Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Глицин в белках

    Были получены масс-спектры продуктов пиролиза следующих биообъектов аминокислот (глицина, серина, валина) дипептидов (аланил-глицина, аланил-серина, аланил-валина, глицил-валина) трипептида (аланил-глицил-глицина) белков (бычьего и яичного альбумина н глобина). [c.49]

    Специфические для низкой температуры гены, гены богатых глицином белков [c.27]

    Аминокислоты и белки. Большое биологическое значение имеют аминокислоты — соединения со смешанными фунК циями, в которых, как в аминах, содержатся аминогруппы — N11 и одновременно, как в кислотах,— карбоксильные группы —СООН. В качестве примера можно привести простейшие аминоуксусную кислоту, или глицин, и аминопропионовую кислоту, или аланин. Строение других природных аминокислот этого типа можно выра-зить приведенной ниже общей формулой (где R — углеводородный радикал, который может содержать и различные функциональные группы)  [c.497]


    Очевидно, эта аминокислота не проявляет особенно интересных химических свойств, а ее биологическое значение сводится к роли структурного элемента в тех случаях, когда важно располол<ить структуру в небольшом объеме (компактно). Структурные белки (коллаген, шелк, шерсть) содержат значительные количества глицина. [c.28]

    Отсюда ясно, что для успешного синтеза белков необходимо последовательное присоединение аминокислот с малой степенью образования побочных продуктов. Этого можно добиться, используя защитные группировки для аминогрупп, карбоксильных групп и боковых цепей, потенциально способных участвовать в реакции. В качестве примера вернемся к синтезу Gly-Ala если аминогруппа глицина защищена (превращена в химически неактивную), то взаимодействие молекул глицина между собой невозможно. Далее, если карбоксильная группа аланина также защищена, то единственная возможная реакция — взаимодействие карбоксильной (активированной) группы глицина и аминогруппы аланина с образованием искомого дипептида. [c.68]

    Белки подразделяют на дре большие группы простые и сложные. Простые белки гидролизуются кислотами или щелочами. В среднем в их состав входят 50 % С, 7 % Н, 23 % О, 16 % N и 3 % 8. Все природные аминокислоты оптически активны (кроме глицина) и принадлежат, за редким исключением, к Ь-ряду. [c.272]

    Макромолекулы простейшего белка—фиброина шелка—состоят из отдельных звеньев, образованных сочетанием глицина МН,СИ,СООН и аланина МН,СН(СН,)СООН  [c.10]

    Мы уже указывали, что для белков характерна амидная, или пептидная, связь. Эта связь образуется в результате конденсации (см. разд. 24.4 и 24.5) двух аминокислотных молекул. В качестве примера укажем, что аланин и глицин образуют [c.447]

    Все аминокислоты природных белков являются -аминокислотами и, кроме глицина, не имеющего асимметрического атома, содержат такую же асимметрическую группировку, как -аланин [c.279]

    При сопоставлении полученных результатов обнаружилось два чрезвычайно интересных факта. Прежде всего оказалось, что, хотя у разных представителей животного мира строение определенного гормона очень сходно, все же существуют четкие видовые различия. Так, например, инсулин, выделенный из организма кита и свиньи, совершенно тождествен, в то время как инсулин лошади отличается тем, что одна из 51 аминокислоты (серин) заменена на другую — глицин. Эти наблюдения дают право говорить, что био-логия с помощью химии приближается к возможности устанавливать видовые различия не по строению скелета, органов, а по химическому строению характерных для организма белков. [c.343]


    Первое исходное вещество — глицин — образуется при гидролизе клея, полученного из субпродуктов животных, второе — аланин — можно получить почти из всех белков. [c.19]

    Названия аминокислот производятся от названий соответствующих кислот с добавлением приставки амино-. Однако аминокислоты, входящие в состав белков, имеют также исторически сложившиеся практические названия, например аминоуксусная кислота иначе называется гликоколом или глицином, аминопропионовая — аланином и т. д. [c.345]

