Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Свойства растворов электролитов

    В настоящее время экспериментально доказано присутствие в такого рода растворах и заряженных, и незаряженных ассоциированных частиц. Влияние подобных комплексов на свойства растворов электролитов не ограничивается только явлениями электропроводности. Его необходимо учитывать и при рассмотрении равновесия в растворах электролитов. Образование ионных двойников, тройников и незаряженных комплексов должно сказываться также на протекании других процессов, например диффузии. [c.133]


    Электрохимия. Изучается взаимодействие электрических явлений и химических реакций (электролиз, химические источники электрического тока, теория электросинтеза). В электрохимию включают обычно учение о свойствах растворов электролитов, которое с равным правом можно отнести и к учению о растворах. [c.19]

    Изучение свойств растворов электролитов показывает, что ионы в растворе ведут себя не так, как это отвечает их концентрациям. Так, в 0,1 М растворе соляной кислоты ионы водорода проявляют свойства, соответствующие их концентрации не 0,1 моль/л, а 0,089, или же активность водородных ионов в [c.72]

    Изучение особенностей в свойствах растворов электролитов получило теоретическую основу в результате разработки С. Аррениусом (1887) теории э л е к т р о л и т и ч е/ к о й диссоциации. [c.17]

    Электрохимия изучает некоторые особенности свойств растворов электролитов, электропроводность растворов, процессы электролиза, работу гальванических элементов и электрохимическую коррозию металлов. [c.23]

    Еще в более сильной степени происходят подобные взаимодействия между ионами и полярными молекулами (ионно-дипольная связь). Многие свойства растворов электролитов целиком зависят от такого взаимодействия молекул растворителя с находящимися в растворе ионами. В результате у иона образуется как бы оболочка из молекул растворителя ее называют сольватной или — в частном случае водных растворов — гидратной оболочкой ( 156). Подобные же взаимодействия играют роль в образовании кристаллогидратов различных солей или других соединений. В таких процессах большую роль играет и происходящая при этом взаимная поляризация частиц. [c.81]

    Гипотеза Аррениуса дала возможность объяснить многие особенности в химических свойствах растворов электролитов (реакции гидролиза, значение концентрации водородных ионов и др.). Вытекающие из нее количественные соотношения между различными свойствами растворов — электропроводностью, темпер-атура-ми замерзания и др. — оказались в согласии с опытными данными (хотя и не для всех электролитов). Это в большой степени способствовало признанию правильности исходных положений гипотезы. Однако в гипотезе Аррениуса раствор электролита рассматривался по существу как механическая смесь из молекул растворителя и ионов и молекул электролита, т. е. в этой гипотезе не находило отражения взаимодействие между всеми этими частицами, и поэтому оставалась без объяснения и основная сущность явления. [c.382]


    При рассмотрении термодинамических свойств растворов электролитов широко используется понятие ионной силы I раствора, определяемой как полусумма произведений из концентраций всех [c.395]

    Жидкие растворы по своей природе, свойствам, характеру взаимодействий между частицами очень разнообразны, в связи с чем трудно создать единую количественную теорию, описывающую поведение различных растворов в широкой области концентраций. Наука о растворах —одна из наиболее старых областей естествознания, в развитие которой сделан вклад многими исследователями. В ходе развития учения о растворах были высказаны две точки зрения на природу растворов —физическая и химическая. Физическая теория растворов, возникшая главным образом на основе трудов Вант-Гоффа, Аррениуса и Оствальда, опиралась на экспериментальное изучение коллигативных свойств разбавленных растворов (осмотическое давление, новышение температуры кипения, понижение температуры замерзания раствора и т. п.), зависящих главным образом от концентрации растворенного вещества, а не от его природы. Количественные законы (законы Вант-Гоффа, Рауля) были открыты в предположении, что в разбавленных растворах молекулы растворенного вещества подобны молекулам идеального газа. Отступления от этих законов, наблюдаемые для растворов электролитов, были объяснены на основе теории электролитической диссоциации Аррениуса. Простота представлений физической теории и успешное применение ее как для объяснения свойств растворов электролитов, так и для количественного изучения электрической проводимости растворов обеспечили быстрый успех этой теории. Химическая теория растворов, созданная преимущественно Менделеевым и его последователями, рассматривала процесс образования раствора как разновидность химического процесса, характеризующегося взаимодействием частиц смешивающихся компонентов. Менделеев рассматривал растворы как системы, образованные частицами растворителя, растворенного вещества и неустойчивых химических соединений, которые образуются между ними и находятся в состоянии частичной диссоциации. В классических трудах Менделеева четко сформулированы основные положения теории растворов. Менделеев указывал на необходимость использования всей суммы химических и физических сведений о свойствах частиц, [c.344]

