого числа элементов-примесей иногда проводили последовательное экстрагирование раствора при различных pH различными реагента.ми, а затем полученные экстракты соединяли и переводили в форму, удобную для спектрального анализа. Например, в работах [93—95] применяли последовательное воздействие дитизона и оксина экстрагировали большое число разных металлов. В чистом селене определяли около 30 элементов методом экстракции смесью оксина и дитизона в хлороформе [148]. Следуя по этому пути, а Втор [20] разработал методику обработки раствора смесью оксина, дитизона и диэтилдитиокарбамата с последующей экстракцией хлороформом. При этом возможно перевести в органическую фазу А , А1, Аз, Аи, В1, Сё, Со, Сг, Си, Ре, Са, НГ, Hg, 1п, Мп, Мо, N1, РЬ, Рё, Р1 и №, редкие земли, 5Ь, 5с, ТЬ, Т1, Т1, 11, V, 2г и 2п. [c.20]

    Для определения следов элементов в горных породах и почвах [1198] сначала удаляют 8 0г выпариванием с НгРг и Н2ЗО4 (или НСЮ4) и железо — комбинированной экстракцией. Полученный в конце концов водный раствор содержит следы определяемых элементов, а также остаточные количества главных компонентов (ЗЮ2, Ре, А1 и Т1). Затем следы элементов экстрагируют в форме соединений с пирролидиндитиокарбаминатом при pH 3,5—4 хлороформом, а потом при pH 8—9 — 0,01 %-ным раствором дитизона в хлороформе (после добавления новой порции пирролидиндитиокарбамината). В полученном концентрате определяют элементы спектральным методом. Таким путем в навеске (1 г) почвы или горной породы можно определять по [c.150]

    Колориметрические определения Ag, Hg, РЬ, 1п, Оа, Зе, Те, Со, Мп и В1 возможны также при соответствующих операциях отделения от мешающих элементов. Серебро и свинец следует определять по реакции с дитизоном [20], индий и галлий после экстракции соответственно с 8-ок-сихинолином [21] и люмогаллионом [22]. В лучах ультрафиолетового света возможно флуоресцентное определение индия и галлия с кверцети-ном [23] соответственно с чувствительностью 1 10 % и 5-10 %, выделив экстракцией вначале галлий из солянокислого раствора, а затем индий из раствора бромидов. Селен и теллур могут быть сконцентрированы в аммиачном растворе на гидроокиси железа и определены по цветным реакциям соответственно с 3,3 -диаминобензидином и бутилродамином Б. Определение кобальта возможно по реакции с нитрозо-К-солью, марганца по каталитической реакции с серебром в присутствии окислителя, а висмута по образованию комплекса с тиомочевиной. Ртуть также может быть определена фотоколориметрическим методом по реакции с дитизоном [20] или с тиураматом меди [24]. В последнем случае определению ртути мешает только серебро. [c.385]

    Все неречисленные элементы можно определять методами атомной абсорбции. Абсорбционные методы применяют также для онределения следов других элементов в биологических материалах. Свинец, ртуть, висмут и никель в моче определяют экстракцией метиламилкетоном [46] комплексов металлов с пирролидиндитиокарбаматом аммония. Чувствительность определения в этих пробах равна свинца 10 %, ртути и висмута 2-10 %, никеля 5-10 %. Чувствительность прямого определения цинка и кадмия в тех же пробах составляет 5-10 и 5-10 % соответственно. [c.198]

    Экстрагируя дитизоном, Элуэлл и Гидли [8] определили абсорбционным методом 10" % кадмия, 5 10" % свинца и 10" % цинка в цирконии, применяемом в щерной промышленности. Этот метод служит еще одним примером применения неселективной экстракции для онределения следов ряда элементов после одного цикла отделения. В этом случае количественное отделение органической фазы не требуется. Другой пример применения предварительного концентрирования примесей — определение меди и свипца в очищенном х.лориде калия [63]. Используя пирролидиндитиокарбамат аммония в качестве комнлексообразователя, хелат меди и свинца экстрагировали метилизобутилкетоном. Атомноабсорбционным методом анализа органической фазы в хлориде калия обнаружено 5-10" % свинца, 3-10 % меди. Фактическое содержание меди и свпнца в пробах было несколько выше. [c.199]