    При нагревании в кислых или щелочных растворах белки подвергаются гидролизу с образованием веществ, называемых аминокислотами. Аминокислоты представляют собой карбоновые кислоты, в которых один атом водорода замещен аминогруппой —ННг. Аминокислоты, получаемые из белков, имеют альфа-аминогруппу, присоединенную к атому углерода, связанному с карбоксильной группой их называют а-ами-нокислотами (так как такой атом углерода называется а-атомом углерода). Простейшей из этих аминокислот является а-аминоуксусная кислота— глицин СН2(НН2)СООН. Другие природные аминокислоты, в молекулах которых один из атомов водорода у а-атома углерода заме- [c.384]

    В период 1900—1910 гг. немецкому химику Эмилю Фишеру (1852— 1919) удалось получить убедительные данные, свидетельствующие о том, что аминокислоты в белках соединены в длинные цепи, называемые полипептидными цепями. Так, две молекулы глицина могут соединяться и образовывать двойную молекулу глицилглицина, приведенную на рис. 14.2 при образовании такой молекулы выделяется вода. Возникшая связь называется пептидной связью. Процесс образования [c.391]

    Три важных фактора — индуктивный эффект, эффект поля и резонансный эффект — могут сильно влиять на поведение органических кислот и оснований, включая и биологически важные а-аминокислоты. В водном растворе, обычной среде нротекания биологических реакций, эти эффекты обусловливают большое разнообразие свойств, так что процессы диссоциации могут происходить во всем диапазоне pH. Это вал<но, потому что белки, построенные из аминокислот, в зависимости от своего аминокислотного состава могут принимать участие в кислотно-основных превращениях. Действительно, в упрощенном виде диссоциацию аминокислот можно рассматривать как миниатюрную модель диссоциации белка. В биохимических реакциях важные функции выполняют белки, и аналогия с аминокислотами может слу кить основой для понимания процессов передачи протонов. Однако такая модель слишком упрощена. Она не учитывает кооперативные взаимодействия. Например, как поведет себя лизин при диссоциации под действием линейно-расположенных положительно заряженных аминокислотных остатков, входящих в состав белка Далее, каким образом близко расположенная гидрофобная область белковой молекулы (т. е. область с более Ш13-кой диэлектрической проницаемостью) влияет на ее диссоциацию в данном химическом процессе То, что в этом случае можно ожидать значительных изменений, видно из поведения глицина при диссоциации в среде с низкой диэлектрической проницаемостью например, в 95%-ном этаноле (рКа карбоксильной группы глицина равен 3,8, а аминогруппы 10,0). Можно было бы подумать, что в этом случае но кислотности глицин близок к уксусной кислоте, но это не так, поскольку для последней р/( равен 7,1. [c.42]

    Вычислить, во сколько раз будут различаться коэффициенты диффузии глицина (мол. вес 75) и глобулярного белка уреа-зы (мол. вес 480 ООО) в воде. [c.271]

    Две молекулы хирального вещества, являющиеся зеркальными отражениями друг друга, называются энантиомерами. Поскольку два энантиомера не являются точной копией друг друга, их называют изомерами. Описанный тип изомерии называется конфигурационной, или оптической, изомерией. Для того чтобы различить образующие пару энантиомеры, один из них обозначают символом R (от латинского re tus -правый), а другой символом S (от латинского sm/ster-левый) или соответственно о (от латинского dexter-правый) и l (от латинского /аеми - левый). Энантиомеры любого хирального вещества обладают одинаковыми физическими свойствами, например растворимостью, температурой плавления и т. п. Их химическое поведение по отношению к обычным химическим реагентам также неразличимо. Однако они различаются своей реакционной способностью по отношению к другим хиральным молекулам. Поразительно, что все природные аминокислоты обладают s-, или L-, конфигурацией у углеродного центра (исключение составляет глицин, не относящийся к хиральным соединениям). Только аминокислоты с такой конфигурацией у хирального углеродного центра биологически эффективны в образовании полипептидов и белков в большинстве организмов пептидные связи образуются в клетках при таких специфических условиях, которые неодинаковы для энантиомерных молекул. [c.445]

