Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ядерная спиновая релаксация

    Ядро со спином / взаимодействует с неспаренным электроном посредством либо дипольного, либо контактного взаимодействия Ферми. В силу того, что магнитный момент электронов много больше ядерного магнитного момента, электрон-ядерное взаимодействие является доминирующим для ядерной спиновой релаксации. Временная зависимость релаксации в данном случае определяется тем, что для спинов электронов время спин-решеточной релаксации намного меньше всех других времен, т.е. соответствующее время [c.40]


    Определите скорости 1/Ti ядерной спиновой релаксации, обусловленные следующими эффектами  [c.264]

    Глава 9. Ядерная спиновая релаксация в растворах. [c.265]

    Ядерно-спиновая релаксация и самодиффузия в бинарной системе диметилсульфоксид — вода. [c.403]

    Чаще всего при исследовании строения, структуры и молекулярного движения полимеров, находящихся в твердо.. агрегатном состоянии, применяются методы ядерного магнитного резонанса двух видов импульсный и щироких линий. С помощью первого метода определяются времена спин-решеточной и спин-спиновой релаксации, а второй позволяет получать значения ширины резонансной линии и ее второго момента. По проявляющимся на температурных зависимостях этих величин аномалиям можно судить об изменении подвижности отдельных атомных групп и более крупных фрагментов полимерных цепей, а следовательно, и об особенностях строения полимеров. [c.231]

    Спин-спиновую релаксацию называют также поперечной релаксацией, так как она стремится уменьшить согласованность в движении ядерных диполей, противодействуя вращающемуся магнитному полю Н , которое перпендикулярно постоянному магнитному полю Hq. [c.25]

    Время спин-спиновой релаксации можно определить также как время жизни или время фазовой памяти состояния ядерного спина. Га называют иногда временем поперечной релаксации, так как оно характеризует степень [c.118]

    Спин-решеточная релаксация, обусловленная взаимодействием электрических квадрупольных моментов ядер со спином />1. с электрическими полями молекулы — еще один механизм обмена энергией между спиновой системой и решеткой. По этой причине линии в спектрах таких ядер, как Н, М, и др., могут быть очень широкими. Ядерная квадрупольная релаксация может оказать влияние на ядра со спином /=1/2, если они находятся на близком расстоянии от ядра со спином 7>1. [c.61]

    Спин-спиновая релаксация связана с поперечными компонентами ядерной намагниченности, а спин-решеточная релаксация отражает спад ядерной намагниченности вдоль оси 2. Величина T- связана с шириной лоренцовой линии выражением [c.65]

    Ширина ядерно-резонансной спектральной линии определяется средним временем жизни ядер в возможных энергетических состояниях. Время жизни таких состояний зависит от интенсивности взаимодействия магнитных моментов ядер с решеткой (T i — время спин-решеточной релаксации) и между собой (Гг — время спин-спиновой релаксации). [c.146]


    При исследовании спиновой релаксации в биологических системах учитываются следующие пять типов взаимодействий ядерных спинов  [c.35]

    Отношение ( / г) соответствует искомому отношению количеств ядер, соответствующих сигналам и 5г. Три остальных фактора представляют собой возможные источники искажений. 1. Ядерный эффект Оверхаузера (ЯЭО) отношение (ЯЭО (1)/ЯЭ0 (2)) может составлять от 4/3 до 3, что эквивалентно максимальной ошибке в 300% ( ) 2. Времена спин-решеточной релаксации Т -. факторы ф(7 1) (см. соотношение (6.25)) могут изменяться в очень широких пределах в зависимости от условий импульсного эксперимента. Можно добиться оптимизации условий для какого-то одного ядра образца, однако это не решает проблему относительной интенсивности сигналов разных ядер С. Корректное сравнение интенсивностей сигналов с резко различающимися временами релаксации так или иначе требует длительных задержек между импульсами. 3. Времена спин-спиновой релаксации фактор (Тг) включает ошибки, связанные с дискретизацией сигнала ( 2). Корректное дискретное представление сигнала требует, чтобы эффективное машинное разрешение Я удовлетворяло условию Я а /Т2. Это требование выражают также следующим образом необходимо, чтобы на линию приходилось по крайней мере 4— [c.220]

    I под влиянием спин-спиновой релаксации и неоднородности магнитного поля в объеме образца (компонента уменьшается) -полное расфазирование ядерных моментов в [c.303]