    Электролитическая диссоциация проявляется в сильном отклонении свойств растворов электролитов от идеальности. Вант-Гофф обнаружил, что для электролитов осмотическое давление я больше, чем рассчитанное по формуле (126.11), а именно [c.430]

    Теория электролитической диссоциации не могла объяснить и солевой эффект. Представления о полной диссоциации сильных электролитов потребовали нового теоретического подхода к объяснению зависимости электропроводности от концентрации и других физикохимических свойств растворов электролитов. С наибольшей полнотой это было отражено теорией Дебая и Хюккеля. [c.438]

    Электрохимия — раздел физической химии, изучающий переход химической энергии в электрическую и обратно, свойства растворов электролитов и движение ионов под действием электрического поля. Переход химической энергии в электрическую осуществляется в электрохимических (гальванических) элементах и аккумуляторах. В процессе электролиза электрическая энергия переходит в химическую энергию. Процессы пр< вращения электрической энергии в химическую и обратно происходят на границе электрод (электронный проводник) — раствор электролита (ионный проводник) и заключаются в передаче электрона с электрода на ион в растворе или обратно. [c.244]

    Рассмотрим несколько способов определения средней активности электролита по равновесным свойствам растворов электролитов. [c.248]

    Электростатическая теория разбавленных растворов сильных электролитов, развитая Дебаем и Гюккелем в 1923 г., позволила теоретически вычислить средний коэффициент активности электролита, эквивалентную электропроводность сильных электролитов, а также теоретически обосновала правило ионной силы. При этом они сделали ряд предположений, справедливых только для предельно разбавленных растворов. Во-первых, они предположили, что единственной причиной, вызывающей отклонение свойств раствора электролита от идеального раствора, является электростатическое взаимодействие между ионами. Во-вторых, они не учитывали размеров ионов, т. е. рассматривали их как безразмерные точечные заряды. В-третьих, электростатическое взаимодействие между ионами они рассматривали как взаимодействие между ионом и его ионной атмосферой. Ионная атмосфера — это статистическое образование. [c.251]

    Глава I. СВОЙСТВА РАСТВОРОВ ЭЛЕКТРОЛИТОВ [c.7]


    Отличие свойств растворов электролитов от идеальных систем обусловливается не только взаимодействием ионов между собой, но и их взаимодействием с молекулами растворителя. [c.14]

    Важная характеристика раствора — частичная концентрация. Для растворов неэлектролитов она совпадает с молярной концентрацией, а в случае растворов электролитов, как следует из вышеизложенного, она превышает ее. При расчете свойств растворов электролитов это обстоятельство необходимо учитывать, для чего вводится поправочный коэффициент / — изотонический коэффициент Вант-Гоффа. Он равен отношению действительного числа частиц растворенного вещества в растворе, с учетом его электролитической диссоциации, к предполагаемому числу частиц этого же вещества в этом же растворе, определяемому из расчета на их молекулярность, т. е. без учета электролитической диссоциации. [c.205]

    В данном разделе термодинамические свойства растворов электролитов рассматриваются главным образом с помощью коэффициентов активности ионов обычно в рамках теории Дебая—Хюккеля. [c.227]

    Можно ли объяснить с позиций теории электролитической диссоциации основные свойства растворов электролитов, не имеющих в своем составе ОН -групп гидролиз, без учета химического взаимодействия растворенного вещества и растворителя  [c.74]

