Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гликоген окисление

    Дрожжи и другие микроорганизмы растут анаэробно, и мышцы запасают существенную энергию за короткий срок без потребления молекулярного кислорода. Кислородное расщепление жиров и окисление ацетилкофермента А в цикле трикарбоновых кислот (разд. 16.2)—параллельные источники энергии для мышечной деятельности. Во время отдыха гликоген вновь синтезируется в печени из молочной кислоты по механизму, обратному процессу гликолиза. Альтернативно пировиноградная кислота, получаемая прямо при гликолизе или путем восстановления молочной кислоты, может далее окисляться в ацетилкофермент А (разд. 16.2), который затем участвует в цикле трикарбоновых кислот. [c.279]


    Сложные процессы метаболизма, запасания и расходования энергии пространственно локализованы в клетках. Дыхание реализуется в мембранах митохондрий, фотосинтез — в мембранах хлоропластов. Биохимические процессы эволюционно адаптированы. Так, у животных пустынь и у птиц главным источником метаболической энергии является жир, а не гликоген. В пустыне надо обеспечивать не только максимальный выход энергии, но и максимум образования воды — при окислении жира производится вдвое больше воды, чем при окислении гликогена. Для птиц существенна меньшая масса жира. Масса гликогена и связанной с ним воды в 8 раз больше, чем масса жира, дающая при окислении то же количество энергии. [c.54]

    В мышцах и других тканях углеводы (гликоген и глюкоза) служат главным источником энергии. При достаточном снабжении кислородом они подвергаются там окислению до СОг и воды. При недостатке, кислорода, что имеет место, например, при усиленной работе, преобладает анаэробный распад угле- [c.126]

    Содержание гликогена в печени человека и животных зависит от режима питания. Понятно, что чем больше потребляется пищи, богатой углеводами, тем выше содержание гликогена в печени. Правда, гликоген, как мы увидим далее, образуется в печени также и из продуктов распада белков, однако главная масса гликогена образуется все же из всосавшихся моносахаридов. После длительных и обильных приемов пищи, богатой углеводами, содержание гликогена в печени человека может доходить до 150 г. Часть глюкозы всегда проходит в неизмененном виде через печень, поступает в большой круг кровообращения и разносится с током крови по всему телу. Из крови все ткани черпают глюкозу, покрывая за счет окисления ее свои энергетические потребности. [c.244]

    Новейшие исследования вполне подтверждают возможность превращения в организме животных высших жирных кислот, входящих в состав нейтральных жиров, в 5-оксимасляную и ацетоуксусную кислоты. В частности, такое превращение наблюдается при пропускании растворов высших жирных кислот с четным числом углеродных атомов через переживающую печень, бедную гликогеном. Таким образом, р-оксимасляная и ацетоуксусная кислоты действительно являются промежуточными продуктами окисления жирных кислот. [c.291]

    Подчеркнем также, что хотя ресинтез гликогена из ранее образовавшейся молочной кислоты за счет использования энергии окислительных процессов (так называемая реакция Мейергофа) и вполне возможен, тем не менее это отнюдь не означает, что при работе мышцы в условиях хорошего снабжения кислородом углевод сначала распадается на молочную кислоту, а затем уже последняя подвергается окислению и частичному превращению в гликоген. Напротив, в настоящее время установлено, что в аэробных условиях углевод окисляется в тканях, в частности в мышцах, распадаясь пе до молочной, а до пировиноградной кислоты. Именно пировиноградная кислота и вовлекается дальше в цикл трикарбоновых кис-.лот, сгорая в конечном счете до СО2 и Н2О (см. главу Обмен углеводов ). [c.429]


    По данным Мейергофа, ресинтез гликогена сопряжен с окислением некоторой (от до /д) части молочной кислоты до СОа и HgO. Основная масса молочной кислоты превращается при этом в гликоген. [c.452]

    Слол<ные углеводы, поступающие в организм вместе с пищей, под действием ферментов распадаются в кишечнике на различные моносахариды, которые всасываются и разносятся током крови по все,му телу. Осо-бенно большую роль в жизнедеятельности организма играет глюкоза (стр. 228), образующаяся из различных сахаров и гликопротеидов. Поступая с током крови в печень, часть глюкозы подвергается сложному процессу окисления до двуокиси углерода и воды, а освобождающаяся при это.м энергия расходуется клетками печени при многочисленных протекающих в ней химических реакциях. Часть глюкозы превращается в печени в жиры, а часть-г в полисахарид гликоген (животный крахмал). [c.449]