    С целью детального изучения механизма сорбции и структуры сорбированной воды были привлечены методы ядерного магнитного резонанса (ЯМР) и диэлектрический. Методом спин-эхо было показано, что зависимость спин-спиновой релаксации T a от влагосодержания подобна изотерме сорбции (десорбции) и имеет точки перегиба, соответствующие границам физико-химической, осмотической и капиллярной влаги в торфе. Значения спин-решеточной релаксации на один-два порядка больше значения Т . Значения возрастают с увеличением влажности торфа, но они значительно меньше, чем Ту для чистой воды из-за наличия парамагнитных примесей, протонного обмена между молекулами воды и функциональными группами и наличия растворенных веществ в жидкой фазе торфа [22, 23]. [c.71]

    Исследования пластифицирующего действия ЛЗ-7 на ПВХ С-70 (снижение температуры стеклования, увеличение интервала высокоэластического состояния, изменение теплостойкости, изменение физико-механических, диэлектрических и других характеристик) показали, что ЛЗ-7 хорошо совмещается с ПВХ во всем интервале исследованных концентраций (до 50% или 100 вес. ч. на 100 вес. ч. ПВХ) и по пластифицирующему действию превосходит широко применяемый диалкилфталат. Исследования совместимости ЛЗ-7 с ПВХ другими методами ДТА, ЯМР (по временам ядерной спин-спиновой релаксации), экстракцией гексаном и по краевому углу смачивания также подтвердили, что ЛЗ-7 не уступает ДАФ. [c.90]

    Изучена ядерная магнитная релаксация в расплавах и растворах полимеров методом спинового эхо. Показано, что в растворах полимеров в апротонных растворителях ядерная магнит- [c.273]

    Ядерная спиновая релаксация. Существует процесс, называемый спин-решеточной релаксацией, который позволяет восстановить нарушенное больпмановское распределение ядер по уровням энергии. Время жизни ансамбля идентичных ядер (в отсутствие облучения) в любом из двух состояний — верхнем или нижнем — характеризуется временной постоянной Г] или временем спин-решеточной релаксации. При облучении ядер (т. е. в момент, когда больцмановское распределение нарушено) время Т определяет промежуток времени, который требуется для того, чтобы ядерные спины экспоненциально вернулись к больцмановскому распределению. Через промежуток времени, равный Т, первоначальная ядерная намагниченность сохраняется на 36,8% (т. е. 1/е) возвращение к равновесному распределению на более чем 99% требует интервала времени БГ,. (Мы пока не касаемся влияния двойного резонанса на ансамбль спинов, в частности ядерного эффекта Оверхаузера, который будет рассмотрен ниже.) [c.19]

    Ядерная магнитная релаксация. Ядра, входящие в атомы и молекулы, обладают магнитными моментами и спинами. Вся совокупность спинов образует спиновую систему вещества. Спп-повая система — это статистическая система, температура которой может отличаться от температуры молекулярного окружения, называемого реп1еткой. При изучении ядерной магнитной релаксации принимается модель не зависящих друг от друга, процессов обмси энергией внутри спиновой системы и обмен энергией между сниновой систе.мой и решеткой. Снин-сниновое взаи- [c.98]

    Явление импульсного ЯМР [1] состоит в изменении суммарной ядерной намагннченностн образца, помещенного одновременно в однородное постоянное магнитное поле и импульсное радиочастотное магнитное поле соответствующей частоты. Пре-цесспрующий вектор макроскопичсскоп ядерной намагниченности индуцирует в приемной катушке переменное напряжение, которое пропорционально концентрации исследуемых ядер н является функцией продольного времени (спин-решеточной) релаксации Ti и поперечного времени (спин-спиновой) релаксации T a. Из параметров сигнала ЯМР можно установить а) вид ядер — из напряженности магнитного поля и резонансной частоты б) число ядер, дающих вклад в резонанс,— из амплитуды сигнала в) связь между ядрами и их окружением и молекулярную подвижность — пз времен релаксации. [c.100]


    Энергия, полученная от радиоизлучения, может передаваться спиновой системой окружения, например, в виде фононов решетки, и такой процесс называется, как уже говорилось в гл. I, спин-решеточной релаксацией (Т ). Время жизни т верхнего состояния уменьшается также из-за индуцированного испускания и при этом, как следует из принципа неопределенности бЕАх Н, возрастает неопределенность энергии состояния и происходит уширение линии (рис. 111.10, а, б). Существует, кроме того, механизм спин-спиновой релаксации (Та), определяемый беспорядочным распределением полей ядерных и электрон- [c.65]

    Время T a, характеризующее передачу энергии между связанными частицами, называют временем спин-спиновой релаксации. Поскольку относительные фазы ядер изменяются за время (Av) , то для спинового обмена требуется интервал времени такого же порядка. Этот процесс вызывает дальнейшее уширение резонансной линии иа величину Ядои- Время спин-спиновой релаксации можно определить так же, как время фазовой памяти состояния ядерного спина. Время Т2 называют также временем поперечной релаксации, поскольку оно характеризует степень уменьшения поперечных компонент вектора намагниченности. [c.256]

