Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Магнитная релаксация ядерных спинов

    Определение скоростей реакций методами ядерного магнитного резонанса зависит, как будет видно в следующем разделе, от измерения формы и ширины линии. В этом разделе кратко рассмотрена ширина линий ЯМР в отсутствие реакции . Для этого следует вначале обсудить два механизма релаксации ядерных спинов. [c.231]

    Оказалось, что времена ядерной магнитной релаксации 71 и Гг растворителя (изотопы Н и Ю) резко укорачиваются под влиянием парамагнитных катионов за счет прямого диполь-ди-польного и контактного сверхтонкого взаимодействия между электронным и ядерным магнитными моментами. Ввиду большого значения магнитных моментов неспаренных электронов этот механизм эффективен уже при малых концентрациях парамагнитных катионов 10 —10 моль/л [833]. Парамагнитные примеси, создавая сильные магнитные поля на ядрах молекул растворителя, координированных парамагнитным катионом, ускоряют отвод энергии от системы резонирующих ядерных спинов к ее окружению (решетке). Благодаря быстрому обмену молекул воды в координационной сфере аква-комплекса влияние парамагнетика распространяется на весь объем растворителя, и за время релаксации все ядра растворителя успевают побывать в непосредственной близости от катиона. При прочих равных условиях скорость релаксации 01=(1/Г1) или 02=(1/Гг) линейно зависит от концентрации катиона Таким образом, ядерная магнитная релаксация оказывается чувствительным инструментом обнаружения и количественной оценки содержания парамагнитных ионов в растворе. [c.436]


    Релаксационный м етод используется в основном для исследования парамагнитных комплексов и основан на ускорении релаксации ядерного спина в таких системах. Исследование можно проводить по различным ядрам компонентов комплекса, но чаще всего его проводят по ядрам растворителя. Исследование по резонансу растворителя имеет ряд преи.муществ перед другими методами можно исследовать низкие концентрации комплексов, а также комплексы, не содержащие магнитного ядра исследование не требует спектрометров высокого класса. [c.317]

    Выше было сделано предположение, согласно которому время, необходимое для выстраивания спинов в магнитном поле или для нарушения их ориентации при снятии поля, мало. Эти быстрые процессы называются процессами релаксации и характеризуются временем релаксации, определенным в разд. 10.2. Релаксация ядерных спинов определяется двумя различными процессами. В процессе спин-решеточной релаксации (время релаксации Т,) избыточная спиновая энергия превращается в тепловую энергию решетки. Под решеткой понимается окружение спинов. Колебательные, вращательные и поступательные движения атомов и молекул решетки вызывают появление флуктуирующего магнитного поля на ядре или неспаренном электроне. Это поле, обусловленное магнитными моментами ближайших атомов и молекул, имеет компоненты с частотой, необходимой для индуцирования переходов между состояниями аир. Величина Тг может быть определена в эксперименте со спиновой системой, выведенной из равновесного состояния действием внешнего электромагнитного поля, путем снятия поля и измерения времени, за которое отклонение заселенности уровней от их равновесных значений уменьшается в е раз. Значение Т1 изменяется от 10 до 10 с для твердых тел и от 10-- до 10 с для жидкостей. [c.503]

    Кроме того, в результате непосредственного магнитного взаимодействия ядерных спинов возникают процессы обмена энергией между спинами самой спин-системы (спин-сниновая релаксация). При этом энергетическое равновесие внутри спин-системы устанавливается значительно быстрее, чем равновесия между снин-системой и решеткой. Поэтому такая система взаимодействующих спинов ведет себя не просто как система [c.12]

