Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Деструкция термическая медленная

    Так как узлы сетки в зависимости от их химической структуры отличаются по теплостойкости, то прежде всего разрушаются те мостики, которые проявляют наименьшую теплостойкость (энергию связи), например, полисульфиды. Когда после продолжительного периода нагревания большая часть термически лабильных узлов сетки распалась, дальнейшая деструкция происходит медленнее, что выражается изгибом на кривой 2 (рис. 6). После того, как разрушена следующая по стабильности группа узлов, можно ожидать дальнейшего Перегиба на кривой. [c.36]


    В отсутствие кислорода термическая деструкция полиэтилена протекает довольно медленно в присутствии же кислорода при температуре свыше 150° С прочностные свойства полиэтилена ухудшаются с изменением молекулярного веса. Для предотвращения или снижения термической деструкции полиэтилена, в особенности от окисления при повышенных температурах, 27  [c.419]

    Изучение термического инициирования связано с существенными трудностями. Присутствие в мономере ничтожного количества кислорода или примесей может явиться причиной образования радикалов, повышенная температура способствует интенсификации этого процесса. К тому же с повышением температуры возрастает вероятность протекания процессов деструкции молекул мономера, что еще более усложняет изучение влияния только термического воздействия на образование радикалов из молекул мономера. Установлено, что при повышенной температуре в стироле, из которого тщательно удален кислород, возникают активные свободные радикалы, инициирующие полимеризацию. Эта реакция протекает очень медленно при 90° за [c.93]

    Стойкость высокомолекулярных соединений (прочность материала) к механическим воздействиям зависит от приложенного напряжения, продолжительности действия нагрузки и температуры. При малом напряжении и низкой температуре полимеры разрушаются очень медленно. Увеличение напряжения при той же температуре сокращает время, необходимое для разрушения полимера. При повышенных температурах возможна термическая деструкция, которая ускоряется приложенными извне напряжениями. Во всех случаях разрушение полимера происходит в результате разрыва макромолекул. [c.296]

    Выше 350 начинается медленная термическая деструкция полимера с выделением фтора. Ниже этой температуры пластичность полимера ничтожно мала и невозможно осуш,ествить формование изделий. Поэтому фторопласт перерабатывают методом спекания. Порошок фторопласта в холодных формах отформовывают в таблетки-заготовки [102] при давлении 200—300 кг см . Таблетки устанавливают в спецпальные печи п нагревают при 360—380° до полного спекания в них частиц порошка. Внешне окон- [c.804]

    Перестройка структуры из одного стабильного состояния в другое происходит скачкообразно, чему предшествует ее распад. Образование в среде окисляемого вещества ассоциатов сопровождается существенным изменением механизма термоокислительных превращений. Это проявляется в замедлении скорости расхода масел, накоплении асфальтенов и медленном повышении температуры размягчения битума (рис. 12.46, 12.47). Для П этапа также характерно протекание окислительных превращений при почти неизменной концентрации смол. Отмеченные особенности окислительных превращений связаны с изменением направления атаки кислорода. В границах второго этапа кислород преимущественно расходуется в реакциях с компонентами, находящимися в дисперсионной среде. Это наименее полярные компоненты масел, смол и асфальтенов в количестве, соответствующем величинам их равновесных концентраций для конкретных условий. Их взаимодействие с кислородом сопровождается деструкцией по алифатическим фрагментам и межфазным перераспределением образующихся веществ. Правомерность сделанного вывода подтверждается данными, приведенными на рис. 12.48. Обращает внимание идентичность развития термических и термоокислительных процессов превращения нефтяных остатков (рис. 12.32). [c.796]


    Практически максимальные температуры, которые развиваются при эксплуатации изделий из обычных карбоцепных эластомеров, не превышает 100—130°. В этих условиях чисто термическая деструкция молекулярных цепей и углерод-углеродных сшивок протекает неизмеримо медленно. Однако, как следует из термофлуктуационных представлений, при высоких деформациях резин, когда некоторые цепи растягиваются вплоть до их контурной длины, вклад термической диссоциации углерод-углеродных связей может стать ощутимым, благодаря снижению энергии активации распада растянутых молекул [50]. Столь тяжелый температурный и деформационный режим эксплуатации имеет место, например, при разрушении резин в процессе истирания. Утомление резин обычно происходит в результате небольших по амплитуде деформаций, при которых вклад энергетической составляющей, вообще говоря, должен быть ничтожным. [c.161]