    А — электронный, X —ядерный спин) должна отражаться i расщеплении сигналов спектра ЯМР. Имеются, однако, две при чины, объясняющие, почему это не так. Первая причина — эт( быстрая спиновая релаксация электронов, а вторая — это быст рый обмен электронов между анион-радикалами (R ) или диа магнитными молекулами (R) в растворе. Как и в случае мета нола (разд. 1 гл. VHI), имеет место усреднение по времени и расщепления исчезают, так как электрон взаимодействует ( большим числом ядер в различных спиновых состояниях. Усредненная линия ЯМР должна находиться там же, где и соответствующий сигнал диамагнитного соединения. Однако, каь показывает явление контактного сдвига, этого не происходит Причина заключается в различной населенности двух электронных собственных состояний. Поскольку разность энергии /ivs (см. разд. 2.4) существенно больше соответствующего вклада hv] в ядерный резонанс, то низкоэнергетический ypOB Hi (ms = +1/2) будет существенно более населен и он будет входить с существенно большим весом N+u2 > Л/ -1/2) при усреднении V по времени в соответствии с уравнением [c.354]

    Второй процесс называется поперечной, или спин-спиновой, релаксацией. Второе название связано с тем, что при этом происходит взаимодействие ядерных спинов друг с другом (хотя это не единственный механизм релаксации поперечной намагниченности). При этом процессе отдельные прецессирующие ядерные спины, упорядоченные в некоторой степени для формирования поперечной компоненты намагниченности, постепенно возвращаются к случайному распределению (см. рис. 9.3-5). Очевидно, это существенно определяет вид кривой ССИ, поскольку она является затухающей. В этом случае нет переноса энергии, так как заселенности ядерных уровней не испытывают какого-либо влияния. Соответствующая постоянная времени обозначается Т2, время спип-спиновой, или поперечной, релаксации. [c.214]

    Поперечная и продольная релаксации индуцируются процессами, происходящими на молекулярном уровне. Они отражают взаимодействие ядерного спина с его окружением. Скорости релаксации пропорциональны квадрату величины, характеризующей эти взаимодействия. В случае спин-решеточной релаксации, при которой осуществляется обмен энергией с окружением, эти взаимодействия оказываются промодулированными во времени, что происходит за счет взаимодействия спинов с флуктуирующими магнитными полями, вызывающими переходы между стационарными состояниями спиновой системы на частоте Ш/. Те же процессы, которые вызывают спин-решеточную релаксацию, ведут и к спин-спиновой релаксации, поскольку при спин-решеточной релаксации одновременно разрушается фазовая когерентность прецессии отдельных спинов. В то же время временная модуляция взаимодействий не является обязательным условием для разрушения фазовой когерентности процессы, не модулированные во времени, представляют собой дополнительный канал поперечной релаксации. [c.35]

    Наиболее корректным методом оценки совместимости пластификаторов с полимером является термодинамический метод. Совместимость пластификаторов с полимером можно оценивать также методом ядерно-магнитного резонанса по изменению спин-спиновой релаксации нефелометрически, измеряя мутность пленок плас 5 иката по скорости прохождения звука по изменению вязкости раствора полимера в пластификаторе по эффекту контракции по зависимости температуры стеклования от концентрации пластификатора. Данные о совместимости некоторых пластификаторов с поливинилхлоридом приведены в таблице на стр. 340. [c.339]

    Для характеристики релаксационного процесса следует также иметь в виду так называемую спин-спиновую релаксацию, описывающую процесс установления равновесия в самой системе ядерных спинов. Из теории ЯМР известно, что ядра, прецессирующие вокруг направления постоянного магнитного поля, под действием вращающегося поля движутся в фазе с этим полем. При наличии поля прецессия ядер, из-за неоднородности магнитного поля в образце, выходит из фазы за время спин-спиновой релаксации T a- Этот интервал времени (также называемый временем поперечной релаксации) тем меньше, чем больше разброс магнитного поля Няок) и магнитогирическое отношение у)  [c.210]

    Методом спинового эха детально изучался процесс адсорбции паров воды на силикагеле [17]. Исследованием зависимости времени спин-ре-шеточной и спин-спиновой релаксации от заполнения и температуры было показано, что адсорбционная система силикагель — вода при низких заполнениях (0 0,05) по отношению ядерно-релаксационных явлений ведет себя, как однофазная. Прн увеличении заполнения проявляется существование двух состояний адсорбированного вещества, между которыми осуществляется протонный обмен. Энергия активации протонного обмена для статистического слоя с0 = колеблется в пределах 3,1 — 5,2 ккалЫолъ. Среднее время пребывания протонов в данном состоянии выражается в миллисекундах. [c.213]

