Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Водородная связь влияние на релаксацию

    К числу новых областей использования методов ДТА, ДСК и ТГА можно отнести [20] исследование структурной стабилизации природных ВМС (полисахаридов) при действии следов воды, определение межмолекулярных водородных связей, изучение переходов гидрогель-гидрозоль, характера релаксации энтальпии при переходе расплавов конструкционных полимеров в стеклообразное состояние, исследование фазовых переходов в смесях полимеров. С помощью дифференциального сканирующего микрокалориметра МС-2, способного анализировать жидкости под давлением, можно изучать термическое поведение водных дисперсий полимеров (латексов) [21]. Установка МС-2 может измерять не только температуру стеклования влажных латексов, но также и степень термообработки (релаксацию энтальпии), которая имеет большое влияние на деформирование частиц латекса и на процессы пленкообразования. [c.402]


    Параметр т, объединяет целый комплекс различных факторов, оказывающих влияние на молекулярное движение. Поэтому он должен зависеть от молекулярной массы, вязкости раствора, температуры и, возможио. других специфических факторов, таких, как водородные связи и pH раствора. Сравнивать величины различных молекул следует, полагаясь на опыт и химическую интуицию. Например, молекулы с большой массой в растворах обычно движутся медленнее легких н поэтому имеют большее Теперь нам нужно разобраться, каким образом изменения будут влиять иа времена релаксации и относи- [c.154]

    Сегментальное движение проявляется не только в системах, подверженных влиянию водородных связей и других химических взаимодействий. Во многих случаях большая масса молекулярного фрагмента является достаточной для существенного ограничения свободы движения связанной группы. Например, в Ы,М-ди-н-бутил-формамиде (ДБФ) атомы углерода, находящиеся в а-, Р-, у- и б-положениях относительно амидного атома азота, имеют времена релаксации, очень близкие ко временам релаксации четырех последних атомов дека-нола-1. Последствия увеличения массы фрагмента могут быть столь же существенны, как и последствия химических взаимодействий. Это подтверждается уменьшением сегментальной подвижности для н-бутанола. [c.231]

    Помимо факторов, оказывающих влияние на усадку при сжатии только что вспененного материала, некоторые структурные характеристики могут оказывать влияние на усадку, релаксацию напряжения и крип полностью отвержденного пеноматериала . К ним относятся тип поперечных связей, количество и природа концевых групп, а также наличие водородных связей в полимере. Поскольку все эти факторы могут быть в равной степени важными для уретановых эластомеров, обсуждению их посвящена гл. V. [c.322]

    Эта точка зрения, согласно которой вблизи поверхности белка имеется один или два слоя воды, очень сходной с объемной водой, но имеющей приблизительно в 100 раз большее время корреляции, согласуется с результатами измерения диэлектрической дисперсии в растворе белка [21, 22]. Эти данные обнаруживают распространение дисперсии, в данном случае диэлектрической проницаемости при высоких частотах, в область частот порядка нескольких сотен мегагерц, что является указанием на увеличение времени ориентационной релаксации фракции растворителя (воды). Мы определяем эту воду как молекулы воды в первой (а возможно, и во второй) гидратационной оболочке вблизи полярных групп, во многом аналогичные воде, которая обнаруживается рентгенографическим методом. Динамика этой воды изменяется пол влиянием стерических факторов и образования водородных связей с участием групп на поверхности белка. Эти требования могут быть выведены из результатов рентгенографического исследования. Время корреляции является по существу временем обмена - 10 с и вытекает из динамики диффузии растворителя вблизи поверхности. В частности, нельзя предположить, что обмен воды из этих слоев будет протекать более медленно. Если бы это происходило в интервале 10 —10 с, то это бы сказалось на величине члена А, но этого не наблюдается. Трудно представить себе такой тип связывания воды с поверхностью типичного белка, при котором молекулы воды удерживались бы у поверхности еще более длительное время и в то же время допускалась свободная реориентация молекул воды. Кроме того, следует вспомнить, что ориентационное время релаксации воды на поверхности раздела в замороженных растворах белка лишь немного больше, чем этот параметр прп —35°С (10 с) [2]. Поэтому имеется весьма мало оснований думать, что существуют молекулы-воды, время обмена для которых намного меньше 10 9 с. [c.177]