    Мы видели, что под действием поля Н должны наблюдаться результирующие переходы ядерных спинов с нижнего энергетического уровня на верхний. Через некоторое время это должно было бы привести к выравниванию (или приблизительному выравниванию) заселенностей обоих уровней, что соответствует так называемому состоянию насыщения (т. е. очень высокой больцмановской спиновой температуре), если бы не существовал некоторый механизм релаксации, переводящий спины с верхнего энергетического уровня на нижний. Этот процесс отводит энергию от спин-системы, иными словами, охлаждает ее. Аналогичная ситуация возникает, когда система спинов впервые оказывается в магнитном поле спиновая заселенность верхнего и нижнего уровней одинакова, и для установления равновесного распределения заселенностей и создания условий наблюдения резонансного сигнала также необходима релаксация. Следует ясно представлять, что поскольку участвующие в этом процессе энергии очень малы и, кроме того (как мы увидим впоследствии), обычно очень слаба тепловая связь ядер с их окружением (т. е., тепловая релаксация представляет собой очень медленный процесс), спиновая температура легко может стать очень высокой, в то время как температура образца не изменится или изменится незначительно. Можно говорить, таким образом, об очень малой теплоемкости системы ядерных спинов. [c.20]


    Релаксация ядерных спинов. На поведение ядер существенно влияет процесс установления равновесного распределения ядерных моментов образца (спин-системы) в поле напряженностью Но- Пока образец находится вне магнитного поля, направления векторов магнитных моментов отдельных ядер хаотично распределены вследствие теплового движения атомов и молекул. При внесении образца в магнитное поле напряженностью Hq часть векторов ориентируется в направлении поля, а часть (меньшая) — в противоположном направлении за счет избыточной тепловой энергии. Такой переход требует некоторого времени. Процессы, в которых установление равновесного распределения происходит во времени, называются релаксационными и включают взаимодействия релаксирующих ядер между собой, с окружающей средой и решеткой. В теории ЯМР рассматривают два механизма релаксации спин-спиновый и спин-решеточный. [c.266]

    Таким образом, в результате спин-решеточной релаксации энергия системы ядерных спинов превращается в тепловую энергию молекул, содержащих магнитные ядра. Этот процесс препятствует выравниванию заселенностей уровней под действием вращающегося магнитного поля т. е. непосредственно ответственен за поддержание избытка ядер на нижнем энергетическом уровне, благодаря чему резонансное поглощение энергии поля можно наблюдать непрерывно. Система магнитных ядер не достигает полного насыщения лишь в том случае, если амплитуда поля невелика, поэтому мощность радиочастотного генератора в ЯМР-спектрометрах обычно не превышает нескольких милливатт. [c.23]

    В результате химической реакции это соотношение нарушается, а восстанавливается оно путем перехода триплетной пары в синглетную (Т - -переход). Такие интеркомбинационные переходы (5 Т и 7 -> 5) запрещены правилами отбора, но происходят по ряду причин. Во-первых, в силу спин-решеточного взаимодействия путем обмена энергий между несущей спин частицей и окружающими ее молекулами растворителя (решетки). Время спин-решеточной релаксации (продольной Т и поперечной 72) достаточно велико (Ю -Ю с) и много больше времени существования радикальной пары (10 -10 с). Поэтому в низковязких жидкостях этот механизм перехода неэффективен. Во-вторых, 5-7-переход происходит в том случае, когда различаются частоты ларморовской прецессии спиновых моментов радикальной пары вокруг направления магнитного поля (Де-механизм). В этом случае индуцируется 3 7о-переход. Частота перехода равна разности частот ларморовской прецессии и прямо пропорциональна Ag = g - gl и напряженности поля Щ. Частота 5 -> 7о-перехода 10 рад/с достигается при Ag = 10 и Яо 10 А/м. В-третьих, причиной 5 -л 7-перехода является сверхтонкое взаимодействие спина электрона с ядерными спинами (СТВ-механизм). В отсутствие магнитного поля электронный и ядерный спины радикала прецессируют вокруг результатирующей суммарного спина. В ходе движения электронный и ядерный спины совершают взаимный переворот, в результате чего конфигурация пары 7+ переходит в -состояние. Скорость перехода зависит от констант СТВ. Для СТВ-механизма характерны времена перехода Ю -Ю с, т. е. соизмеримые с временем жизни радикальных пар. Таким образом, Б отсутствие магнитного поля СТВ-механизм является наиболее эффективным для 7 -переходов в радикальных парах. [c.197]