    Аэробный путь. Образовавшаяся молочная кислота диффундирует в кровяное русло и переносится кровью в печень, где подвергается своеобразным превращениям. Можно было бы ожидать, что организм окисляет всю молочную кислоту до двуокиси углерода и воды и в таком виде выводит ее из организма. Однако этого не происходит. В печени молочная кислота превращается в гликоген Это превращение идет с потреблением энергии. Если гликолиз идет с выделением энергии (т. е. образуется АТФ), то процесс, обратный гликолизу, должен идти с поглощением энергии (т. е. с потреблением АТФ). С этой целью, т. е. для снабжения энергией процесса синтеза гликогена, некоторое количество молочной кислоты подвергается окислению до двуокиси углерода и воды. Около 1/6 молочной кислоты окисляется в печени, чтобы обеспечить обратное превращение в гликоген остальных 5/6 молочной кислоты. Окисления незначительной доли молочной кислоты [c.379]

    Жирные стрелки указывают направление анаэробных превращений (гликолиза). Тонкие стрелки показывают, что данная реакция обратима. Они показывают, каким образом молочная кислота может вновь превратиться в гликоген. Так как в процессе гликолиза вырабатывается энергия (3 молекулы АТФ на 1 глюкозную единицу гликогена), обратный процесс идет с поглощением энергии. Главным источником энергии (АТФ) является цикл лимонной кислоты, в процессе которого примерно 1/6 выработанной при гликолизе молочной кислоты подвергается дальнейшему окислению. За счет образовавшейся при этом энергии (АТФ) делается возможным превращение остальных 5/6 частей молочной кислоты в гликоген. [c.471]

    Наиболее важным процессом при превращении аминокислот является удаление аминогруппы и замещение ее кислородом с образованием кетокислот, которые затем используются как источники энергии. Аминный азот, освободившийся при окислительном дезаминировании, вовлекается в орнитиновый цикл для последующего образования мочевины. Образовавшиеся при окислительном дезаминировании кетокислоты подвергаются дальнейшему окислению в цикле трикарбоновых кислот или используются для образования других веществ. По способности образовывать ацетоуксусную кислоту и глюкозу одна группа аминокислот относится к гликогенным (все заменимые кислоты), а другая — к кетогенным (лейцин, лизин, триптофан). Ряд аминокислот (метионин, цистин, изолейцин, фенилаланин, тирозин) по способу своего превращения может относиться как к той, так и к другой группе. [c.7]

    Были проделаны специальные опыты с изолированными мышцами животных. Если мышца работает в атмосфере, лишенной кислорода, то обычно источником энергии является гликоген, превращающийся в глюкозу. Молочная кислота — продукт окисления глюкозы — остается в тканях, и очень скоро деятельность мышцы прекращается. В опытах с изолированными мышцами сокращение мышцы (ее работа) вызывалась действием электрического тока. В ответ на раздражение током она сокращалась. При значительном накоплении в клетках молочной кислоты мышца теряла способность отвечать на раздражения. [c.113]

    Если отравленную продуктом собственной жизнедеятельности мышцу перенести в атмосферу кислорода, то картина меняется. Начинаются два процесса окисление молочной кислоты, результатом которого являются дополнительное и очень существенное по масштабам выделение энергии, и синтез гликогена. Оказывается, что процессы постепенного превращения гликогена в глюкозу и затем в молочную кислоту во всех своих важнейших стадиях обратимы. Биохимическая машина может работать навыворот и из конечных продуктов опять создавать сырье. Некоторая часть молочной кислоты — конечного продукта гликогенолиза (разложение гликогена) вновь переходит в сырье — гликоген. [c.113]

    При жидкофазном окислении основные комплексные полимеры, составляющие органическую часть ила, вначале распадаются на более простые, причем гораздо быстрее, чем уменьшается ХПК. При низких температурах наиболее легко разлагается крахмал, затем клетчатка липиды наиболее устойчивые. Протеины в основном гидролизуются до аминокислот, липиды — до свободных жирных кислот и стеролов, полисахариды, такие как крахмал и гликоген, — до устойчивых сахаров. [c.88]


    Если человек отдыхает или работает без перегрузки, то обратимая реакция превращения пировиноградной и молочной кислот протекает очень легко. Обе эти кислоты в значительной степени превращаются снова в гликоген после возвращения в печень в виде молочной кислоты. Пировиноградная кислота частично подвергается аэробному окислению. [c.329]

