Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электролит химические свойства растворо

    В книге освещены проблемы и современное состояние борьбы с коррозией аппаратуры и машин в химической, нефтеперерабатывающей и смежных с ними отраслей промышленности. Описаны исследование коррозии металлов в условиях теплопередачи применение электросварных труб в нефтеперерабатывающей и нефтехимической промышленностях катодное наводороживание и коррозия титана и его а-сплавов в различных электролитах влияние водорода на длительную прочность сталей влияние пластической деформации на водородную стойкость сталей о методике определения температурных границ применения конструкционных сталей в гидрогенизационном оборудовании влияние водорода при высоких температурах и давлениях на механические свойства металлов защитные свойства плакирующего слоя стали 0X13 на листах стали 20К против водородной коррозии влияние твердости стали ЭИ579 на ее коррозионную стойкость в водородосодержащих средах влияние легирующих элементов на водородную коррозию стали влияние толщины стенки и напряжений на скорость водородной коррозии стали протекторная защита теплообменной аппаратуры охлаждаемой сырой морской водой коррозия углеродистой стали в уксусной кислоте и электрохимический способ ее защиты торможение коррозии стали Х18Н9 в соляной кислоте добавками пенореагента ингибиторы коррозии для разбавленных кислот ингибиторы коррозии стали в системе углеводороды—сероводород—кислые водные растворы сероводородная коррозия стали в среде углеводород—электролит и защитное действие органических ингибиторов коррозии ингибиторы коррозии в среде углеводороды—слабая соляная кислота коррозионно-стойкие стали повышенной прочности для химического машиностроения тепло- и коррозионно-стойкие стали для печных труб и коммуникационных нефтеперерабатывающих заводов коррозия в нитрат-нитритном расплаве при 500° С коррозионная стойкость сталей с пониженным содержанием никеля в химически активных средах коррозия нержавеющих сталей в процессе получения уксусной кислоты окислением фракции 40—80° С, выделенной из нефти коррозионные и электро-химические свойства нержавеющих сталей в растворах уксусной кислоты коррозия металлов в производстве синтетических жирных кислот газовое борирование металлов, сталей и сплавов для получения коррозионно- и эрозионно-стойких покрытий применение антикоррозионных металлизированных покрытий в нефтеперерабатывающей промышленности коррозия и защита стальных соединений в крупнопанельных зданиях. [c.2]


    По данным рентгеноструктурного анализа, осадок сплава представляет собою механическую смесь двух металлов, что соответствует диаграмме состояния. Физико-химические свойства сплава 5п—исследованы при содержании висмута от О до 43%. На рис. 20 представлены зависимости микротвердости и удельного сопротивления от состава сплава. Авторы делйют заключение, что при содержании 3% висмута в сплаве образуется пересыщенный раствор висмута в олове. Для получения блестящего покрытия сплавом олово-висмут (1—2% В ) рекомендуется электролит следующего состава (г/л) 5п (металлическое) 29,8—29,5, В1 (металлический) 0,2—0,5, Нг504 100, формалин 5—10, добавка Погресс или ОП-10 5—10, добавка ПК /О го 30 М 50 5—10. Плотность тока [c.212]

    По отношению к сильным электролитам предполагался другой механизм, основанный на соотношении между энергией гидратации и энергией кристаллической решетки. Здесь взаимодействие между ионами не может быть сведено к чисто физическому взаимодействию, одним законом Кулона нельзя объяснить свойства растворов сильных электролитов. Необходимо признать и в этом случае большую роль химических сил. Участие химических сил так велико, что, нам кажется, сейчас вообще нельзя делать различия между сильными и слабыми электролитами, что каждый электролит, в зависимости от обстоятельств, от среды, в которой он находится, может оказаться и сильным и слабым. [c.11]

    Электрохимия — это наука, которая изучает закономерности, связанные с взаимным превращением химической и электрической форм энергии. Взаимное превращение этих форм энергии соверщается в электрохимических системах. Непременными составными частями электрохимической системы являются ионный проводник электричества — электролит два металлических электрода, которые создают контакт двух фаз — жидкой и твердой внешняя цепь — металлический проводник, обеспечивающий прохождение тока между электродами. Для того чтобы знать, каким закономерностям подчиняются электрохимические реакции, от чего зависит их скорость, что является источником электрической энергии в электрохимической системе и каков механизм прохождения электрического тока, необходимо изучить свойства растворов электролитов, электрохимические равновесия на поверхности раздела двух фаз, термодинамику электрохимических систем и кинетику электродных процессов. [c.6]