    Разработка оптимальных технологических схем однородных тепловых и ректификационных систем — типовых технологически узлов химических производств связана с решением следующей конкретной задачи синтеза ХТС, которая является задачей синтеза четвертого класса. При заданных типах элементов системы необходимо определить топологию технологических связей между этими элементами и выбрать такие параметры элементов, которые обеспечивают выполнение либо требуемой технологической операции теплообмена между несколькими технологическими потоками, либо технологической операции разделения многокомпонентной смеси (МКС) на заданные продукты (химические компоненты или фракции) при оптимальном значении некоторого показателя эффективности функционирования системы (например, минимум приведенных затрат). В частности, задача синтеза оптимальных технологических схем систем разделения многокомпонентных смесей (СРМС) формулируется следующим образом при заданных составе сырья, номенклатуре продуктов разделения и требованиях к их качеству необходимо выбрать оптимальные с эко -номической точки зрения типы и параметры процессов разделения (например, обычная, азеотропная или экстрактивная ректификация экстракция абсорбция и др.), а также оптимальную структуру технологических связей между этими процессами разделения. [c.142]

    Планирование эксперимента. Указанные элементы можно совместно определить спектрографическими методами (разд. 5.2.1). Но для ожидаемых содержаний (0,1 млн-1 10" %) чувствительность спектрографии недостаточна, поэтому необходимо включить в схему предварительное обогащение. Исчерпывающее изучение специальной литературы показало, что в растворе ЫаС1 спектрографическое определение следовых количеств металлов возможно де 10" —10 % [20] или даже до 510" % [21]. Для выделения следов тяжелых металлов из растворов щелочей применяют специальные методы, в частности жидкостную экстракцию [22], осаждение [23], а также электролитическое выделение а конце тонкой платиновой проволоки [24]. [c.404]

    Определение. Качественно Р. обнаруживают в виде HgjNH2 l, HgS, а также атомно-абсорбционным, эмиссионным спектральным, фотометрич. и др. методами. Гравиметрически Р. определяют в виде металла, HgS, Hg2 l2, перйодата Hg5(IOg)2. Пробу руды разлагают при нагр., Р. отгоняется в присут. восстановителя (порошок Fe илн Си) под шубой из ZnO. Образующуюся Р. собирают на холодной золотой пластинке, к-рую по окончании анализа промывают и взвешивают. При низком содержании Р. в рудах используют кислотное разложение руд с добавлением фторида для растворения кварца и силикатов, содержащих Р. в высокодисперсном состоянии затем проводят концентрирование путем отделения примесей др. элементов экстракцией разл. комплексных соединений Р. (галогенидов, роданидов, дитиокарбаматов и др.). При прокаливании и сплав-ле.нии рудных концентратов и соединений Р. с содой Р. полностью удаляется в виде металла. Для подготовки аналит. пробы используют сочетание экстракции с термич. восстановлением и отгонкой Р. подготовленную пробу можно анализировать любым из перечисленных выше методов. Термич. восстановление используют также для качеств, обнаружения Р. даже при низких ее концентрациях. При фотометрич. определении Р. в качестве реактива используют 1-(2-пиридилазо)-2-нафтол, позволяющий определять микрограммовые кол-ва. Следы Р. также м. б. определены при помощи дитизона, используемого как гри фотометрич., так и при титриметрич. определении. [c.279]

    Милнер [3401 определял микрограммовые количества индия в соединениях бериллия. Сначала отделяют индий от бериллия и присутствующих в нем следов кадмия и других элементов экстракцией раствором 8-оксихинолина в СНСЬ (по методу Мёллера). После концентрирования экстракта и разложения органических веществ индий отделяют от железа и молибдена экстракцией диэтиловым эфиром. Затем индий полярографируют в солянокислом растворе, содержащем формиат натрия и хлоргидрат гидразина. [c.196]

    При определении п 10- — п 10 % галлия в полиметаллических рудах и концентратах использован метод изотопного разбавления [304]. Галлий отделяют экстракцией эфиром и определяют флуоресцентным методом с 8-оксихинолином. Метод применен также для субстехиометрического определения следов металлов [1350]. Галлий при этом определяют в виде комплекса с ЭДТА с использованием радиоизотопа Ga (Ti/ =78 час.) Косвенным путем галлий можег быть определен по измерению активности осадка [Со (NH3)6]GaF6 при использовании изотопа Со ( - и Y-излучение) [1386]. Для 4—250 мкг Ga ощибка определения составляет 10%. Описан также радиохимический анализ смеси Ga, In и Т1 на соответствующие элементы с применением методов разделения [1387]. [c.169]