    Число реакций переноса водородных связей 2п /2 (2п /2 -числс возможных сочетаний из различных водородных связей по две). Примем, что каждое из элементарных событий реакций переноса и разрыва водородных связей вносит в среднем сравнимый по порядку величины вклад в поляризацию жидкости при наложении внешнего электрического поля. Тогда вклад реакций разрыва связей С-Н...С в диэлектрическую релаксацию нормальных алканов будет в раз меньше вклада реакций переноса этих связей /130/. Так, для молекул пропана на 60 реакций переноса С-Н,..С-связей приходится одна реакция разрыва связи. Для бутана это отношение больше 2500. Следовательно, влиянием реакций разрыва и образования водородных связей на времена диэлектрической релаксации > мдких алканов с 4 можно пренебречь. Диэлектрическая релаксация в алканах fi при /7 4 обусловлена практически полностью реакциями переноса водородных связей С-Н...С. [c.163]

    Выше представлено описание группы явлений, наблюдаемых при проведении экспериментов по ЯМР-д с растворами диамагнитных белков. Следует подчеркнуть, что полученные результаты отражают влияние растворенного белка и суспендированных клеток на усредненную динамическую предысторию молекул растворителя. Авторы формулируют на основании этих данных точку зрения на гидратацию и взаимодействия растворитель— белок и белок — белок, которые имеют гидродинамическую природу в масштабах, сравнимых с размером белковой молекулы, и кинетическую природу на уровне атомных размеров. Гидратация, в той степени, в которой она отождествляется с особым слоем воды на поверхности белка, относится к молекулам воды с определенной геометрией. Предполагается, что эта геометрия согласована с возможностями образования водородных связей с аминокислотными остатками, выходящими на поверхность макромолекулы, но эти молекулы воды могут быстро обмениваться с объемной водой. Любое замедление движения молекул растворителя обусловлено пространственными затруднениями, возникающими при их диффузии вблизи поверхности молекулы белка, особенно вблизи полярных групп. Шкала времени имеет порядок 10 с. Хотя это время соответствует в 100 раз более медленному движению, чем движение молекул растворителя, оно все же достаточно мало по сравнению с соответствующими временами релаксации во много раз больших по своим размерам молекул белка. Авторы не обнаружили никаких признаков существования особых связывающих центров со значениями времен обмена больше 10 9 с. [c.181]

    Влияние среды на времена спин-решеточной релаксации и химические сдвиги N-метилацетамида и N.N-диметилацетамида в растворителях, образующих водородные связи. [c.411]

    Изучение анион-радикалов замещенных нитробензолов в апротонных растворителях показало, что эти растворители вызывают заметные изменения в распределении электронов у атома азота в результате образования водородных связей [313]. На сверхтонкое взаимодействие, время релаксации и ширину полос влияет растворитель. В работе [314] рассматривается влияние растворителя на константы взаимодействия в ЭПР-снектре анионов. нитробензола в водных растворах ДМФ и полученные данные сравниваются [c.91]

    Относительно того, какие связи являются лабильными и каков механизм их действия, есть несколько точек зрения. К лабильным относятся связи с энергией разрушения, меньшей энергии связей—С—С—основных цепей, обычно это ионные, полисульфидные, водородные и др. Считают [75], что в серных вулканизатах полисульфидные связи легко разрушаются и восстанавливаются при деформации, что способствует выравниванию напряжений. Другая точка зрения [76] основана на том, что при комнатной температуре не обнаружено разницы в скоростях релаксации напряжения резин с разными связями, в том числе прочными, а также ионными и полисульфидными. Считают, что сами по себе эти связи в данных условиях не являются лабильными. Автор объясняет их положительное влияние на прочность тем, что они при повышенной температуре в условиях вулканизации обусловливают полную релаксацию внутренних напряжений [77]. Это не подтверждается, однако, данными об уменьшении прочности резины из СКИ-3 при обработке ее после вулканизации, приводящей к уничтожению полисульфидных связей, уменьшению степени их сульфидности [77]. Правда, вопрос этот недостаточно ясен, так как при такого рода обработке менялись и некоторые другие параметры сетки полимера в то же время аналогичная операция с НК не приводила к изменению его прочности [77]. [c.62]