    Молекулы электролита и растворителя вступают в химические взаимодействия, которые приводят к реакциям обмена заряженными частицами или к образованию новых молекул, способных диссоциировать на ионы. К таким процессам относятся протолитические реакции (см. 4, гл. 20), при которых соверщается переход протона от молекулы электролита к молекуле растворителя, или обратно. Характер таких реакций и свойства раствора, зависящие от вида и числа образующихся ионов, определяются природой электролита и растворителя. Один и тот же электролит, в зависимости от вида растворителя, может обладать различными свойствами. Например, раствор соляной кислоты в воде является сильным электролитом, ее диссоциация в этом случае обеспечивается передачей протона растворителю и идет почти до конца  [c.210]

    Электролиз расплавленных сред отличается от электролиза водных растворов физико-химическими свойствами электролитов. Для протекания электролиза необходимо присутствие ионов в электролите. В водных электролитах ионизации способствуют молекулы растворителя. В расплавах ионы образуются в основном в результате возбуждения молекул при высокой температуре. Ионные расплавы обладают многими уникальными свойствами, на этом основано их широкое применение не только для получения легких металлов, но и в новых областях техники, в приборостроении и в практике научных исследований. [c.442]

    Электролизом называется разложение электролитов постоянным электрическим током, которое сопровождается образованием новых веществ. На электродах происходят реакции окисления— восстановления анионы на аноде отдают электроны и окисляются, а катионы восстанавливаются на катоде. Если анод растворим в электролите под действием тока, то чаще всего анионы на нем не разряжаются, а электроНейтральность раствора (или расплава) поддерживается образованием катионов из материала анода. Одно из преимуществ электролиза перед химическим восстановлением заключается в том, что при этом продукты восстановления не загрязняются остатками металла-восстановителя и примесями, первоначально присутствующими в нем. Кроме того, при электролизе возможна очистка от многих примесей исходного сырья. Изменяя условия электролиза, можно получать катодный осадок с некоторыми заданными физическими свойствами (крупностью кристаллической структуры и т.п.). В промышленных масштабах осуществляют электролиз как водных растворов, так и расплавов. Однако для получения редких металлов электролиз водных растворов используют редко. [c.256]

    Если прибавляемый к раствору электролит образует ионы, резко отличающиеся по свойствам от присутствующих, тогда между противоположно заряженными ионами различных электролитов может произойти взаимодействие. В этом случае происходит химическая реакция и появляется новое соединение за счет образования прочной связи между ионами. Оно отличается от исходных тем, что либо является менее растворимым и удаляется из раствора в виде осадка или газа, либо в меньшей степени диссоциирует на составляющие его ионы. Все эти процессы сопровождаются убылью изобарного потенциала. [c.195]

    Однако физико-химические свойства не очень разбавленных растворов сильных электролитов, а особенно растворов средних и высоких концентраций, не соответствуют представлениям об их полной диссоциации. Измеряемая степень диссоциации электролита в них может быть заметно меньше единицы, она стремится к единице лишь при бесконечном разбавлении. Это явление свидетельствует о том, что, хотя сильный электролит и диссоциирован нацело, но ионы в растворе не могут двигаться совершенно независимо друг от друга, подобно молекулам идеального газа, а взаимодействуют не только с растворителем, но и друг с другом. [c.182]

    При растворении анодов, которые являются многокомпонентными сплавами, поведение металлов-примесей в зависимости от их электрохимической активности и химических свойств их соединений различно. Такие металлы, как цинк, железо, никель, кобальт, равновесные потенциалы которых намного отрицательнее равновесного потенциала меди, при условиях электролиза переходят в раствор, но не осаждаются на катоде. Накопление солей этих металлов в электролите, однако, при- [c.122]

    Аномальное поведение металлического электрода по сравнению с тем, которое можно было бы ожидать исходя из уравнения (1.17), обусловлено прямым или косвенным влиянием концентрационной поляризации или изменением химических свойств поверхности, затрудняющим переход катионов в раствор на границе металл — электролит. Резкое изменение скорости анодного растворения после достижения определенного потенциала обычно связывают с накоплением на поверхности электрода адсорбированного кислорода или химически связанных с металлом кислородных соединений. По мере смещения потенциала в сторону положительных значений степень покрытия кислородом все больше возрастает. При достижении определенного потенциала ф электрод оказывается почти полностью покрытым оксидным слоем. Миграция катионов из металлической решетки в раствор через такой оксидный слой затрудняется, [c.14]