    Одной из широко распространенных химических постсинтетических модификаций является фосфорилирование остатков серина и треонина, например, в молекуле гистоновых и негистоновых белков, а также казеина молока. Фосфорилирование-дефосфорилирование ОН-группы серина абсолютно необходимо для множества ферментов, например для активности гликоген-фосфорилазы и гликоген-синтазы. Фосфорилирование некоторых остатков тирозина в молекуле белка в настоящее время рассматривается как один из возможных и специфических этапов формирования онкобелков при малигнизации нормальных клеток. Хорошо известны также реакции окисления двух остатков цистеина и образование внутри- и межцепочечных дисульфидных связей при формировании третичной структуры (фолдинг). Этим обеспечивается не только защита от внешних денатурирующих агентов, но и образование нативной конформации и проявление биологической активности. [c.533]

    Помимо прямых переходов метаболитов этих классов веществ друг в друга, существует тесная энергетическая связь, когда энергетические потребности могут обеспечиваться окислением какого-либо одного класса органических веществ при недостаточном поступлении с пищей других. Важность белков (в частности, ферментов, гормонов и др.) в обмене всех типов химических соединений слишком очевидна и не требует доказательств. Ранее было отмечено большое значение белков и аминокислот для синтеза ряда специализированных соединений (пуриновые и пиримидиновые нуклеотиды, порфирины, биогенные амины и др.). Кетогенные аминокислоты, образующие в процессе обмена ацетоуксусную кислоту (ацетоацетил-КоА), могут непосредственно участвовать в синтезе жирных кислот и стеринов. Аналогично могут использоваться гликогенные аминокислоты через ацетил-КоА, но после предварительного превращения в пируват. Некоторые структурные компоненты специализированных липи- [c.546]

    Гликоген — гомополисахарид, построенный из D-глюкозы. Методами метилирования , периодатного окисления " , частичного кислотного гидролиза и ферментативного pa щeплeния " доказано, что он является ближайшим аналогом амилопектина (см. стр. 534), т. е. обладает ветвистой структурой, построенной из а-1—4-связанных остатков D-глюкопиранозы со связями а-1 6 в точках разветвления. Отличие от амилопектина сводится к большей разветвленности и более тесной упаковке полимерной молекулы . Так, типичные гликогены имеют среднюк> длину цепи 10—14 моносахаридных остатков, из которых на внешние цепи приходится 6—10, а на внутренние —2—4 (см. рис. 11). В соответствии с этим р-амилаза гидролизует гликоген только на 40—50%, а R-фермент, расщепляющий связи а-1- 6 в амилопектине и р-декстринах, на гликоген не действует, по-видимому, из-за пространственных затруднений, создаваемых высокой степенью разветвленности . С другой стороны, конка-навалин-А—белок, не взаимодействующий с амилопектином, образует с гликогеном нерастворимый комплекс, причем существует линейная зависимость между способностью к комплексообразованию и степенью разветвления полисахарида . [c.540]

    Примером такого рода полисахаридов может служить гликоген из дрожжей (Sa haromy es erevisiae) При кислотном гидролизе его получена глюкоза с выходом 96% определение молекулярного веса ультрацентрифугированием дает значения порядка 2-10 . Результаты метилирования, периодатного окисления, частичного кислотного гидролиза и ферментативного гидролиза под действием а-амилазы и 3-амилазы указывают на высокоразветвленную структуру гликогена со средней длиной цепи 11 —13 остатков глюкозы внешние цепи содержат в среднем восемь остатков глюкозы. Близкие по строению полисахариды выделены из микроорганизмов самых различных классов. [c.545]

    Хотя подавляющее большинство цианобактерий являются облигатными фототрофами, в природе они часто находятся длительное время в условиях темноты. В темноте у цианобактерий обнаружен активный эндогенный метаболизм, энергетическим субстратом которого служит запасенный на свету гликоген, ка-таболизируемый по окислительному пентозофосфатному циклу, обеспечивающему полное окисление молекулы глюкозы. На двух этапах этого пути с НАДФ Н2 водород поступает в дыхательную цепь, конечным акцептором электронов в которой служит О2. [c.314]

    В таких сильно разветвленных полисахаридах, как гликоген и амилопектин, степень разветвленности настолько велика, что восстанавливающая концевая группа составляет ничтожную долю всего полимера. Таким образом, определение количества муравьиной кислоты, выделившейся при периодатном окислении, дает отношение числа центральных моносахаридных остатков к числу невосстанавливающих концевых групп, а это, в свою очередь, дает возможность определить среднюю длину цепей разветвленного полисахарида. [c.310]