    Для протекания стадии транскарбоксилирования необходимо присутствие определенного, связанного с белком иона двухвалентного металла, обычно Мп +. Это обстоятельство позволило исследовать геометрию связывания субстратов относительно Мп + релаксационными методами (ЭПР и ЯМР) [8—10]. Роль металла может состоять прежде всего в облегчении енолизации акцептора карбоксила. Однако в случае пиру-ваткарбоксилазы анализ влияния связанного Мп + на времена релаксации С в субстрате показал, что расстояние между карбонильным углеродом и составляет 0,7 нм. Это слишком большое расстояние, чтобы можно было предположить образование прямой координационной связи между металлом и карбонильным кислородом. Другое довольно привлекательное объяснение состоит в допущении образования связи между металлом и карбонильной группой биотина, как показано в уравнении (8-7) результатом (который мог бы быть вызван и образованием водородной связи с протоном) будет улучшение свойств биотина как уходящей группы в реакции замещения [11]. [c.198]


    Внутримолекулярная водородная связь является преобладающей только для разбавленных растворов ( 0,05 М) эфиров. По мере увеличения концентрации возрастают межмолекулярные водородиы -связи эфиров. Количественное изучение этой связи чрезвычайно затруднено из-за наличия в объеме жидкости единой сетки водородных связей. Приходится пользоваться косвенными методами, которые основаны на измерении влияния добавок, разрушающих ши упрочняющих водородные связи эфирных растворов плотность и вязкость [7], теилота смешения и изменение температуры замерзания [8], изменение диэлектрической проницаемости и релаксации [9], рассеяние света и электронная парамагнитная релаксация [10]. [c.290]

    Двоякое поведение жидкой воды следует также из большого числа других экспериментальных данных. Так, зависимость плотности воды от температуры и понижение температуры максимальной плотности жидкости с возрастанием давления можно хорошо объяснить, если учесть возможность самоперехода объемной структуры воды в более плотную форму. Таким же образом вызываемые давлением разрушения объемной структуры с образованием в жидкости менее плотных компонентов можно объяснить влиянием температуры на вязкость воды, находящейся под высоким давлением [33]. Данные по поглощению ультразвука водой также согласуются с развитыми представлениями о пребывании воды в виде двух отличающихся по состоянию жидкостей. Минимум, наблюдаемый при 55° на кривой поляризуемость электрона — температура, объясняется термическим разрушением структурных пустот и степенью заполнения этих пустот ближайшими молекулами воды [35]. Кроме этого, близкие значения энергии активации диэлектрической релаксации, ламинарного потока и самодиффузии (4,6 ккал/люль) также позволяют предположить, что лимитирующей стадией для всех этих процессов является разрушение структуры [36]. Количественная обработка такого двойственного поведения воды дает возможность определить степень разрушения водородных связей, которая меняется в зависимости от выбранной модели от 0,1 до 70% при 0° [37]. Очевидно, эти величины относятся к различным моделям или к различным степеням разрушения водородных связей. Как следует из данных по дисперсии рентгеновских лучей, многие физические свойства воды, которые свидетельствуют о ее существовании в двух жидких состояниях, можно объяснить, используя существенно отличающиеся друг от друга модели [29, 38]. Следовательно, точное определение природы менее связанного плотного состояния воды представляет значительную трудность, [c.15]