    Химические свойства Водные растворы НгЭ (Э = 5, 5е, Те) — слабые двухосновные кислоты НгО — очень слабый амфотерный электролит НгЗ и НгЗе образуют кислые и средние, НгТе — средние соли [c.352]

    Аномальное поведение железного электрода но сравнению с тем, которое можно было ожидать исходя из уравнения (1,4), в принципе может быть обусловлено прямым или косвенным влиянием концентрационной поляризации или изменениями химических свойств поверхности, затрудняющими переход катионов в раствор на границе металл—электролит. [c.10]

    Из существующих теорий для объяснения пассивного состояния металлов рассмотрим наиболее обоснованные и признанные — пленочную и адсорбционную. Пленочная теория пассивности объясняет состояние повышенной электрохимической устойчивости металлов образованием на их поверхности очень тонкой защитной пленки из нерастворимых продуктов взаимодействия металла со средой. Пленка состоит обычно из одной фазы, может быть солевой, гидроокисной или (наиболее часто) окисной природы. Поведение металла в пассивном состоянии определяется, таким образом, не свойствами самого металла, а физико-химическими свойствами пленки. Образовавшийся на анодной поверхности при электрохимическом процессе фазовый окисел вызывает более стойкое пассивирование в кислородсодержащем электролите, имеющем нейтральную или щелочную реакцию. Вместе с тем при анодной поляризации металла в кислородсодержащих кислотах образовавшаяся пассивная пленка находится в состоянии динамического равновесия с раствором, т. е. растворение внешней части пленки под химическим воздействием электролита компенсируется одновременным процессом анодного возобновления пленки. [c.28]

    Р. Н. Карповой и И. П. Твердовским [4] были получены сплавы палладия с медью и исследованы их физико-химические свойства. Электролит приготовляли смешением двух растворов хлористого палладия с добавкой азотистокислого натрия и сернокислой меди с добавкой сернокислого аммония. Раствор подкисляли серной кислотой. Электролиз вели при плотности тока 0,7 а/дм . При указанных условиях были получены мелкодисперсные осадки, которые не могут быть использованы в качестве защитных или специальных покрытий. Для получения компактных, твердых осадков сплавов металлов платиновой группы, например палладия с медью или с серебром, могут быть использованы такие комплексообразующие ионы, как циан и пирофосфат. [c.306]

    Флюс — это электролит, из которого на поверхности металла основы (Мо) еще до его погружения в ванну с металлом покрытия (Мп), но при контакте с ним, происходит разряд ионов М с образованием соединения или твердого раствора Мо — М . Стальная поверхность жести (листа) во флюсе покрывается тончайшей пленкой (Мо — Мп), и жидкий металл растекается уже по новой поверхности из материала, более близкого по своим физико-химическим свойствам к металлу покрытия. Из такого определения вытекает следующее  [c.25]

    Для металла склонность к коррозии оценивается способностью отдавать электроны при взаимодействии с окружающей средой. В свою очередь, это зависит от фи-зико-химических свойств металла, размеров атомов, валентности, электродного потенциала и т. д. Если энергия гидратации на границе металл—электролит достаточна для нарушения металлической связи (т. е. связи между электронами в кристаллической решетке), то металл теряет электроны и в раствор электролита переходит положительно заряженный ион. Оставшиеся после этого электроны из-за нарушения равновесия в металле скапливаются у его поверхности. На границе металл—электролит образуется двойной электрический слой. Заряд металла после перехода из него в раствор ионов становится отрицательным. Так как электролит является положительно заряженным, то на границе раздела фаз стальная поверхность— раствор электролита возникает скачок потенциала. [c.34]

    Третьим компонентом источника тока является электролит. В случае систем, перечисленных в табл. 1, ни электролит, ни тем более растворитель не принимают участия в электродных реакциях и, следовательно, для создания по крайней мере первичных источников тока могут, в принципе, использоваться любые электролиты. В научной и патентной литературе приведено значительное количество растворителей и электролитов, пригодных для создания источников тока с литиевым электродом. Они будут рассмотрены в двух последующих главах. Здесь же нужно отметить, что электролиты на основе органических растворителей значительно отличаются по своим свойствам от водных растворов кислот и щелочей, применяемых в обычных химических [c.55]