    Глицин (а-аминоуксусная кислота, гликокол) — СНа — СООН — однй из самых распространенных в природе аминокислот, входит в состав белков бесцветные кристаллы, т. пл. 232— 236° С, растворимы в воде. Г. выделяют из желатина, фиброина, шелка, а также синтезируют. Г. применяется для органического синтеза, для приготовления буферных растворов, в аналитической химии в качестве стандарта для определения аминокислот, для количественного определения Си, Ag. [c.78]


    Глицин является простейшей из 20 различных аминокислот, входящих в состав белков человеческого тела. Все они относятся к т. н. а-аминокислотам, т. е. содержат группы —ЫНг и —СООН при одном и том же атоме углерода. Их общая формула, как правило, имеет вид НгЫС (Н) (Н)СООН с различными радикалами К. Часть этих аминокислот (одиннадцать) может быть синтезирована самим человеческим организмом, а остальные (девять) являются незаменимыми, т. е. должны входить в состав пищи. По использованию смесей аминокислот в питании человека имеется обзорная статья .  [c.566]

    По форме молекул белки можно приблизительно делить на две группы — склеропротеины и сферопротеины. Первые имеют волокнистую структуру и служат строительным материалом тканей. К ним относится коллаген, содержащийся в коже, сухожилиях, хрящах и костях. Коллаген построен в основном из глицина, пролина и оксипролина. При частичном гидролизе он превращается в желатину. Коллаген составляет почти одну треть всех животных белков. Другие склеропротеины — кератин, содержащийся в волосах, ногтях, перьях и шерсти, и фиброин из натурального шелка. В мышечных волокнах присутствуют главным образом белки миозин и актин. Они не растворяются в воде и активно участвуют в механохимических процессах, обусловливающих работу мышц. Поскольку тела млекопитающих примерно на 40% состоят из мышц, оба этих белка относятся к наиболее распространенным органическим соединениям в организмах млекопитающих. [c.194]

    Глицин и аланин — простейшие из аминокислот, входящих в состав белков. Из природных белковых веществ выделено свыше 20 различных аминокислот. Среди них имеются и другие одноосновные моноаминокислоты, подобные глицину и аланину, а также двухосновные и диаминокислоты. Многие из аминокислот белков содержат, кроме карбоксильных и аминогрупп, и другие группировки гидроксильные, серусодержащие, радикалы ароматических (стр. 330) и гетероциклических (стр. 411, 424) соединений и др. [c.279]

    Как известно, все аминокислоты, за исключением глицина, имеют асимметрический атом углерода в а-положении. Все они относятся к /-аминокислотам и обладают одними и теми же заместителями у а-углерода группами —NH2 и —СООН и боковой цепью, характерной для каждой аминокислоты. Долгое время полагали, что оптическое вращение полипептидов и белков является аддитивным свойством и зависит исмючительно от доли, вносимой каждым аминокислотным остатком в отдельности. Однако значительный рост левого вращения белков при денатурации (от —50 до —100°) и при застудневании желатины приводит к выводу, что эти изменения связаны с конформационными изменениями полипептидной цепи. При исследовании эмпирическую величину удельного оптического вращения [а] заменяют на величину эффективного вращения цепи [т  [c.362]

    Как только аммиак или ион аммония появился в почве, он может быть поглощен корнями растений, а азот введен в состав молекулы аминокислоты, а затем и белка. При питании растениями животный организм может перевести азот в состав других белков. Так или иначе этот белок в конце концов возвращается в почву, где и разлагается обычно с помощью бактерий на составляющие его аминокислоты. Если условия аэробны, почва всегда имеет в себе микроорганизмы, окисляющие аминокислоты до СО 2, И 2О и N14 3- В случае глицина при этом выделяется 176 ккал1моль. [c.366]