    Механизм спин-решеточной (а также продольной) релаксации становится ясен, если рассмотреть заселенности уровней в магнитном поле Но. Расщепление магнитных энергетических уровней вообще очень мало. Для протонов в поле Но, равном 1,4 Т, его порядок составляет 10 2 кал. При этом переход ядерных спинов с нижнего уровня на верхний и обратно осуществляется очень быстро. Так что в поле Но уже за несколько секунд достигается равновесное распределение заселенности уровней. Как мы уже знаем, отношение заселенностей уровней определяется множителем Больцмана ехр(А / в7 ) и с достаточной степенью точности может быть представлено как [c.57]

    Изменение интенсивностей линий ядерного резонанса, которое возникает в результате этого эксперимента, можно понять, если обратиться к рассмотрению диаграммы Соломона, приведенной на рис. IX. 12. На нем представлены собственные состояния двухспиновой системы 13 в магнитном поле. Всего существуют четыре состояния с различной энергией, и их расположение определяется знаками ядерного и электронного спинов. Переходы ядра или электрона могут быть индуцированы ВЧ-полем с частотой V/ или соответственно. Рассмотрим вероятность W тех релаксационных переходов, которые ответственны за поддержание больцмановского распределения. Пусть величины и W l соответствуют вероятности продольной релаксации ядерного и электронного спинов соответственно. Кроме того, имеются также определенные вероятности переходов ( 2 и Wй, в которых ядерный и электронный спины переворачиваются одновременно. 1 2 и 1 о имеют заметный вклад только тогда, когда имеется спин-спиновое взаимодействие между спинами / и 5. Если насыщается электронный резонанс, т. е. переходы (3)->-(1) и (4)— (г), ВЧ-полем В с частотой Уз, то больцмановское распределение между состояниями (3) и (1), а также (4) и (2) нарушается, т. е. населенности состояний (1) и [c.319]


    Для описания взаимодействий внутри спиновой системы вводят также другую постоянную времени релаксации Т2, характеризующую время, за которое теряется когерентность прецессии ядерных спинов, т. е. происходит из расфазировка. Согласно теореме Лармора магнитный диполь, помещенный в магнитное поле величиной Но под некоторым углом к его направлению, совершает прецессию вокруг направления поля с круговой частотой o = YЯo Каждый магнитный диполь в системе взаимо-,действующих спинов находится не только в приложенном поле [c.252]

    Принцип проведения ЯМР-эксперимента можно объяснить исходя из представлений об условии резонанса, а также о поперечной и продольной релаксации, что в свою очередь способствует разработке специального аппарата, используемого для описания эксперимента. Эти сведения достаточны также и для того, чтобы иметь возможность описания принципов ЯМР-томографии, пространственное разрешение которой определяется величиной градиентов магнитного поля, а разрешение по контрасту - различиями в значениях времен релаксации. ЯМР можно использовать также как аналитический метод, основываясь на том, что различные элементы и изотопы обладают различными резонансными частотами. Однако для успешного применения этого метода в химии и биохимии этой информации недостаточно. Только включение дополнительных физических взаимодействий, приводящих к расщеплению резонансных линий или к сдвигу соответствующих уровней энергии ядерного спина и соответствующих частот переходов, позволяет использовать ЯМР в качестве аналитического метода. В этом случае вместо одной резонансной линии для определенного изотопа получим в спектре несколько резонансных линий, положение которых в спектре связано со свойствами молекул. В дальнейшем обсудим основные типы указанных выше физических взаимодействий. [c.27]

    В случае магнитного резонанса электронного спина, электронного парамагнитного резонанса (ЭПР), связь спина электрона с магнитным моментом атомного ядра приводит к весьма сложному расщеплению, которое называется сверхтонкой структурой спектра ЭПР. В ЯМР соответствующее расщепление резонансных линий, как правило, не возникает, так как вследствие быстрой спин-решеточной релаксации электронных спинов скорость переходов между спиновыми состояниями, соответствующими ориентациям спина по полю и против поля (т.е. между состояниями, характеризуемыми магнитными квантовыми числами /Иi = 1/2 и -1/2), так велика, что ядерный спин "видит" некое усредненное состояние. Однако поскольку всегда несколько больше магнитных моментов электронов ориентировано по полю, чем против поля, аналогично тому, как это ранее было показано для магнитных моментов ядер/г/, то возникающий при этом результирующий электронный магнитный момент является причиной наблюдаемых парамагнитных свойств веществ, содержащих свободные радикалы и парамагнитные ионы взаимодействие ядерного спина с электронным приводит к парамагнитному сдвигу сигналов ЯМР, и, кроме того, включается дополнительный механизм релаксации, к рассмотрению которого вернемся в разделе 1.3.7. [c.33]