    Характер разрушения химических связей при термическом разложении в большой мере зависит от скорости нагревания угля. При медленном нагреве избирательно разрушаются наименее прочные связи. При большой скорости нагревания ускоряется и деструкция, но отстает от темпа повышения температуры и поэтому сдвигается в область более высоких температур. При перегреве угля одновременно разрываются и слабые, II более прочные связи. Поэтому разрушение исходной органической массы приобретает более случайный характер. При этом, естественно, образуются более крупные осколки молекул, из которых формируются тяжелые фракции жидкой фазы смол, главным образом асфальтены [1], обогащенные кисло-род- и азотсодержащими компонентами. [c.140]

    Структура поливиниленов определяющим образом влияет на их свойства. Так, кристаллические поливинилены значительно более устойчивы к окислению кислородом, чем аморфные (рис. 1). Окисление твердых образцов в данном случае, вероятно, лимитируется диффузией окислителя, более медленной в совершенных кристаллических образованиях поливиниленов, полученных из ПВХ, чем в менее упорядоченных кристаллических структурах поливиниленов из сополимеров ВХ. Кроме того, имеет значение и размер кристаллических образований - гораздо меньшие размеры кристаллов в случае сополимеров обеспечивают значительно большую общую доступную для окислителя поверхность. Обнаружена антибатная зависимость между устойчивостью поливиниленов к термическим превращениям в вакууме и стойкостью к термоокислительной деструкции (рис. 2). В кристаллическом поливинилене с плотной упаковкой цепей затруднено отщепление фрагментов макромолекул, но облегчается процесс карбонизации за счет элиминирования водорода при более низкой температуре. [c.140]

    Вначале исследование процессов деструкции, особенно с количественной стороны, развивалось медленно, так как часто приходилось ждать более полных исследований механизма реакций полимеризации и других экспериментальных результатов, которые позволили бы получить более подробные данные о строении молекул полимера. Так, было установлено, что некоторые вполне определенные структурные элементы, присутствующие в полимере в небольших количествах, например концевые группы, узлы разветвления, кислородсодержащие группы и т. д., часто оказываются тем слабым местом полимера, где инициируется реакция деструкции или развитие кинетической цепи. Природа реакций может быть значительно изменена в результате соответствующего изменения строения этих групп. Примером может служить термическая деструкция полиметилметакрилата, рассмотренная более полно в гл. 2. Процесс распада полимера до мономера при 220° инициируется на содержащих двойные связи концевых звеньях макромолекулы, образовавшихся в результате реакции диспропорционирования при полимеризации. Стабильность полимера при этой температуре увеличивается при соответствующем изменении условий полимеризации, приводящем к уменьшению доли концевых групп такого строения. [c.10]

    Медленная диффузия летучих продуктов из деструктирующего полимера делает возможным протекание побочных реакций, усложняющих процесс и маскирующих первичные реакции. Например, некоторые различия между фотохимической и термической деполимеризацией полиметилметакрилата являются прямым следствием различия в скоростях диффузии радикалов мономерных размеров в полимере при температурах, наиболее удобных для изучения этих реакций (гл. 2). Термическая деструкция полиметилметакрилата при 220" протекает с легко измеримыми скоростями при этой температуре полимер представляет собой сравнительно подвижную н<ид-кость. Из образцов полимера толщиной 1 мм осколки молекул мономерных размеров могут диффундировать в течение какой-то доли секунды. [c.20]