    Вот почему напрашивается уточненное определение понятия кислота в рамках теории электролитической диссоциации Кислота — это электролит, который в данном растворителе от-ш,епляет катион, представляюш,ий собой продукт присоединения катиона водорода Н" " (протона) к молекуле растворителя . Определение во всем (за исключением разве пространности, но это, как мы увидим далее, дело поправимое) лучше традиционного. Лучше хотя бы потому, что, во-первых, позволяет числить свойства кислот и за неводными растворами, во-вторых, в основе проявления веществом кислотных свойств лежит химическое взаимодействие растворенного вещества с растворителем  [c.6]

    Значение таких свойств материала, как адгезия к металлу, химическая стойкость, проницаемость для растворов электроли- [c.101]

    Белый пластичный металл. Во влажном воздухе покрывается оксионо-гидрок сидной пленкой. Пассивируется в холодной воде не реагирует со щелочами гидратом аммиака. Сильный восстановитель реагирует с горячей водой кислотами, хлором, серой. Ион Nd имеет фиолетово-розовую окраску Соединения неодима по химическим свойствам подобны соединениям ланта на. Получение — термическое восстановление NdjOj кальцием, электроли раствора Nd b. [c.327]

    Это сделала Н. Н, Федорова, изучавшая физико-химические и рентгеноструктурные свойства активных масс в различных электролитах. Она нашла, что в активной массе при ее работе в обычных условиях происходит постепенное накопление крупных кристаллов N (0 . с упорядоченной решеткой, что затрудняет зарядный процесс. Накоплению крупнокристаллического N1 (ОН) 2 способствуют повышение температуры, увеличение концентрации электролита, а также наличие в массе магния и других отравителей. Но при наличии в растворе ионов лития последние, адсорбируясь на зернах активной массы, препятствуют их укрупнению и сращиванию, т. е. сохраняют массу в высоко дисперсном состоянии, делая ее более работоспособной при обычных и повышенных температурах. Указанного рода действие наблюдается, однако, лишь при известной концентрации ЬЮН в электролите, превышение которой приводит к ухудшению свойств электрода. [c.84]

    Возможности составления электролитных ванн тем более расширяются, что вовсе не обязательно брать индивидуальный растворитель. Комбинируя растворители с различными свойствами, можно получить электролит, удовлетворяющий самым строгим требованиям. Так, добавляя к соли, скажем, титана какой-нибудь растворитель с низкой диэлектрической проницаемостью, но высокой химической активностью (например, пиридин), обеспечивают протекание общей схемы равновесий в растворах до образования ионного ассоциата а добавляя затем более инертный, но обладающий высокой диэлектрической проницаемостью растворитель (например, пропиленкарбонат), сдвигают схему равновесий до образования свободных ионов, то есть обеспечивают достаточную для проведения электролиза ионную концентрацию, а следовательно, и электропроводность. И вот теперь можно из такого раствора осаждать титан электролизом. [c.88]

    Стандартные характеристики растворенного вещества согласно общепринятому выбору стандартного состояния относятся к гипотетическому одномоляльному раствору, обладающему свойствами бесконечно разбавленного, т. е. к нулевой ионной силе, а химический эксперимент проводится при конечных концентрациях реагентов. Изучение равновесий, как правило, проводится в растворах с постоянным и довольно высоким значением ионной силы, причем полученные значения констант равновесия и тепловых эффектов далеко не всегда пересчитываются на нулевую ионную силу. Термодинамические характеристики реакций комплексообразования при конечных значениях ионной силы оказываются несопоставимыми с основными стандартными характеристиками ионов, фигурирующими в справочной литературе, что закрывает путь для многих расчетов и сопоставлений. Термодинамические характеристики для растворов с конечным значением ионной силы часто оказываются несопо-ставимыми и между собой, так как каждый исследователь выбирает значение ионной силы раствора и электролит для ее поддержания в значительной степени произвольно, используя чаще всего нитраты или перхлораты, а иногда хлориды щелочных металлов. [c.260]

    А. Б. Здановский развил теорию смешанных растворов электролитов, в которых отсутствует сильное химическое взаимодействие (например, комплексообразование). Им сформулировано правило, согласно которому количественная характеристика свойств или каких-либо функций этих свойств смешанного раствора равна сумме произведений количественной характеристики того же свойства или функции бинарного раствора (электролит — вода) и доли этого бинарного раствора в смешанном при условии, что все рассматриваемые системы находятся в изопиестическом равновесии [53]. Математическое выражение этого правила дается уравнением [c.69]