    Помимо времени Т, имеется еще одно, отличное от него время, необходимое для описания радиочастотных свойств системы ядерных спинов. Это так называемое время поперечной релаксации является константой времени для экспоненциального уменьшения поперечных (х и у) компонентов результирующего ядерного магнитного момента и Му [c.17]

    Ядерная магнитная релаксация в растворах электролитов. Релаксационными в отношении системы ядерных спинов являются процессы, приводящие систему в стационарное состояние, из которого она выведена каким-нибудь внешним воздействием. Скорость релаксации зависит от физико-химических свойств вещества и его состояния. [c.109]

    Релаксационный механизм 2, который наиболее часто встречается в непроводящих твердых телах, зависит от числа неспаренных электронов в веществе, в большинстве случаев обусловленного присутствием парамагнитных ионов в кристалле. Однако иногда механизм релаксации может быть связан и с наличием центров окраски. Магнитный момент электрона, будучи в 10 раз больше магнитного момента ядра, создает около себя большие переменные магнитные поля и вызывает быструю релаксацию ядерного спина у рядом расположенных ядер. Переменное поле обусловлено малым временем спин-решеточной релаксации электрона в изоляторах (Г] электрона а 10 — 10 сек) за счет спин-орбитальной связи электрона с решеткой (раздел П1,А, 2). Ядра, удаленные на 10 или более ангстрем от электронного спина, мало подвергаются действию его магнитного поля, так как оно уменьшается с расстоянием пропорционально 1/гЗ. Однако и эти ядра в присутствии электронного спина релаксируют быстрее за счет диффузии ядерного спина. Ядра, удаленные от неспаренного электрона, являются горячими в том смысле, что в присутствии сильного радиочастотного поля они окажутся дальше от термического равновесия, чем ядерные спины, близкие к примесному центру, и, следовательно, суммарная спиновая поляризация будет смещена к примесному центру за счет диполь-дипольного взаимодействия при одновременных спиновых переходах между одинаковыми спинами и без изменения суммарной энергии. Скорость такой диффузии спинов пропорциональна 1/Т2. Количественное выражение для времени ядерной релаксации, включающее величины концентрации примеси, времени релаксации электронного спина и времени ядерной спин-спиновой релаксации было получено Ху-цишвили [57] достаточно строгим способом для малых концентраций примеси. Несколько сот частей парамагнитных примесей на миллион могут дать времена релаксации в пределах от 10- до 10"3 сек при комнатной температуре. [c.26]

    Открытие явления значительного ускорения релаксации ядерного спина в присутствии парамагнитных ионов было поворотной вехой в истории магнитного резонанса и привело к значительно более глубокому пониманию процессов релаксации в жидкостях и твердых телах. Мощное влияние этих ионов обусловлено главным образом большими локальными магнитными полями, создаваемыми электронным спином на ядрах. Так как магнитный момент электрона примерно в тысячу раз больше, чем магнитный момент большинства ядер, то локальное поле Не может достигать 10 ООО э (разд. 13.2). Другим важным фактором является короткое время релаксации электронного спина для многих парамагнитных ионов, что приводит к быстрой флуктуации Не и индуцирует быстрые переходы между состояниями ядерного спина. Броуновское движение также юдyлиpyeт анизотропные магнитные взаимодействия обычным образом и дает вклад в релаксацию независимо от того, связаны ли ядра с самилш ионами или с другими ядрами в растворе. [c.295]