    Наряду с уплотнением смол происходит отщепление осколочных продуктов и обогащение высокомолекулярного остатка углеродом особенно интенсивно это наблюдается в высокотемпературных зонах двигателя, где кислорода недостаточно для полного сгорания вещества. Таким образом, на основе глубоких термических превращений смол (уплотнения и деструкции) образуются нагары различной плотности. Рыхлые нагары получаются при медленных процессах термической деструкции, когда ь течение всего периода их формирования выделяются газы. Плотные и очень прочные нагары образуются при процессах, протекающих под влиянием высоких температур с большой скоростью, когда газовыделение за счет деструкции полимеров завершается очень быстро. [c.260]

    В качестве примера такой комбинированной установки рассмотрим работу [27], посвященную исследованию механизма термической деструкции полиэфиров. В этой работе изложен метод, сочетающий медленный пиролиз с вымораживанием продуктов разложения и последующим газо-хроматографическим анализом. В работе [27 ] деструкцию образца проводили в печи, состоящей из кварцевой трубки, помещенной в трубку из нержавеющей стали, которая включена с обоих концов в газовую схему установки таким образом, что кварцевая трубка препятствует контакту [c.159]

    Сравнительная медленность реакций, ведущих к коксообразованию, является частным проявлением того правила, что процессы образования новой твердой фазы кинетически всегда затруднены. Сказанным разъясняется, почему термическое разложение, остановленное достаточно быстро так, чтобы успели пройти в основном только реакции деструкции, позволяет получать пря крекинге и пиролизе из высокомолекулярных углеводородов низкокипящие продукты, обогащенные непредельными и ароматикой, а из газообразных парафинов — низшие олефины. [c.91]

    Это выражение ясно показывает, что величина Уо представляет собой энергию активации термической деструкции полимера. Ясно, что чем ниже температура, тем медленнее протекает термодеструкция, а при достаточно низких температурах (например, при комнатной) она может стать совсем незаметной. Наложение механического напряжения снижает энергию активации на величину уа и может сколь угодно ускорить процесс термодеструкции при достаточно высоких значениях напряжения. Поэтому происходит быстрый распад макромолекул и разрыв образца. [c.275]

    Многие антиоксиданты проявляют активность при температурах, не превышающих 280°С. При более высоких температурах полимеры защищают от термоокисления металлами, оксидами и солями металлов переменной валентности. Тонкодисперсные порошки этих добавок поглощают кислород, и термоокислительная деструкция заменяется термической, которая всегда протекает медленнее. [c.71]

    Один из принципов стабилизации заключается в предотвращении процесса термоокислительной деструкции и сведении его фактически к процессу термической деструкции, протекающей значительно медленнее. В работах, выполненных недавно в Институте химической физики АН [c.94]

    Скорость термической деполимеризации всегда пропорциональна весу полимера. Однако при радиолитическом инициировании в случае тонких образцов скорости выше. Рис. 4 иллюстрирует влияние толщины образца и мощности дозы на скорость термического разложения политетрафторэтилена. На приведенных зависимостях намечается небольшая кривизна. Общая энергия активации очень мала. Предположение о том, что это влияние обусловлено более медленной миграцией мономера из образца, которая, таким образом, создает условия для обратимого роста цепи, было проверено, хотя оно и не является очевидным при исследованиях термической деструкции. Обратная реакция роста цепи при деструкции может быть выражена следующим образом  [c.321]

    Для свежих углей, нагретых до температуры формования со скоростью, благоприятной для окисленных углей, оптимальным режимом спекания является выдерживание формовок при температуре формования или ниже ее иа 10° (примерно) в течение 5—10 мин и последующий плавный подъем температуры до 480—490° со скоростью 3 град мин. Если отформованные из окисленных углей изделия подвергать спеканию, плавно повышая температуру от точки формования до 490° со скоростью 3 град мин, то в структуре нолученпого кокса видны участки из слабо-спекшегося конгломерата зерен, так как малая скорость спекания газопроницаемой, термически нестойкой массы из окисленного угля приводит к потере спекаемости. Жидкие продукты деструкции нри медленном спекании выходят из формовки по местам соприкосновения олоофоб-ных поверхностей окисленных частиц угля и не участвуют в процессе спекания. [c.132]