    В данной главе приведены сведения по технике измерения дифракции рентгеновских лучей и рассеяния нейтронов, а также обобщены типичные результаты применения этих методов для исследования структуры и динамики поведения воды и ионных растворов. Такие взаимодополняющие измерения дают прямую информацию на молекулярном уровне для проверки существующих теорий или развития и усовершенствования полуэмнирических моделей жидкостей. Имеются данные, указывающие на то, что структура воды оказывает значительное влияние на гидратацию ионов и структуру растворов. Однако все еще нет достаточно общих моделей, описывающих как структуру воды и водных растворов, так и соответствующие индивидуальные и групповые движения молекул. Тем не менее в настоящее время данные дифракции рентгеновских лучей и нейтронной спектроскопии вместе с данными, полученными другими методами, могут дать много необходимых (и, возможно, достаточных) ограничений, налагаемых на количественные модели. В периоды времени, малые по сравнению с временем релаксации, вода ведет себя как "горячее", или высоковозбужденное, "квазитвердое" тело с дефектами в водородных связях и квазитетраэдрическим ближним порядком. [c.298]

    Кроме реакций переноса Н-связи на диэлектрическую проницаемость жидких алканов влияют реакции разрыва и образования водородных связей С -Н,..Су. Каждая из СНд- и СН2-групп молекулы алкана, как правило, участвует в образовании двух связей С/,..Н-Су. Если образуется третья связь, то система перевозбуждается и одна из связей рвется. Среднее число связей, приходящихся на одну мачеку-пу. flH2n l 2 2п. Следовательно, молекула может участвовать в 2 п различных реакциях образования и разрыва водородных связей. Число реакций переноса водородных связей 2п /2 ( 2п /2 -числс возможных сочетаний из различных водородных связей по две). Примем, что каждое из элементарных событий реакций переноса и разрыва водородных связей вносит в среднем сравнимый по порядку величины вклад в поляризацию жидкости при наложении внешнего электрического поля. Тогда вклад реакций разрыва связей С-Н. С в диэлектрическую релаксацию нормальных алканов будет в раз меньше вклада реакций переноса этих связей /130/. Так, для молекул пропана на 60 реакций переноса С-Н,..С-связей приходится одна реакция разрыва связи. Для бутана это отношение больше 25 00. Следовательно, влиянием реакций разрыва и образования водородных связей на времена диэлектрической релаксации > идких алканов с 4 можно пренебречь. Диэлектрическая релаксация в алканах С/ 2п+2 П- 4 обусловлена практически полностью реакциями перекоса водородных связей С-Н. ..С. [c.163]

    Вебером исследовано также влияние на овальбумин температуры, кислот и других факторов. Наблюдаемое в ряде случаев увеличение времени релаксации вращения автор объясняет ассоциацией макромолекул, осуществляющейся, по-В1ЗДИмому, водородными связями. Не останавливаясь подробно на результатах этих работ, важных для биохимии, отметим только, что поляризационный метод оказался весьма плодотворным. [c.340]

    Рнс. 3.3. Влияние флуктуационного свободного объема ь (по данным метода диэлектрической релаксации) на изменение Ор (а, кривые 1, / ) и 7 (6) в ряду полимергомо-логов на основе ЭД-24 ДХ а, кривые 2, 2 ) — энергия водородных связей [c.51]

    Очень вероятно, что, помимо разрушения первичных химических связей, большое влияние на крип и релаксацию напряжения полиуретанов оказывает разрушение вторичных связей водородных и ван-дер-ваальсовых сил притяжения . Все уретановые полимеры содержат большое количество групп, которые могут принимать участие в межмолекулярных взаимодействиях, и можно предполагать, что значительная доля прочности при растяжении и сжатии этих полимеров обусловлена наличием этих сил межмолекулярного взаимодействия. Более того, эти связи разрушаются сравнительно легко и поэтому не- [c.406]


Смотреть страницы где упоминается термин Водородная связь влияние на релаксацию: [c.173]    [c.235]    [c.89]    [c.365]    [c.85]   
Руководство по ядерному магнитному резонансу углерода 13 (1975) -- [ c.231 ]




ПОИСК





Смотрите так же термины и статьи:

Водородные связи

Связь водородная, Водородная связь



© 2025 chem21.info Реклама на сайте