    Ядра изолированы от окружающей их решетки электронными оболочками и не могут отдать избыточную энергию путем соударений. Вероятность спонтанного (самопроизвольного) излучения в радиоволновом диапазоне ничтожно мала (например, время жизни протона в возбужденном состоянии равно лет). Существует, однако, безызлучательный путь отдачи энергии ядрами, называемый релаксацией. Дело в том, что в каждом образце, содержащем магнитные ядра, возникают слабые флуктуирующие (хаотически меняющиеся) локальные магнитные поля, обусловленные межмолекулярными и внутримолекулярными движениями. Эти магнитные поля содержат весь спектр колебаний, в том числе и тех, которые совпадают с частотой ларморовой прецессии магнитных ядер данного изотопа. Соответствующая компонента этого локального поля может вызвать переход того или иного прецессирующего ядра с верхнего уровня на нижний путем резонансного взаимодействия с ним. Энергия этого перехода передается элементам решетки в виде дополнительной поступательной, вращательной или колебательной энергии, т. е. превращается в тепловую энергию образца. Такой процесс охлаждения ядерных спинов называется спин-решеточной релаксацией. Он будет происходить довольно часто, поскольку, как показывает расчет, вероятность вынужденного излучения или ядерного магнитного резонанса велика (в противоположность спонтанному излучению). Система возбужденных ядер получает возмож- [c.22]

    Метод спинового эха в настоящее время широко используется в ядер-ном магнитном резонансе. Впервые явление спинового эха обнаружил Хан [91, 92], исследуя поведение ядерной спиновой намагниченности под действием двух мощных радиочастотных импульсов, разделенных интервалом времени т оказалось, что в этом случае через промежуток времени 2х после первого импульса возникает сигнал (рис. 55, а), амплитуда которого зависит от т и определяется временем поперечной релаксации ядерных спинов. Хан [91, 92], а позднее Карр и Парселл [93] усовершенствовали метод спинового эха и дали феноменологическую теорию, а Дас, Саха и Рой [94] — квантово-механическую теорию явления спинового эха. Развитые в этих работах представления полностью приложимы и для спинового эха свободных радикалов в случае одно-родпо-уширенных линий ЭПР. [c.158]

    Ядерная магнитная релаксация. Ядра, входящие в атомы и молекулы, обладают магнитными моментами и спинами. Вся совокупность спинов образует спиновую систему вещества. Спп-повая система — это статистическая система, температура которой может отличаться от температуры молекулярного окружения, называемого реп1еткой. При изучении ядерной магнитной релаксации принимается модель не зависящих друг от друга, процессов обмси энергией внутри спиновой системы и обмен энергией между сниновой систе.мой и решеткой. Снин-сниновое взаи- [c.98]

    Наблюдение производится методом ядериого магнитного ре-.юнанса. Объект помещается в сильное магнитное поле. Спины ядер начинают прецессировать вокру вектора напряженности магнитного поля с определенной частотой. Затем подается слабое магнитное ноле, вектор напряженностн которого нерпендн-кулярен начальному вектору. Это поле меняется с некоторой частотой. Прн совпадении частот прецессии н слабого поля система начинает сильно поглощать энергию — наступает резонанс. Затем слабое поле выключается и система релаксирует к равновесному состоянию. По скоростям релаксации определяются значения Т , и То и затем рассчитываются времена корреляции броуновского движения. С помощью ядерной магнитной релаксации их можно измерять в широком диапазоне температур и частот. Измеренные времена корреляции позволяют определить размер частиц. Метод ядерной магнитной релаксации применим не всегда, поскольку нужно учитывать релаксацию молекул как дисперсной фазы, так и дисперсионной среды. Интерпретация результатов оказывается затруднительной. Метод применим для высокодисперсных систем с частицами от молекулярных размеров до десятков нанометров. Исследования нефтяных систем этим методом только начинаются [140]. Проведенные этим методом исследования дисперсности масляных фракций нефти и их фенольных растворов позволили установить, что размеры образующих их ССЕ составляют величины порядка 10 нм [141]. [c.99]

    При наложении переменного поля Я], для которого характерна частота v, возникает некоторая намагниченность, перпендикулярная постоянному полю Яо. Скорость установления этой намагниченности характеризуется поперечным временем релаксации хг, которое по порядку величины равно (уАЯ1/2) или (уАЯ ) . Следовательно, Хг (называемое также спин-спиновым временем релаксации), как и ширина линии, определяется магнитным дипольным взаимодействием ядерных спинов. При сильном сужении линии ЯМР полимеров (при высоких температурах) Тг стремится к Ть [c.216]