    Наконец, вторичными реакциями следует считать еще реакции расщепления и другие реакции, которым подвергаются уже сами продукты крекинга. Низкомолекулярные осколки испытывают дальнейшую деструкцию, приводящую к дополнительному увеличению объема крекииг-газов. Правда, эти процессы протекают значительно медленнее, так 1сак реагирующие углеводороды имеют малый молекулярный вес, а в условиях, при которых осуществляют, например, крекинг газойля, углеводороды с меньшим молекулярным весом термически более устойчивы. [c.234]

    Гвсрдос стекловидное состс яние гюлимера сохраняется до О . Выше этой температуры полимер постепенно переходит в .частичное состояние, причем эластические деформации увеличиваются с повышением температуры. Одновременно в полимере появляется пластичность, возрастающая с повышением температуры. При 145—155 полистирол можно перерабатывать в изделия прессованием, а при 180—220°—литьем под давлением. Выше 200° начинается термическая и окислительная десч рук-ция по, 1имера, ускоряющаяся с повышением температуры (рис. 93). При температуре около 300° полистирол разрушается, основным продуктом деструкции является мономер. В атмосфере азота деструкция иолимера происходит при значительно более высокой температуре при 300° полистирол де-пол имер изуется в азоте крайне медленно (рис. 94) и только при 375—400 скорость деполимеризации начинает приближаться к скорости деполимеризации полистирола на воздухе при 200 (рис. 95). [c.362]

    Тем не менее, значительная термостойкость гипана, обусловленная прочностью связей углерод — углерод в главных цепях, ограничена термостойкостью боковых групп, особенно амидных. При 175° С становится заметной их термическая деструкция и переход в имиды, сопровождающийся выделением аммиака и образованием трехмерных структур [87]. При более высоких температурах и более длительных или многократных термообработках накапливаются изменения, связанные с деструкцией макромолекул и усилением гидролиза. Термообработка водных растворов гипана снижает вязкость их в 2—4 раза, что соответствует уменьшению молекулярного веса и стабилизирующего действия. В этих условиях активизируется также гидролитическое влияние свободной щелочи, 2—4% которой находится в реагенте. Возрастание содержания акрилата натрия, обладающего, как указывалось невысокой стабилизирующеи способностью, не улучшает защитные свойства реагента, особенно при минерализации. Поэтому повышение температуры требует более частых обработок соленых буровых растворов или комбинирования гипана с другими реагентами. В пресных условиях термодеструкция гипана протекает довольно медленно. Как показали наши опыты, гипан успешно снижает водоотдачу пресных растворов даже при нагревании до 250° С. [c.194]

    В ряде работ рассмотрены термические свойства приведенных выше полиарилатов на основе бис(4-карбоксифенил)карборанов [15, 30, 104, 109-111, 113]. Согласно данным ДТГА, на воздухе карборансодержащие полиарилаты при нагревании начинают изменяться в массе на 20-60° выше по сравнению с обычными полиарилатами. Для карборансодержащих полиарилатов характерно более медленное протекание процессов деструкции, причем в ряде случаев на термогравиметрических кривых наблюдаются участки замедления или прекращения деструкции в области от 600 до 650 °С. Следует отметить характерную для полиарилатов бис(4-карбоксифенил)карборана высокую массу коксового остатка (от 50 до -90% от первоначальной массы полимера) при нагревании их на воздухе до 900 °С, тогда как обычный полиарилат терефталевой кислоты и фенолфлуорена сгорает нацело уже при 650-700 °С. [c.264]