    При злектроосадцении железа о анодными процессами связаны осаждение с применением растворимых и нерастворимых анодов и анодная подготовка поверхности чугунов и сталей под покрытие. Анодное растворение железа является сложным электрохимическим процессом, кинетика и механизм которого зависят от структуры металла, наличия легирующих добавок, обусловливающих особенности его поведения на границе металл - электролит, а также от физико-химических свойств эле тролитов, возможности всякого рода взаимодействий в растворе [272 -276]. [c.71]

    Особенно часто применяют смеси коллоидов с истинными растворами. Введение в электролит комбинированных добавок при удачном их сочетании заметно усиливает влияние отдельных реагентов. Специфическая адсорбция способствует образованию более плотных мелкокристаллических осадков Об этом, в частности, свидетельствует опыт применения комбинированной добавки клея, р-нафтола и сурьмы при электроосаждении цинка. Характер действия комбинированной добавки, содержащей сурьму, занимает в данном случае особое место. В последнее время было установлено, что введение растворимых соединений сурьмы в весьма малых концентрациях облегчает процесс снятия катодного цинка с алюминиевых матриц. В. связи с отмеченным свойством такой добавки сурьму в виде раствора рвотного камня специально вводят в электролит для создания разделительного слоя и предотвращения явления трудной сдирки . Кроме того, оказалось, что сурьма в составе комбинированной добавки с клеем и р-нафтолом увеличивает катодную поляризацию и снижает скорость коррозии цинка, что обеспечивает получение компактных осадков цинка с высокими выходами по току. Благоприятное влияние следующего компонента комбинированной добавки — клея можно объяснить тем, что мицеллы его, адсорбируясь, претерпевают денатурацию, приводящую к повышению вязкости пленки. Вместе с тем мицеллы клея адсобиру-ются и коллоидными частицами гидроокиси сурьмы, вследствие чего комбинированная система сурьма + клей на поверхности цинка приобретает гидрофильные свойства. Если иметь в виду, что по своей молекулярной структуре металлы обладают гидрофобными свойствами, то легко заметить, что адсорбционная пленка приводит к весьма существенному изменению и величины и знака смачиваемости катода раствором, что соответствует глубоким изменениям химического состояния его поверхности. [c.357]

    Уменьшение степени извлечения платины за счет ее катодного осаждения и увеличения равновесной концентрации Pt в вытекающем из электролизера растворе хлорной кислоты связано с изменением физико-химических свойств графитового катода при осаждении на нем платины. Лабораторными исследованиями показано [142], что равновесная концентрация Pt в электролите изменяется симба- но с поверхностью осажденной платины на графите. Оба эти показателя быстро возрастают при увеличении количества осажденной платины от 2 до 5 мг/см2 поверхности графитового анода и при дальнейшем росте практически не изменяются. Равновесная концентрация платины в электролите несколько возрастает с увеличением концентрации HGIO4 (от 300 до 600 г/л) и HG1 (от О до 30 г/л). [c.169]

    Подробное исследование процесса анодного окисления алюминия и его сплавов в смеси серной и щавелевой кислот проводилось Голубевым и Игнатовым [11 ]. Выбор электролита осуществлялся на основании изучения действия ряда электролитов с разным содержанием щавелевой кислоты на растворение анодной окисной пленки. Этими авторами предлагается следующий комбинированный электролит 20%-ный раствор Нг504 и 10 г/л (С00Н)2- Этот электролит был опробован для анодирования как технического алюминия А1, так и сплавов В95 и Д16. При температуре 18° С и плотностях тока 2,5 и 5 а/дм образуются окисные пленки, которые по своим физико-химическим свойствам не уступают пленкам, полученным в охлажденном сернокислотном электролите. Измерение же пробивного напряжения показало, что эти пленки обладают весьма высокой электрической прочностью. Так, пробивное напряжение пленок толщиной 90—110 мк, полученных на алюминии и сплаве В95, составляет 2600—2800 в. Особенностью комбинированного электролита является то, что выход окисной 132 [c.132]

    В работах [28, 29, 34] приведены данные о некоторых физических и химических свойствах АБ. Так, для повышения растворимости АБ (в частности, ДЭАБ, растворимость которого составляет всего 3 г/100 мл, а в растворах для химического осаждения еще меньше) рекомендуется [28, 29] добавлять в электролит низшие спирты (метиловый, этиловый, изопропиловый), эфир, хлороформ. [c.176]