    Время спин-решеточной релаксации зависит от многих факторов температуры, вязкости среды и др. Время тем короче, чем выше концентрация магнитных ядер в образце. Присутствие парамагнитных ионов и свободных радикалов сильно сокращает величину Т , поскольку неспаренные электроны отличаются большим магнитным моментом, в сотни раз превосходящим магнитные моменты атомных ядер. Большинство твердых тел и вязких жидкостей имеет большое время спин-решеточной релаксации, порядка нескольких часов. У жидкостей и газов значение гораздо меньше — всего несколько секунд. Время спин-решеточной релаксации определяет ширину линий в спектрах ЯМР (она обратнопропорциональна Г ), а также то, насколько далека система ядерных спинов от состояния насыщения, т. е. максимально допустимую амплитуду вращающегося магнитного поля (мощность радиочастотного генератора ЯМР-спектрометра). [c.24]

    В заключение следует остановиться еще на одном аналитическом аспекте метода ЯМР. Как уже отмечалось, ядерная магнитная релаксация является фундаментальным свойством ядерного магнетизма, характеризующим динамику системы спинов. Вместе с тем высокая информативность параметров ядерной магнитной релаксации о свойствах исследуемого вещества, сравнительная простота их экспериментального определения, а также надежность теоретической интерпретации данных дают основание выделить это направление ЯМР в качестве самостоятельного физического метода исследования вещества — ядерную магнитную релаксационную спектроскопию, некоторые интересуюп ие нас особенности которой описаны в 5. [c.738]

    А — электронный, X —ядерный спин) должна отражаться i расщеплении сигналов спектра ЯМР. Имеются, однако, две при чины, объясняющие, почему это не так. Первая причина — эт( быстрая спиновая релаксация электронов, а вторая — это быст рый обмен электронов между анион-радикалами (R ) или диа магнитными молекулами (R) в растворе. Как и в случае мета нола (разд. 1 гл. VHI), имеет место усреднение по времени и расщепления исчезают, так как электрон взаимодействует ( большим числом ядер в различных спиновых состояниях. Усредненная линия ЯМР должна находиться там же, где и соответствующий сигнал диамагнитного соединения. Однако, каь показывает явление контактного сдвига, этого не происходит Причина заключается в различной населенности двух электронных собственных состояний. Поскольку разность энергии /ivs (см. разд. 2.4) существенно больше соответствующего вклада hv] в ядерный резонанс, то низкоэнергетический ypOB Hi (ms = +1/2) будет существенно более населен и он будет входить с существенно большим весом N+u2 > Л/ -1/2) при усреднении V по времени в соответствии с уравнением [c.354]

    Ранее мы уже отмечали, что стимулированные резонансные переходы ядер между уровнями энергии могут происходить под действием локальных полей, флуктуируюш их вследствие теплового движения атомов и молекул, если в спектре флуктуаций присутствуют частоты, соответствуюш ие резонансной частоте. Этими переходами обеспечивается энергетическая связь между спиновой системой и решеткой, в результате которой происходит выравнивание их температур. Мы рассматривали один из основных механизмов релаксации — магнитные диполь-диполь-ные взаимодействия. Однако, суш ествуют и другие физические взаимодействия, посредством которых энергия ядерных спинов может передаваться тепловому резервуару — решетке. Это электрические квадрупольные взаимодействия-, пространственная анизотропия электронного окружения ядра (анизотропия химического сдвига) скалярное ядерное или электронно-ядерное взаимодействие спин-вращательное взаимодействие, т. е. все те виды взаимодействия, которые обеспечивают возникновение на ядрах флуктуируюш его магнитного (или на квадруполь-ном ядре — флуктуируюш его градиента электрического поля) в результате движения атомов или молекул. Эти виды взаимодействий детально рассмотрены в [168, 171]. [c.257]

    Поперечная и продольная релаксации индуцируются процессами, происходящими на молекулярном уровне. Они отражают взаимодействие ядерного спина с его окружением. Скорости релаксации пропорциональны квадрату величины, характеризующей эти взаимодействия. В случае спин-решеточной релаксации, при которой осуществляется обмен энергией с окружением, эти взаимодействия оказываются промодулированными во времени, что происходит за счет взаимодействия спинов с флуктуирующими магнитными полями, вызывающими переходы между стационарными состояниями спиновой системы на частоте Ш/. Те же процессы, которые вызывают спин-решеточную релаксацию, ведут и к спин-спиновой релаксации, поскольку при спин-решеточной релаксации одновременно разрушается фазовая когерентность прецессии отдельных спинов. В то же время временная модуляция взаимодействий не является обязательным условием для разрушения фазовой когерентности процессы, не модулированные во времени, представляют собой дополнительный канал поперечной релаксации. [c.35]