    Характер термических превращений при более высокой температуре зависит от температуры и скорости нагрева. При так называемой низкотемпературной термической обработке, т.е. при температурах 200...230°С, деструкция целлюлозы происходит в основном за счет аморфной части. Степень полимеризации падает уже довольно быстро и достигается ПСП, зависящая от происхождения целлюлозы и ее полиморфной модификации. Кристаллическая часть в этих условиях сохраняется. При низкотемпературной деструкции реакции расщепления цепей по гликозидным связям сопровождаются реакциями дегидратации, а в присутствии кислорода - и реакциями окисления. В результате реакций дегидратации в качестве летучего продукта выделяется вода, но частично происходит и распад глюкопиранозных звеньев, о чем свидетельствует образование СО и низкомолекулярных летучих альдегидов. Окисление спиртовых групп приводит к появлению в звеньях карбонильных и карбоксильных групп. Развитию реакции дегидратации способствует медленный нагрев. В результате низкотемпературной обработки получается так называемая ангидроцел-л юл оза, отличающаяся ИК-спектром и свойствами от исходной целлюлозы. [c.356]

    Так, из опытов Тобольского [25] следует, что заметная термическая деструкция макромолекул полиизопрена, по данным релаксации напряжений, начинается лишь через 3 ч от начала опыта при 150° (рис. 1). Небольшой начальный спад напряжений при этой и более низких температурах обусловлен, как указывалось, продессами вязко-упругой медленной релаксации, а не термической деструкцией. [c.162]

    При анализе свежего, не затвердевшего бетона образцы массой 500—2000 г медленно высушивают при 105—110°С до посго-янной массы [120]. Общую воду в цементных растворах и затвзр-девшем бетоне рассчитывают по разности между потерей массы при обеззоливании образца и количеством диоксида углерода, найденным при термической деструкции карбонатов [103]. [c.125]

    Термическая деструкция полиэтилена протекает по механизму, совершенно противоположному механизму разложения двух ранее рассмотренных полимеров. Однако наличие разветвленности в полимере изменяет механизм, по-видимому, вследствие увеличения отношения внутримолекулярной передачи к межмолекулярной [87]. При пиролизе любого полиэтилена выделяется не более 1% мономера. Молекулярные веса полиэтиленов резко уменьшаются [48]. Методом инфракрасной спектроскопии было показано, что на начальных стадиях деструкции разветвленного полиэтилена винильные группы образуются медленнее, чем двойные связи других типов. Это указывает на преимущественный разрыв цепей по местам разветвлений или вблизи этих мест. Ход изменения среднечисловой СП для линейного полиэтилена (полиметилен, полученный полимеризацией диазометана под действием эфирата трехфтористого бора) представлен кривой В на рис. 102. Эта кривая показывает быстроту падения СП при разрывах, протекающих по закону случая. При конверсии в пределах 2% СП уменьшается в 1000 раз. Кривые скоростей для сильно разветвленного полиэтилена показаны на рис. 105. Отсутствие максимума и форма кривых указывают на реакцию с большой длиной зипа с другой стороны, кривые линейных полимеров, имеющие максимумы, хорошо согласуются с теорией деструкции по закону случая. На рис. 103 приведена скорость выделения летучих веществ из линейного полимера с молекулярным весом около 5 000 000. Полагая L = 72, из величин максимумов можно непосредственно получить константы скоростей деструкции по закону случая. Были вычислены теоретические кривые, имеющие то же значение максимума оказалось, что они хорошо согласуются с экспериментальными данными. Для константы скорости получено следующее выражение  [c.183]

    Большое число разнообразных виниловых полимеров деполимери-зуется при повышенных температурах, причем эти реакции деполимеризации протекают в соответствии с только что приведенным определением [46 ]. При более детальном изучении таких реакций, однако, обнаруживаются их существенные различия. Одним из наиболее наглядных примеров такой аномалии является термическая деструкция полиметилметакрилата, при которой происходит почти количественное образование мономера, причем у этого полимера выражена тенденция к сохранению или к сравнительно медленному понижению молекулярного веса по мере испарения образующегося мономера. Процесс термодеструкции полх этилена представляет [c.19]