    Как выяснено многочисленными исследованиями, процессы электроосаждения металлов на твердых металлических электродах являются одними из наиболее сложных электрохимических реакций. Они, как правило, протекают через несколько стадий, включающих процессы диффузии, адсорбции, химической реакции, разряда и кристаллизации участвующих в электрохимическом процессе частиц. Соотно-щение скоростей этих стадий определяет кинетику процесса как катодного осаждения, так и анодного растворения металла. Электроосаждение металлов из водных растворов также обычно сопровождается протеканием параллельной реакции выделения водорода, участием в реакции других частиц, находящихся в электролите, примесей ионов металлов, органических соединений, вводимых для регулирования качества осадков. В результате протекания реакции происходят изменения состава раствора у поверхности электрода и изменения состояния поверхности, что особенно сильно проявляется в первые моменты электролиза после включения тока. Несомненно, что все предшествующие электрокристаллизации металла стадии влияют на нее и, таким образом, определяют структуру, физико-механические и химические свойства электроосажденного металла. [c.4]

    ВН4 . Об этом свидетельствует факт его включения в осадок в условиях, когда анодное окисление ВН4 невозможно (при фС <—1,2 в и невысоких температурах). Допускается возможность подчинения процесса химического восстановления закономерностям течения сопряженных реакций при этом несовпадение величин токов и значений потенциалов (соответственно, резкое снижение коэффициента использования иона ВН4 ) было отнесено за счет особых электрокаталитических свойств сплава N1—В, на котором скорость восстановления никеля затруднена, а реакция выделения Нг ускорена. Несоответствие фсмеш и ф им наблюдалось и при использовании в качестве восстановителя БТМА. И в этом случае введение восстановителя в электролит снижало скорость процесса, приближая ее к скорости процесса в отсутствие внешнего тока. При использовании ЭДБ было установлено, что скорость восстановления при фсмеш была несколько меньше, чем при химическом восстановлении. В этом случае введение ЭДБ в электролит несколько повышало скорость катодного восстановления никеля. Эти отличия в системах с ЭДБ были приписаны малому (до 2,5 ат.%) содержанию бора в осадках в осадках из растворов № 1 и № 2 содержание бора составляло 13,9 и 9 ат.% соответственно, а в полученных с помощью. БТМА — доходило до 30—35 ат.%. [c.165]

    Но исследование диаграмм состояния систем СаРг— ЬпРз дифференциально-термическим и рентгенографическим методом [53, 56—61] показало, что в этих системах наряду с твердыми растворами кубической структуры на основе СаРг существуют твердые растворы гексагональной структуры на основе соответствующих ЬпРз. Таким образом, химическое взаимодействие электролита с трифторидами р.з.м., входящими в состав электродов, строго говоря, не исключено. И так как нет никаких сведений о термодинамических свойствах твердых растворов ЬпРз—СаРг, то нельзя оценить ошибку, которую можно допустить из-за взаимодействия электрод — электролит. [c.124]

    Образование предволны (максимума тока) в щелочных растворах наблюдается не только на капающем, но и па твердых электродах (см. ниже). Помимо этого, другие свойства указывают на нетурбулентную природу максимума. Ток в максимуме (г ) пропорционален концентрации перекиси (с ), и хотя чувствителен к условиям опыта, но всегда остается меньше он не меняется от добавления подавителей максимума. Очевидно, в области предволны на электроде восстанавливаются продукты некоторой химической реакции, в которой участвует перекись. Предположение, что это каталитический распад на жирную кислоту (соответственно спирт) и Ог, можно сразу отвергнуть в одинаковых условиях (электролит — 0,1 М NaOH 0,9 М Na 104) максимум тока лежит в случае НУК при —0,10 в (в случае ГПА — при [c.373]


Смотреть страницы где упоминается термин Электролит химические свойства растворо: [c.44]    [c.394]    [c.145]    [c.281]    [c.128]    [c.201]    [c.6]    [c.145]   
Курс физической химии Издание 3 (1975) -- [ c.534 ]




ПОИСК





Смотрите так же термины и статьи:

Методы расчета физико-химических свойств многокомпонентных водных растворов электролитов

Некоторые физико-химические свойства водных растворов электролитов при

Растворов свойства

Растворы электролитов

Растворы электролитов. pH растворов

Физико-химические свойства и структура соединений с водородной связью Структура растворителя и термодинамические свойства растворов электролитов в воде, метиловом спирте и ацетоне. К П. Мищенко

Физико-химические свойства растворов электролитов в органических расгворителях

Химические свойства растворов электролитов

Химические свойства растворов электролитов

Химический ая ое раствора

Электролит химические свойства

Электролиты свойства



© 2025 chem21.info Реклама на сайте