    Описаны методы выделения из воды следов металлов, в том числе галлия, экстракцией растворами диэтилдитиокарбамата, З-оксихинолина и дитизона в хлороформе [696, 1219, il220] Экстракты упаривают и в остатках, после добавления буфера и раствора соли бериллия, служащего внутренним стандартом, определяют галлий спектральным методом Описанным способом можно определить галлий и другие элементы при концентраци их в исходной жидкости до 1 мкг л (1219] [c.191]

    Таким образом, скандий извлекается в органическую фазу из растворов роданистого аммония в виде нейтрального соединения, сольватиро-ванного тремя молекулами ТБФ — [Зс(СМЗ)з ЗТБФ]. По методу Фишера и Бока [ ], экстракцию скандия следует проводить из растворов, насыщенных роданистым аммонием (450—500 г/л NH4 NS),4to связано с большим расходом реактива и повышенным извлечением в органическую фазу ряда элементов в виде тройных комплексов. Поэтому необходимо было определить тот интервал концентрации роданистого аммония, который соответствует как оптимальному извлечению скандия, так и отделению его от примесей при экстракции ТБФ. Предполагалось, что часть роданистого аммония при экстракции по методу [ ] выполняет роль высаливателя, а поэтому может быть заменена хлоридом аммония. С этой целью в растворы с постоянной концентрацией хлорида скандия 0.05 мол./л, хлорида аммония 5 мол./л вводились различные количества роданида аммония, соляной кислоты и проводилась экстракция. [c.291]

    В тех случаях, когда прямой экстракционно-фотометрический метод неприменим, для анализа следов могут приобрести особое значение фотометрические методы с экстракцией определяемого элемента в виде бесцветного соединения, которое затем, непосредственно в экстракте, добавлением реактива переводится в окрашенное. Таким путем, например, можно определять фенилфлуо-роном германий [4] или ниобий в присутствии тантала [5] после [c.3]

    Несмотря на это отделение основы экстракцией при определении следов элементов встречается нередко, а именно в тех случаях, когда влиянием недостатков экстракционного отделения основы можно пренебречь или хотя бы свести его к минимуму. Например, для группового концентрирования примесей при спектральном анализе железа [8] и бериллия [9] высокой чистоты производится отделение элемента-основы экстракцией соответственно в виде хлорного железа эфиром и основного ацетата бериллия хлороформом. Определяются примеси элементов, хлориды и ацета- [c.5]

    Групповая экстракция примесей при их фотометрическом определении применяется реже, так как она требует последующего разделения микрокомпонентов. Это может быть достигнуто с помощью той же экстракции и иногда реэкстракции в водную фазу. Так, отделение висмута, свинца и кадмия при их определении в ванадии производится экстракцией диэтилдитиокарбаминатов хлороформом из щелочного (pH 11—12) раствора, содержащего тартрат и цианид [18]. Последующее определение выделенных микропримесей производится фотометрически. Разделение висмута и свинца для этого достигается реэкстракцией разбавленной соляной кислотой. Свинец и кадмий определяются затем в солянокислом реэкстракте, а висмут в хлороформном остатке. Селективное экстракционное разделение следов элементов в виде близких по свойствам соединений происходит при избирательном последовательном извлечении гетерополимолибденовых кислот фосфора, мышьяка и кремния дифференцирующими растворителями [19]. [c.7]

    Определение малых количеств элементов в различных объектах почти всегда требует операпии обогащения как для копцентрп-роваиия этих элементов, так и для их отделения от основных компонентов объекта. Среди методов обогащения большие возможности открывает, как известно, экстракция комплексных соединений металлов-следов органическими растворителями. Фотометрпро-ванием экстракта можно непосредственно определять малые количества элементов. [c.298]