    Тионафтен в нейтральной среде при 475 °С разлагается медленнее, чем его аналог индол, а дибензотиофен (аналог карбазола) при 500 °С не разлагается. Бензо- и дибензотиофены оказались в инертной среде термически весьма устойчивыми. Сернистые соединения иного строения значительно менее стабильны при нагреве в среде азота или даже водорода. Они подвергаются распаду с образованием промежуточных, но более стабильных в данных условиях соединений. В среде водорода при повышенных давлении и температуре идет гидрогенизационная деструкция сернистых соединений, глубина которой определяется условиями процесса. В атмосфере азота содержание серы (0,45%) во фракции 170—356 °С венгерской нефти при температуре ниже 450 °С мало изменяется, хотя замечено увеличение количества ароматических сульфидов и меркаптанов, а также снижение содержания алифатических сульфидов и так называемых остаточных сернистых соединений Г19]. Не менее стоек к нагреву и кислородсодержащий аналог дибензотиофена — дибёнзофуран.  [c.235]

    С учетом этих дополнений модель строения карбоидов нефтяного кокса, в минимальной степени подвергшегося термической деструкции, может быть описана следующей схемой (рис. 32—35). По этой схеме деструкция образовавшегося сшитого полимера асфальтенов приводит к увеличению степени сшивания и содержания углерода Первично образующийся кокс (карбоиды) является относительно малосшитым полимером, содержащим ядра (ламеллы) конденсированных ароматических колец такого же размера, как исходные асфальтены. Деструкция полимера приводит к отщеплению части углеродных атомов,, не входящих в структуру ароматических колец, ароматизации одних и разрыву других нафтеновых колец, в результате чего повышаются степень сшивания полимера и содержание в нем ароматического углерода при медленном росте ламелл. Содержание в карбоидном полимере различных структурных групп определяется в значительной степени химическим строением асфальтенов, при конденсации которых образуются карбоиды. Следовательно, свойства кокса зависят от свойств исходного сырья. Эта зависимость должна быть выражена тем сильнее, чем меньше степень деструкции первично образующегося кокса. Кроме того, свойства кокса зависят от температуры его образования и продолжительности деструкции образовавшегося кокса, которая в значительной степени ниве- [c.111]

    В настоящей работе поставлена задача изучить скорость термического распада полимеров алкилперэфиров акриловой и метакриловой кислот. По литературным данным известно, что неперекисные полимеры алкиловых эфиров указанных кислот при нагревании претерпевают деполимеризацию с выделением исходных мономеров или деструкцию с образованием смеси различных продуктов. При этом полиметилметакрилат деполимеризуется медленнее, чем полибутилметакрилат. [c.238]

    Меламин и его соли индуцируют разрыв Н-С-С(О) связей в ПА 6, вследствие чего возрастает роль сшивания и карбонизации полимера [17]. ПФА, добавленный в концентрации 10-30 %масс. к ПА 6 не является эффективным антипиреном кислородный индекс (КИ) для этой системы составляет 23-24, что соответствует чистому ПА 6 [18]. При введении ПФА в концентрациях 40 и 50 %масс. КИ возрастает до 41 и 50 соответственно, что говорит о значительном увеличении огнестойкости системы. Для интумесцентного антипирена ПФА был предложен твердофазный механизм действия [18]. Термический анализ показал, что ПФА дестабилизирует ПА 6, поскольку термическая деструкция наблюдалась при температуре на 70°С ниже, чем для чистого ПА 6 [18]. Однако образующийся в этих условиях интумесцентный слой служит эффективной защитой полимерной поверхности от воздействия теплового потока. Поэтому в условиях экспериментов по линейному пиролизу композиция ПА 6/ПФА (40%) разлагается медленнее, чем исходный полимер ПА 6 [18]. Исследования механизма термической деструкции композиции ПА 6/ПФА показали, что ПФА катализирует процесс деструкции полимера и приводит к образованию преимущественно 5-амидопентил полифосфата (6.1). [c.162]

    На рис. 6.8, а показаны сравнительные результаты испытаний для ПА 6.6 и его нанокомпозита, приготовленного из смеси ПА 6.6 с 5 %масс. СЫ Ие 15Л-монтмориллонита, органически модифицированного диметилдиалкил аммонием (где алкил — С18, С16, С14) в инертной атмосфере азота при 260°С в течение 30 мин [82]. Видно, что скорость тепловьщеления в случае нанокомпозита практически в 2 раза ниже, чем для исходного ПА, в то время как выделяемое количество теплоты (интегральная область под кривой скорости тепловыделения) одинаково для обоих материалов. Отметим, что тепловыделение для нанокомпозита ПА 6.6 в отличие от чистого ПА является более медленным процессом, который лимитируется скоростью термической деструкции полимера (рис. 6.8, а, Ь). Зна- [c.175]