    Броуновское движение молекул в жидкостях является основной причиной, определяющей зависимость от времени взаимодействий, наблюдаемых экспериментально. Возникающие на частоте 0)i магнитные шумы вызывают переходы между спиновыми состояниями, обеспечивая тем самым эффективный механизм спин-решеточной релаксации. Мерой вращательной подвижности является время корреляции вращательных движений Trot, т.е. характерное время, за которое молекула в целом или та ее часть, которая содержит рассматриваемый ядерный спин, повернется на угол, равный в среднем 1 рад. В жидкостях малой вязкости для малых молекул Trot по порядку величины равно 10 с, т.е. обычно выполняется следующее неравенство  [c.37]

    Для характеристики релаксационного процесса следует также иметь в виду так называемую спин-спиновую релаксацию, описывающую процесс установления равновесия в самой системе ядерных спинов. Из теории ЯМР известно, что ядра, прецессирующие вокруг направления постоянного магнитного поля, под действием вращающегося поля движутся в фазе с этим полем. При наличии поля прецессия ядер, из-за неоднородности магнитного поля в образце, выходит из фазы за время спин-спиновой релаксации T a- Этот интервал времени (также называемый временем поперечной релаксации) тем меньше, чем больше разброс магнитного поля Няок) и магнитогирическое отношение у)  [c.210]

    Физический смысл времени Гг вытекает из того, что эта константа времени требуется для описания спада поперечных компонентов ядерного магнитного момента, т. е. эта константа определяет время, необходимое для того, чтобы индивидуальные спины потеряли фазовую когерентность вращения друг относительно друга. Если ядерные спины находятся в несколько различных полях, обусловленных неоднородностью статического магнитного поля или отличиями в локальных магнитных полях, вызванными магнитными днпольными моментами их соседей сО (раздел И, А, 2 и И, Б, 1), то они будут прецессировать с раз-ными ларморовыми частотами, что приведет в конечном счете 3 к фазовой некогерентности. Изменения ориентации спинов магнитных моментов под влиянием спин-решеточной релаксации также дают вклад в этот эффект и, следовательно, влияют на Т . Поскольку ширина резонансной линии может быть обусловлена каждым из рассмотренных выше эффектов, то Т , как показывает количественный анализ, обратно пропорционально ширине линии. Гг называется также временем спин-спинового взаимодействия или временем спин-фазовой памяти. [c.17]

    Магнитные моменты ядер складываются в суммарный ядерный момент, создавая суммарную ядерную намагниченность образца. Когерентное движение ядерных магнитных моментов — это лар-моровская прецессия суммарного ядерного момента вокруг направления внешнего магнитного поля, при которой появляется поперечная ненулевая компонента ядерного магнитного момента. Чем больше поперечная составляющая прецессирующего магнитного момента, тем выше степень когерентности движения ядерных спинов. Потеря когерентности, т. е. исчезновение поперечной составляющей магнитного момента, происходит за время поперечной релаксации 7г и обусловлена разбросом частот прецессии ядерных спинов в результате этого фазы прецессии ядерных спинов хаотизируются и вектор суммарной поперечной намагниченности рассыпается . Отсутствие поперечных компонент (А1х или Му) магнитного момента соответстЁует некогерентному движению спинов. [c.28]


Смотреть страницы где упоминается термин Магнитная релаксация ядерных спинов: [c.11]    [c.164]    [c.99]    [c.271]    [c.64]    [c.24]    [c.44]    [c.129]    [c.355]    [c.378]    [c.46]   
Смотреть главы в:

Спектроскопические методы в химии комплексных соединений -> Магнитная релаксация ядерных спинов




ПОИСК





Смотрите так же термины и статьи:

Спин-эхо

Спины

Спины ядерные



© 2025 chem21.info Реклама на сайте