    Схема экспрессного анализа примерно следующая. Образец и стандарт транспортируют на облучение и обратно с помощью быстрой пневмопочты. Облученный образец быстро растворяют, используя подходящие реагенты. Для образцов, плохо растворяющихся в воде или кислотах, часто применяют плавку с перекисью натрия в никелевом тигле. Тонкоизмельченный образец вносят в тигель, в котором уже расплавлено несколько граммов перекиси натрия, нагревают тигель на горелке до красного каления и быстро охлаждают, погружая в холодную воду. Затем плав растворяют в соответствующем растворителе. Таким образом удается переводить в раствор пробы горных пород и биологические образцы в течение 1 мин. После этого следуют избирательная экстракция определяемого элемента и измерение активности, как правило, на гамме-спектрометре. Химический выход определяют после измерения или в отдельной аликвоте спектрофотометрически либо по долгоживущему индикатору, введенному перед разложением пробы. [c.199]

    Новые полярографические методы, приемы и приборы позволили включить полярографию в арсенал методов анализа полупроводниковых материалов. Методами амальгамной полярографии и пульсполярогра-фии определяются следующие примеси 2п, РЬ, Си, Сё, В , 1п, Ое, Оа, 5п, 5Ь и т. д., а также трудно определяемые другими методами металлоиды селен, теллур и другие при содержании до 10- —10 %. Во многих случаях полярографическому определению предшествует химическое отделение определяемой примеси от электроактивной основы или от мешающих элементов. Для этой цели широко применяются методы экстракции. [c.133]

    В случае, когда концентрации эле.ментов с более положительными потенциалами полуволн значительно выше концентраций остальных элементов, работу ведут следующим образом. При высоком со.держании меди добавляют цианид калия и определяют кадмий и никель (с.м. далее 1юлярографическое определение кадмия и никеля). Цинк определяют после экстракции с дитизоном (см. далее полярографическое определение цинка). [c.400]

    Это определение было одновременно исследовано несколькими авторами. Согласно Фрицу и Форду [130], торий можно непосредственно титровать комплексонсм, если pH испытуемого раствора поддерживать в интервалах 2,3—3,4. Наиболее четкий переход окраски индикатора наблюдается при pH 2,8. В более кислых растворах (pH ниже 2,1) окраска раствора тория с индикатором слабее, в более щелочных растворах (pH выше 3,5) происходит гидролиз соли тория. Поэтому авторы рекомендуют следующий ход определения к 100 мл раствора, содержаи],его 120—240 мг тория, прибавляют 4 капли 0,05%-ного водного раствора индикатора и добавлением аммиака уменьшают кислотность анализируемого раствора до появления розовой окраски (pH 2,5). Титруют 0,025 М раствором комплексона почти до исчезновения окраски раствора. Затем pH раствора доводят до 3 (при потенциометрическом контроле) и дотитровывают раствором комплексона. Полученный раствор имеет чисто желтый цвет. Целесообразно проводить перемешивание при помощи электромагнитной мешалки. Аналогичным способом определяют и меньшие количества тория (6—50 мг в 25 мл раствора). Определению мешает присутствие железа, висмута, циркония, церия, олова, ванадия, свинца, меди и никеля. Как отмечают авторы, комплексометрическое определение тория приобрело большое значение вследствие возможности удовлетворительного отделения тория от мешающих элементов экстракцией его окисью мезитила (метод разработан Левеном и Гримальди [131]). Экстракцию проводят следующим образом к 1,2 Ж раствору соли тория прибавляют на каждые 10 мл 19 г нитрата алюминия в качестве высаливающего агента и одной экстракцией окисью мезитила отделяют торий от редкоземельных катионов, фторидов и фосфатов. Вместе с торием извлекаются ванадий, уран, цирконий и небольшое количество алюминия. Титрованию тория раствором комплексона не мешают алюминий и уран перед экстракцией тория следует предварительно отделить цирконий и ванадий. [c.363]

    Платину можно легко экстрагировать из 1—10,5 и. серной кислоты 0,01%-ным раствором дитизона в бензоле. Мешающие элементы можно устранить промыванием органического экстракта соляной кислотой или предварительной экстракцией насыщенным раствором дитизона в бензоле перед восстановлением платины(1У) двухлористым оловом. Избыток дитизона можно полностью удалить промыванием экстракта разбавленным раствором аммиака, содержащего сульфит натрия. Измеряя светопоглощение при 490 ммк (молярный коэффициент погашения s равен 26 ООО) или при 720 ммк (г = 27 ООО), можно определить содержание платины методом одноцветной окраски [494], Для определения следов платины можно применить также экстракционное титрование [1148]. [c.220]