    Подробно изучен гидролиз полиэтилентерефталата Отмечено, что полиэтилентерефталат по сравнению с другими сложными эфирами весьма стоек к гидролизу, к окислительной и термической деструкциям При умеренных температурах и влажности эти факторы не вызывают серьезных изменений в майларе и дакроне в течение многих лет. При низкой величине pH (раствор НС1 с pH 2) гидролиз не ускоряется гидроксилсо-держашие соединения (алифатические спирты) гидролизуют пленку медленнее, чем вода. Более толстые пленки гидролизуются медленнее, чем более тонкие. Гидролизуемость полиэтилентерефталата увеличивается при нагревании в присутствии щелочных агентов Полиэтилентерефталат полностью гидролизуется при четырехчасовом нагревании с водой в автоклаве при 205° С 3 . Изучение гидролиза полиэтилентерефталатных пленок в парах воды при 60—175° С показало, что ход гидролиза описывается уравнением кинетики второго порядка. Изменение константы скорости гидролиза с температурой описывается уравнением Ig/ = 10,54—4936/Г энергия активации составляет 22,6 ккал моль [c.245]

    Исследована кинетика термической деструкции полиэтилена 2126 Термогравиметрические кривые термического разложения полиэтилена в вакууме в интервале температур от — 20 до 500° С при остаточном давлении 1 мм рт. от. и скорости нагрева 5° в 1 мин. указывают, что медленное разложение полиэтилена начинается при 340° С, ускоряется при 425° С и заканчивается при 460° С, причем остатка не образуется. В начальный период разложения (до 3%) идет деструкция коротких боковых цепей в полиэтилене, порядок реакции равен нулю, АЕ = 48 2ккал1моль. При дальнейшем разложении (3 15%) порядок реакции меняется от нуля до единицы и затем (до 95%) идет по кинетике реакции первого порядка с АЕ = 67 5 ккал/моль по-видимому, цепи полиэтилена разрываются по закону случая. [c.280]

    При выборе между этими двумя способами имеет значение целый ряд различных факторов. Во-первых, следует учитывать стабильность исходного органического вещества к термическому и окислительному крекингу и дегидриро1ванию, а также стойкость целевого продукта к дальнейшему окислению или расщеплению. По этим причинам высшие парафины можно окислять только в жидкой фазе. Жидкофазный процесс предпочтителен для получения гидроперекисей и большинства карбоновых кислот, недостаточно стойких в условиях газофазного окисления. Наоборот, для синтеза альдегидов больше подходит реакция в газовой фазе, так как в условиях жидкофазного процесса они слишком склонны к окислению в карбоновые кислоты. Во-вторых, некоторые реакции при низких температурах жидкофазного окисления вообще не идут или протекают крайне медленно (окисление ароматических соединений с деструкцией ядра, окислительный аммонолиз), что предопределяет выбор газофазного процесса. В-третьих, нередко бывает, что окисление одного и того же. вещества в жидкой и газовой фазе идет в разных направлениях и поставленная цель может быть выполнена только при одном из этих способов (например, низшие парафины в газовой фазе окисляются в альдегиды и спирты, а в жидкой — в кетоны и карбоновые кислоты). Наконец, применение специфических инициаторов и катализаторов, часто способных функционировать лишь в определенных условиях, тоже обусловливает выбор между жидкофазным и газофазным процессами. Некоторое значение, правда менее существенное, имеют такие факторы, как агрегатное состояние и летучесть исходного органического вещества, возможность отвода реакционного тепла и т. д. [c.515]