    Молочная кислота образуется в мышцах в анаэробных условиях и является конечным продуктом гликолиза. Количество образовавшейся молочной кислоты эквивалентно количеству распавшейся глюкозы. Установлено, что содержание молочной кислоты в крови человека и животных повышается после мышечной работы. Особенно резкое увеличение количества молочной кислоты наблюдается после усиленных мышечных упражнений. Однако уровень молочной кислоты в крови быстро снижается, так как она поглощается печенью и превращается там в гликоген. Ресинтез гликогена из молочной кислоты не может протекать самопроизвольно и осуществляется только при условии сопряжения его с окислительными процессами, дающими энергию. По данным Пастера и Мейергофа, ресинтез гликогена сопряжен с окислением некоторой части молочной кислоты до углекислого газа и воды. Основная масса молочной кислоты при этом превращается в гликоген. В настоящее время установлено, что в аэробных условиях при достаточном притоке кислорода гликогек и глюкоза окисляются через стадию пировиноградной кислоты до СОг и Н2О, минуя образование молочной кислоты (см. стр. 172). [c.254]

    Прижизненные биохимические процессы в мышце, изучавшиеся А. В. Прлладиным, В. Энгельгардтом и М. Любимовой, Д. Фердманом, В. А. Белицером и другими советскими исследователями, связаны с физиологическим актом мышечного сокращения и заключаются в реакциях гликолиза, ресинтеза мышечного гликогена, распада и ресинтеза креатинфосфата и АТФ и изменениях сократительного белкового вещества мышцы. При этом молочная кислота, образующаяся при утомлений мышцы, в результате реакций гликолиза при отдыхе мышцы в аэробных условиях частью (около одной пятой) подвергается полному окислительному распаду, а в большей своей части превращается снова в гликоген за счет энергии реакций аэробного окисления. Одновременно с реакциями гликолиза наблюдается распад АТФ и АДФ и затем креатинфосфата, что приводит к накоплению неорганических фосфатов. При отдыхе мышцы происходит ресинтез этих соединений, требующий энергии. Таким образом, наблюдается тесная связь между реакциями анаэробного и аэробного обмена в мышце, выражающаяся в том, что в аэробных условиях в мышце анаэробный распад углеводов замедлен. [c.234]

    Если микроорганизмы лишены источников питания, они некоторое время могут существовать за счет внутриклеточных запасов. В качестве еапасных веществ большинство микробов откладывают полисахариды (гликоген и крахмал) и жир. Эндогенное дыхание за счет этих веществ протекает по тому же пути, что и окисление экзогенных источников энергии. Когда запасы питательных веществ исчерпаны, начинается окисление клеточных белков. [c.65]

    Те аминокислоты, которые не были использованы в печени или в других органах для биосинтеза белков, подвергаются дезаминированию и распадаются с образованием ацетил-СоА и промежуточных субстратов цикла лимонной кислоты (разд. 22.21). Последние могут превратиться в глюкозу и гликоген путем глюконеогенеза (разд. 20.1). Ацетил-СоА либо подвергается окислению в цикле лимонной кислоты с накоплением энергии, запасаемой в форме АТР, либо превращается в хшпиды, которые, как было описано выше, откладываются в запас. Высвобождающийся при распаде амино- [c.754]

    В качестве топлива скелетные мышцы в зависимости от степени их активности используют глюкозу, свободные жирные кислоты или кетоновые тела. В покоящихся мышцах основными субстраташ энергетического обмена служат свободные жирные кислоты и кетоновые тела, доставляемые с кровью из печени. Эти субстраты подвергаются окислению и распаду до ацетил-СоА, который вступает далее в цикл лимонной кислоты, и окисляется до СО2. Сопутствующий перенос электронов к кислороду обеспечивает энергией процесс окислительного фосфорилирования и превращение ADP в АТР. При умеренной нагрузке в дополнение к жирным кислотам и кетоновым телам мышцы используют еще и глюкозу крови. При этом глюкоза подвергается фосфорилированию и распадается в ходе гликолиза до пирувата, который далее через ацетил-СоА окисляется в цикле лимонной кислоты. Наконец, при максимальной мышечной нагрузке расход АТР на сокращение настолько велик, что скорость доставки субстратов (топлива) и кислорода кровью оказывается недостаточной. В этих условиях в ход идет накопленный в самих мышцах гликоген, который расщепляется до лактата путем анаэробного гликолиза при этом на один расщепившийся остаток глю- [c.756]