    Релаксационный механизм 2, который наиболее часто встречается в непроводящих твердых телах, зависит от числа неспаренных электронов в веществе, в большинстве случаев обусловленного присутствием парамагнитных ионов в кристалле. Однако иногда механизм релаксации может быть связан и с наличием центров окраски. Магнитный момент электрона, будучи в 10 раз больше магнитного момента ядра, создает около себя большие переменные магнитные поля и вызывает быструю релаксацию ядерного спина у рядом расположенных ядер. Переменное поле обусловлено малым временем спин-решеточной релаксации электрона в изоляторах (Г] электрона а 10 — 10 сек) за счет спин-орбитальной связи электрона с решеткой (раздел П1,А, 2). Ядра, удаленные на 10 или более ангстрем от электронного спина, мало подвергаются действию его магнитного поля, так как оно уменьшается с расстоянием пропорционально 1/гЗ. Однако и эти ядра в присутствии электронного спина релаксируют быстрее за счет диффузии ядерного спина. Ядра, удаленные от неспаренного электрона, являются горячими в том смысле, что в присутствии сильного радиочастотного поля они окажутся дальше от термического равновесия, чем ядерные спины, близкие к примесному центру, и, следовательно, суммарная спиновая поляризация будет смещена к примесному центру за счет диполь-дипольного взаимодействия при одновременных спиновых переходах между одинаковыми спинами и без изменения суммарной энергии. Скорость такой диффузии спинов пропорциональна 1/Т2. Количественное выражение для времени ядерной релаксации, включающее величины концентрации примеси, времени релаксации электронного спина и времени ядерной спин-спиновой релаксации было получено Ху-цишвили [57] достаточно строгим способом для малых концентраций примеси. Несколько сот частей парамагнитных примесей на миллион могут дать времена релаксации в пределах от 10- до 10"3 сек при комнатной температуре. [c.26]

    Спин-спиновая релаксация обусловливает спад макроскопического ядерного момента в плоскости ху, в то время как спин-реше-точная релаксация связана со спадом макроскопического момента вдоль оси 2. Можно предположить, что соответствующие скорости релаксации, несмотря на значительные количественные различия между ними (см. рис. 1.6), тем не менее тесно связаны между со- [c.29]

    Ядра со спином имеют сферически симметричное распределение заряда и поэтому не взаимодействуют с электрическим полем молекулы. Ядра же со спином 1 и более имеют электрические квадрупольные моменты, и можно считать, что распределение заряда у этих ядер имеет форму сфероида, вокруг главной оси которого происходит вращение ядра. Квадрупольный момент может быть положительным (вытянутый сфероид) или отрицательньш (сплюснутый сфероид). Энергии сфероидальных зарядов зависят от их ориентации относительно градиентов окружающего электрического поля. В молекулах определенного типа, в которых преобладает сферическое или тетраэдрическое распределение заряда (например, в ионе аммония ЫН4), электрические градиенты либо отсутствуют, либо незначительны, вследствие чего не происходит возмущения квадрупольного момента за счет колебательных движений молекулы. Однако у большинства молекул градиенты электрического поля значительны и могут взаимодействовать с ядерными квадруполями. В результате колебательные движения остова таких молекул могут вызывать быстрые изменения спиновых состояний. Это еще один механизм обмена энергией между спиновой системой и решеткой, т. е. один из важных вкладов в спин-решеточную релаксацию он может приводить к заметному уширению резонансных сигналов. По этой причине линии в спектрах таких ядер, как или N (квадрупольный момент Q положителен) или О, и (Q отрицателен), могут быть настолько широкими, что их трудно или даже невозможно обнаружить. Ядерная квадрупольная релаксация может также оказывать влияние на ядра со спином /г, если они находятся в достаточной близости от ядра со ОПИНОМ 1. Мы рассмотрим эти вопросы в гл. 13. [c.35]

    Мы видели (см. разд. 1.5), что парамагнитные ионы могут вызывать значительное уменьшение как Т, таж и Гг, за счет очень сильных флуктуирующих магнитных полей, генерируемых неопа-ренньши электронами, магнитный момент которых приблизительно в 10 раз превосходит максимальные ядерные магнитные моменты. Общая теория Бломбергена и сотр. [27] в применении к спин-спиновой релаксации протонов воды в растворах парамагнитных ионов приводит к (выражению  [c.275]


Смотреть страницы где упоминается термин Ядерная спиновая релаксация: [c.339]    [c.99]    [c.223]    [c.64]    [c.454]    [c.725]    [c.726]    [c.518]    [c.237]    [c.211]    [c.303]    [c.726]    [c.295]    [c.378]   
Руководство по ядерному магнитному резонансу углерода 13 (1975) -- [ c.0 ]




ПОИСК







© 2025 chem21.info Реклама на сайте