    Величина ма1 симального выхода при последовательной реакции зависит от соотноше1 ия с <оростей отдельных составля ОЩих реакций, т. е. в да нном случае — от соотношения скоростей реакций деструкции и коксообразования. Известно, что скорость процессов, ведущих к образованию продуктов глубокого уплотнения, возрастает с повышением температуры медленнее, чем скорость процессов деструкции. С кинетичес ой точки зрения это вызывается тем, что реакции термической полимеризации и конденсации имеют значительно меньше энергии активации, чем суммарные реакции деструкции. [c.91]

    Цвейфель и сотр. [99] полагают, что гидроборирование диеновых углеводородов во всех случаях приводит к полимерам и что образование бициклических соединений является результатом термической их деструкции при нагревании в процессе перегонки. Данные Михайлова и сотр. [103 говорят о том, что при гидроборировании могут получаться как полимерные продукты, так и низкомолекулярные моноциклические и бициклические соединения, причем их соотношение зависит как от природы диенового углеводорода, так и от условий проведения реакции. Образующиеся в процессе гидроборирования циклические соединения сравнительно легко отгоняются из реакционной массы даже при наличии в ней полимерных продуктов. Когда же бициклические соединения образуются в процессе термической деструкции полимера, то реакционную массу необходимо продолжительное время нагревать при значительно более высокой температуре, чем температура кипения циклических соединений. Отгонка последних происходит очень медленно и сопровождается переходом в дистиллят части полимерных соединений, от которых удается освободиться только путем дальнейшего фракционирования. [c.200]

    Полиамиды легко подвергаются термоокислительной деструкции. При нагревании без доступа кислорода прочность материала снижается медленнее, поэтому переработку полиамидов в изделия ведут в атмосфере азота. В отличие от известных термопластов при нагревании полиамидов не наблюдается постепенного размягчения. Эти полимеры при достаточном количестве подведенного тепла переходят из твердого состояния в жидкое в узком температурном интервале без предварительного (внешне заметного) изменения, т. е. обладают относительно четкой температурой плавления [243, с. 162]. Учитывая это свойство, следует осторожно вести переработку материала, так как перегрев может вызвать его разложение и выделение вредных веществ. Полиамиды перерабатывают при 230—280 °С. При этом частично протекает термическая деструкция материала. Так, перегрев при переработке до 300 °С вызывает разложение полиамидов с выделением окиси и двуокиси углерола и аммиака. При температуре переработки поликапроамида начинается выделение е-капролактама. При 350 °С происходит отгонка е-капролактама из поликапроамида и смешанных полиамидов, содержащих в цепи остатки е-аминокапроновой кислоты. Энант при 350 °С деполимеризуется с отгонкой ш-энантолак- [c.218]

    Резины из фторкаучуков предназначены для длительной работы в узлах машин и механизмов, поэтому их температурный предел работоспособности не превышает 250—300 °С. В этих условиях термическое разложение фторэластомеров происходит медленно и связано с влиянием на него ингредиентов резиновой смеси (наполнителей, агентов вулканизации и продуктов их превращения, акцепторов галогенводородов и т. д.) и структуры сетки. Влияние компонентов резиновой смеси на термическое поведение фторэластомера определяется возможностью их химического взаимодействия с каучуком или воздействия на скорость термического разложения. В случае полностью фторированных сополимеров ТФЭ и перфторметилвинилового эфира, характеризующихся низкой реакционной способностью, влияние ингредиентов резиновой смеси на термическое поведение сравнительно невелико и проявляется на участках цепи, содержащих поперечные связи или реакционноспособные группировки для образования сетки. При достаточно высокой стойкости поперечных связей термостойкость определяется деструкцией полимерной цепи и является наиболее высокой среди фторэластомеров. [c.193]


Смотреть страницы где упоминается термин Деструкция термическая медленная: [c.44]    [c.452]    [c.158]    [c.102]    [c.88]    [c.230]    [c.119]    [c.210]    [c.201]   
Термический анализ органических и высоко молекулярных соединений (1983) -- [ c.8 , c.14 ]




ПОИСК





Смотрите так же термины и статьи:

Термическая деструкция



© 2024 chem21.info Реклама на сайте