    Далее, как и при изучении строения природных гликогенов, были определены концевые группы (методом периодатного окисления), проведен -амилолиз препаратов синтетических гликогенов, определена степень их расщепления и вычислены средние величины единицы цепи, наружных и внутренних ветвей. Исследованные препараты оказались несколько различными в соответствии с условиями получения. Близкими к натуральным были синтетические гликогены № 2 и особенно № 3 средняя длина цепи 15,6 (у природного затравочного мышечного гликогена — 15,5), средняя длина наружных ветвей — 7,6 (у природного —7,1), средняя длина внутренних ветвей—7,2 (у природного— 6,9). [c.118]

    Совокупность химических реакций, протекающих в живом организме, называется обменом веществ, или метаболизмом (от греческого слова т 1аЪо1е — изменение). Это реакции самых различных типов. Рассмотрим, например, что происходит с пищей, потребляемой человеком. Пища может содержать сложные углеводы, в частности крахмал которые расщепляются в процессе пищеварения на простые сахара и затем через стенки желудочно-кишечного тракта попадают в ток крови. Далее эти простые сахара в печени превращаются в гликоген (животный крахмал), имеющий ту же формулу, что и обычный растительный крахмал (СдНюОб) , где X — большое число. Гликоген и другие полисахариды — важные источники энергии в организмах животных. При окислении кислородом они образуют двуокись углерода и воду одна часть освобождаемой при этом энергии идет на производство работы, а другая — на согревание тела живого организма. [c.690]

    Важным энергетическим резервом организма является запас гликогена в печени. Гликоген получается из глюкозы, содержащейся в крови. Превращение глюкозы в гликоген является синтетическим процессом, так как гликоген представляет собой высокомолекулярное вещество. Цепь превращений начинается с воздействия глюкозо-киназы, которая переносит фосфатный остаток с АТФ на глюкозу, в результате чего образуется глюкоза-6-фосфорная кислота. На это вещество действует ури-динтрифосфорная кислота (УТФ), УТФ отличается от АТФ тем, чтэ вместо аденозина в нем содержится уридин. В результате действия УТФ получается пирофосфорная кислота и уридинофосфоглюкоза. Эта последняя и служит материалом, из которого образуется гликоген. Образовавшаяся при этом уридиндифосфорная кислота (УДФ) для повторения цикла должна превратиться опять в УТФ, т. е. должна приобрести макроэргическую связь. Эта связь доставляется ей АТФ, которая, конечно, превращается при этом в ДДФ. АДФ может перейти снова в АТФ, присоединив неорганический фосфат и получив соответствующую порцию энергии. Энергия получается за счет процессов окисления, сопряженных с образованием АТФ, т. е. за счет окислительного фосфорилирования. Следовательно, для превращения энергии окисления в энергию химической связи гликогена необходимо осуществить два сложных цикла. [c.112]

    Образующаяся при гликолизе пировиноградная кислота в результате декарбоксилирования и окисления превращается в уксусную кислоту. В свою очередь уксусная кислота при участии АТФ и фермента ацетилирует сульфгидрильную группу кофермента А. Возникает 8-ацетилкофермент А или так называемая активированная уксусная кислота. Активированная уксусная кислота может превращаться в высшие жирные кислоты, из которых образуются жиры. Эти жиры также могут откладываться в организме. Почти все аминокислоты являются или гликогенными, или кето-генными, т. е. они участвуют в образовании гликогена или жиров. Из гистидина, орнитина, пролина, оксипролина и аргинина может образоваться а-кетоглутаровая кислота, из тирозина и фенилаланина — фумаровая кислота. Окисление глутаровой и фумаровой кислот по цитратному циклу сопровождается выделением энергии, необходимой для организма. Если же энергия в данный момент не нужна, то углеводы и углеродные цепи аминокислот могут превращаться в нейтральные жиры, откладывающиеся в организме. [c.353]


Смотреть страницы где упоминается термин Гликоген окисление: [c.479]    [c.445]    [c.389]    [c.195]    [c.775]    [c.475]    [c.173]    [c.197]   
Биологическая химия Издание 3 (1960) -- [ c.240 ]

Биологическая химия Издание 4 (1965) -- [ c.453 ]




ПОИСК





Смотрите так же термины и статьи:

Гликоген



© 2025 chem21.info Реклама на сайте