    Санжер установил полную последователшость аминокислот в инсулине при помощи частичного гидролиза химотрипсином (1949—1950) и показал, что рассчитанный теоретически молекулярный вес (5734) близок к экспериментальным данным. Он нашел, что в молекуле белка одна полипептидная цепь (цепь А) имеет N-концевой глицин эта цепь связана дисульфидными связями со второй цепью (цепью В), имеющей N-концевой остаток фенилаланин. Окисление надмуравьиной кислотой расщепляет связь S—S, и образуются два цистеинилпептида. [c.698]

    Коллаген — основной фибриллярный белок кожи, сухожилий, хрящей, костей, роговицы глаза, стенок артерий и других тканей. Коллаге-новые фибриллы — важный компонент межклеточного вещества, цементирующего клетки в тканях (важными связующими веществами являются также гиалуроновая кислота и другие мукополисахариды). От большинства других белков коллаген отличается высоким содержанием остатков пролина и оксипролина, которые составляют 25% всех аминокислотных остатков, а также глицина, остатки которого составляют 34%. В процессе синтеза коллагена вначале образуется белок проколлаген. Он не содержит оксипролина и коллаген образуется пз него при гидроксилировании примерно половины остатков пролина. Для протекания реакции гидроксилирования необходим витамин С. [c.434]

    По структуре коллаген отличается от других фибриллярных белков. Каждая полипептидная цепь имеет конформацию левой спирали, а три такие цепи удерживаются вместе водородными связями и образуют правую трехнитевую спираль. Исходя из этой структуры, можно понять, почему каждый третий аминокислотный остаток в полипептидной цепи коллагена — глицин три цепи удерживаются межцепочечны-ми водородными связями так тесно, что пространство между ними до-статочно лишь для боковой цепи, размеры которой не больше атома водорода. Расположенные плотно цепи атомов, соединенные ковалентными связями, обеспечивают такому фибриллярному белку исключительную прочность — волокно сухожилий имеет почти такой же предел прочности на растяжение, как и проволока из малоуглеродистой стали того же диаметра. В сухожилиях полипептидные цепи вытянуты вдоль оси ткани, в то время как ткань роговицы глаза образована чередующимися слоями, в которых цепи расположены под прямыми углами одна относительно другой. [c.435]

    Фирма IBF рекомендует следующие стандартные условия для такой посадки. Активированный гель уравновешивают 0,5 М фосфатным буфером (pH 7,6) и вносят в раствор белка в том же буфере из расчета 5—10 мг белка на 1 мл геля. Можно использовать и другие-буферы, не содержащие первичных аминов, с pH в интервале 6,9— 8,5. Инкубацию проводят с перемешиванием при 4 в течение 18 ч. Если биологическая устойчивость лиганда это допускает, инкубацию можно вести и при комнатной температуре, сократив ее продолжительность. Излишек лиганда отмывают на фильтре 8—10 объеигами того же буфера. Затем осуществляют блокировку незанятых активных групп 0,1 М раствором забуференного (pH 7,5—8,5) этаноламина в течение 3 ч при 4° можно пспользовать также растворы Триса, глицина, /) у-лизина и др. Гель снова промывают 8—10 объемами того же буфера с добавлением до 0,15 М Na l, потом уравновешивают буфером для аффинной хроматографии и хранят в суспензии на холоду с добавкой 0,02% мертиолата или азида натрия. [c.381]


Смотреть страницы где упоминается термин Глицин в белках: [c.60]    [c.21]    [c.22]    [c.72]    [c.385]    [c.197]    [c.143]    [c.370]    [c.308]    [c.643]    [c.646]    [c.648]    [c.669]    [c.46]    [c.523]    [c.588]    [c.247]    [c.516]    [c.83]   
Основы биохимии Т 1,2,3 (1985) -- [ c.175 , c.177 , c.180 , c.191 ]




ПОИСК





Смотрите так же термины и статьи:

Глицин

Глициния



© 2024 chem21.info Реклама на сайте