    Важным следствием теории Аррениуса является заключение об аддитивности свойств растворов электролитов. Аддитивность проявляется в парциальных объемах растворенных электролитов, их электрических проводимостях, рефракциях, степенях поглощения и других спектрах, диэлектрических постоянных. Однако аддитивность никогда не соблюдается вполне точно, что следует отнести как на счет переменной а диссоциации, так и на счет взаимодействия ионов с растворителем и друг с другом. [c.364]

    Аналогично силы межионного притяжения и отталкивания влияют и на величину осмотического давления, которая, несмотря на полную диссоциацию, все же меньше, чем следовало бы ожидать при удвоенном, утроенном и большем числе частиц. Следовательно, все свойства раствора электролита, зависящие от концентрации ионов, проявляются так, как если бы число ионов в растворе было меньше, чем это соответствует полной диссоциации электролита. [c.240]

    Процессы А. и. подчиняются закону действующих масс и другим законам термодинамики. А. и. оказывает большое влияние на термодинамические и кинетические свойства растворов электролитов, играет большую роль в процессах образования комплексных соединений. [c.33]

    Осмотическая теория э.д.с. Нернста основана на классической теории электролитической диссоциации, поэтому она сохраняет основной недостаток теории Аррениуса — отождествление свойств растворов электролитов со свойствами идеальных систем. Развитие теории э.д.с. и электродного потсчщиала повторило ход развития теории растворов электролитов. Так, введение понятий о коэффи-цисн1е активности (как о величине, связанной с межионным взаимодействием) и об активности (как эффективной концентрации), явившееся крупным шагом вперед в развитии теории растворов, позволило получить на основе теории Нернста качественно верную зависимость электродного потенциала от состава раствора. Учет взаимодействия между растворенным веществом и растворителем, на необходимости которого настаивал Д. И. Менделеев, и в особенности учет возможности образования в растворах гидратированных или сольватированных ионов (А. И. Каблуков) были важными вехами в развитии теории раство зов электролитов. Они позволили найти причину диссоциации электролитов на ионы. Ионная сольватация должна играть существенную роль и в процессе установления равновесия между электродо и раствором. [c.220]

    Представленне о гидратации ионов, введенное в науку в 1890 г. И. А. Каблуковым и В. А. Кистяковским и объединившее теорию электролитической диссоциации Аррениуса с хим ической теорией растворов Д. И. Менделеева, оказалось чрезвычайно плодотворным для объяснения свойств растворов электролитов. [c.157]

    В 154—158, посвященных свойствам растворов электролитов, рассматривались главным образом состояние и свойства растворенных электролитов, а изменение состояния самого растворителя и, в частности, воды почти не затрагивалось. Это отвечает преимущественному направлению в изучении таких растворов. Большинство исследований растворов электролитов, за исключением работ К- П. Мищенко, О. Я. Самойлова, Фалькенгагена и некоторых других, посвящено в основном изучению состояния растворенных веществ. Между тем состояние молекул растворителя и, в частности, молекул воды (а также и самой воды в целом) очень чувствительно ( 61) к действию растворенных электролитов. Молекулы воды, гидратируя ионы, сами претерпевают поляризацию и соответствующие изменения строения и свойств. Влияние этих воздействий распространяется и на прилегающие слои воды. Мы видели на примере тектогидратов ( 53) и на примере изменения температуры максимальной плотности ( 61), как сильно могут изменяться при этом некоторые свойства воды. Зависимость свойств воды от таких воздействий усложняется еще тем, что вследствие непрерывного перемещения ионов по объему раствора каждый данный элемент объема воды испытывает воздействия, быстро меняющиеся во времени, а скорость достижения равновесного состояния не всегда достаточно велика. [c.394]

    Химические свойства растворов электролитов. Все особенности, присущие растворам электролитов, наиболее сильно проявляются в свойствах тех растворов, в когорых степень диссоциации близка к единице. Поэтому мы обратимся здесь к рассмотрению свойств преимущественно сильных электролитов, полностью диссоциированных в не слишком концентрированных растворах. [c.396]