    Сущность метода заключается в следующем. В кислой среде железо, хром и другие тяжелые металлы образуют с ЭДТА, щавелевой, винной, лимонной, аскорбиновой кислотами или другими комплексообразователями прочные комплексы, а щелочноземельные элементы в этих условиях комплексов не образуют. Ранее нами была показана возможность экстракции щелочноземельных металлов в виде роданидных комплексов из кислой среды трибутилфосфатом [7]. Поэтому, маскируя Ре, Сг и другие тяжелые элементы каким-либо маскирующим агентом при pH 1—2, можно количественно выделить кальций в виде роданидных комплексов из этого раствора экстракцией трибутилфосфатом. После реэкстракции кальций определяется комплексонометрическим методом с метилтимоловым синим в качестве индикатора или фотометрическим методом с глиоксаль-бис-(2-ок-сианилом). [c.296]

    В качестве экспериментального материала служили образцы тройного титаната следующего состава (Вао,82 - 0,720,, ao,08-о,06, Pbo,o -o,i6 )ТЮз. Основной трудностью анализа титаната указанного состава является раздельное определение кальция, бария и свинца. Применение комплексономет-рии лишь частично решает эту задачу. Можно оттитровать свинец на фоне других элементов системы в слабокислой среде (pH 5—5,5) с таким индикатором, как ксиленоловый оранжевый, т К как барий и кальций при этом не титруются. Задачу определения кальция в тройном титанате мы решали, применяя экстракционный метод отделения кальция с помощью экстракции реактивом АТ [2--5]. Содержание бария определяли по разности после определения суммы свинца, кальция и бария. Мешающее влияние титана мы устраняли его отделением. Метод отделения гидролизом оказался длительным и неудобным кроме того, наблюдался захват из раствора других катионов, что искажало результаты определения кальция, бария и свинца. Лучшим оказался метод экстракции купфероната титана смешанным растворителем (бензол—изоамиловый спирт (1 1) из 3 п. раствора по соляной кислоте. Содержание титана определяли из отдельной навески (аликвота) перекисным методом. [c.84]

    В почвах определяли такие элементы, как А , Си, Сс1, Zn, Оа, 1п, РЬ, 5п, V, Мо, Со, N1, Ре и Р(1 [98]. Концентрирование следов тяжелых металлов проводили при помощи пирроли-диндитиокарба.мината натрия. Следы тяжелых металлов концентрировали экстракцией пирролидиндитиокарбаматов хлороформом определение заканчивали спектральным методом [c.19]

    Метод экстракции. Он заключается в экстрагировании искомых элементов из основной массы раствора каким-либо экстрагенто.м. Затем экстрагент удаляется, а определяемые элементы обрабатывают соответствующими фонами и полярографируют в малом объеме (0,1—1,0 мл). Таким способом Поль и Бонзельс [25] определили примеси свинца, кадмия, железа, индия, меди, никеля, таллия, висмута и цинка при содержании 1.10 % каждого в кремнии ос. ч. с предварительной экстракцией диизопропиловым эфиром некоторых из перечисленных элементов. Определение 10 % свинца и 10 % цинка в хлористом натрии х. ч. [26] проводили путем экстракции их дитизоном в растворе с pH 9 с последующим разрушением последнего и полярографированием на фоне винной кислоты и ацетата аммония. При определении следов цинка в сульфате никеля [27] цинк экстрагировали из раство-вора дитизоном при добавлении цианистого калия (для блокирования никеля) и ацетата натрия (pH 5—5,5) и затем после разложения экстрагента полярографировали на фоне 0,1 М раствора уксусной кислоты и 0,025 М раствора роданида калия. При содержании 0,001% цинка ошибка определения составляла 6%. [c.85]


Смотреть страницы где упоминается термин Экстракция следов определяемых элементов: [c.98]    [c.70]    [c.117]    [c.117]    [c.189]    [c.206]    [c.54]    [c.170]    [c.28]   
Смотреть главы в:

Физические методы анализа следов элементов -> Экстракция следов определяемых элементов




ПОИСК





Смотрите так же термины и статьи:

Как определяют следы

Определяемые элементы

след

след н след



© 2025 chem21.info Реклама на сайте