    Так как коррозионные процессы в большинстве случаев протекают по электрохимическому механизму, то большое значение для этих процессов имеют свойства растворов электролитов. Электролитами называются проводники второго рода, электропроводность которых обусловлена передвижением ионов в электрическом поле (ионная проводимость) положительно заряженных катионов и отрицательно зарял<енных анионов. Проводниками второго рода обычно являются водные растворы солей, кислот и оснований, а также эти вещества в расплавленном состоянии. Электролитами могут быть и некоторые неводные растворы. Наряду с сильными электролитами, -полностью диссоци-ируклцими в растворах на ионы, некоторые вещества, например органические кислоты, лишь частично распадаются на ионы их принято называть сла быми электролитами. [c.11]

    Элек фохшчия. Свойства растворов электролитов. Учение об лек-чропроводности проводников второго рода. Удельная и эквивалентная электропроводности растворов электролитов. Подвижность ионов. Кондуктометрия. Химические источники тока. Электродный потенциал, электродные равновесия. Электроды 1 и 2 рода, окислительно-вос- [c.8]

    Диэлектрическая проницаемость имеет важное значение во всех случаях, когда заряды различного знака разобщены средой со свойствами диэлектрика. Таким образом, если какое-либо вещество используется в качестве изолятора, то его изолирующие свойства в известной мере характеризуются величиной диэлектрической постоянной. Свойства растворов электролитов также в значительной степени зависят от величины диэлектрической проницаемости растворителя. Во все уравнения теории растворов сильных электролитов обязательно входит величина диэлектрической проницаемости. Нахгонец, знание величины диэлектрической проиидаемости пег.бходнмо для вычисления дипольного момента (см. стр. 411). [c.404]

    Электрохимия — это наука, которая изучает закономерности, связанные с взаимным превращением химической и электрической форм энергии. Взаимное превращение этих форм энергии совершается в электрохимических системах. Непременными составными частями электрохимической системы являются ионный проводник электричества — электролит два металлических электрода, которые создают контакт двух фаз — жидкой и твердой внешняя цепь — металл1 ческий проводник, обеспечивающий прохождение тока между электродами. Для того чтобы знать, каким закономерностям подчиняются электрохимические реакции, от чего зависит их скорость, что является источником электрической энергии в электрохимической системе и каков механизм прохождения электрического тока, необходимо изучить свойства растворов электролитов, электрохимические равновесия на поверхности раздела двух фаз, термодинамику электрохимических систем и кинетику электродных процессов. [c.6]

    Вещества, которые образуют растворы, способные проводить электрический ток, называются электролитами. Если во всех точках раствора электролита одинаковы температура, давление и химический потенциал, а разность потенциалов между различными участками отсутствует, то такой раствор находится в равновесном состоянии. Свойства растворов электролитов, отличающие их от растворов, которые не проводят электрический ток, качественно объясняются теорией электролитической диссоциации (С. Аррениус, В. Оствальд, В. А. Кистяковский, П. Вальден, Л. В. Писаржев-ский и др.). [c.7]


Библиография для Свойства растворов электролитов: [c.394]    [c.307]   
Смотреть страницы где упоминается термин Свойства растворов электролитов: [c.245]    [c.439]    [c.439]    [c.92]    [c.213]    [c.446]    [c.439]    [c.439]    [c.209]   
Смотреть главы в:

Курс химии -> Свойства растворов электролитов

Теоретическая электрохимия -> Свойства растворов электролитов

Руководство к лабораторным работам по общей химии -> Свойства растворов электролитов

Теоретические основы электрохимии -> Свойства растворов электролитов

Физическая химия. Теоретическое и практическое руководство -> Свойства растворов электролитов

Физическая и коллоидная химия 1968 -> Свойства растворов электролитов

Физическая и коллоидная химия 1975 -> Свойства растворов электролитов

Теоретическая электрохимия -> Свойства растворов электролитов

Теоретические основы электрохимии -> Свойства растворов электролитов

Физическая и коллоидная химия -> Свойства растворов электролитов


Химическая литература Библиографический справочник (1953) -- [ c.96 ]




ПОИСК





Смотрите так же термины и статьи:

Растворов свойства

Растворы электролитов

Растворы электролитов. pH растворов

Электролиты свойства



© 2024 chem21.info Реклама на сайте