Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Температура стеклования аморфной межмолекулярных взаимодействий

    Принято считать, что с ростом степени кристалличности полимера его динамический модуль упругости и скорость распространения в нем звука возрастают [26]. Возрастание скорости звука с ростом степени кристалличности связано с увеличением межмолекулярного взаимодействия в полимере в результате повышения содержания упорядоченных кристаллических областей. Понятно, что этот эффект должен наблюдаться наиболее четко, если аморфные области полимера находятся в высокоэластическом состоянии, для которого характерно ослабление межмолекулярного взаимодействия. Поэтому акустические измерения проводят при температурах выше температуры стеклования аморфной прослойки. [c.364]


    При дальнейщем повышении температуры начинают устанавливаться химические связи, и наступает момент, когда энергия тепло -вого движения становится соизмеримой с энергией взаимодействия высокомолекулярных соединений. В этом случае, несмотря на наличие межмолекулярного взаимодействия, возможно изменение взаимного расположения отдельных частей (сегментов) сложных молекул. Такое состояние именуется высокоэластичным. При дальнейшем повышении температуры энергия взаимодействия молекул и их частей становится настолько большой, что она начинает значительно превышать энергию теплового движения, длительность установления равновесной конфигурации молекул возрастает, начиная с некоторой температуры структура фиксируется, осуществляется переход от равновесной к неравновесной структуре аморфного вещества, т. е. происходит стеклование. Наиболее отчетливо этот процесс прослеживается по изменению концентрации асфальтенов в системе, из которых формируются надмолекулярные структуры. В зависимости от растворяющей способности среды концентрация асфальтенов в системе сначала повышается, проходит через максимум и затем падает. [c.166]

    Рассмотрим сначала поведение аморфных полимеров при изменении температуры (рис. 6.1, а). Аморфные полимеры при нафевании постепенно переходят из стеклообразного состояния в высокоэластическое (размягчение), а затем в вязкотекучее состояние (переход к текучести). При охлаждении происходят обратные переходы из вязкотекучего в высокоэластическое состояние (затвердевание) и из высокоэластического в стеклообразное состояние (стеклование). При охлаждении полимерного расплава повышается его вязкость и уменьшается энергия теплового движения. Вследствие больших размеров макромолекул их перемещение затрудняется, и при дальнейшем охлаждении макромолекулы фиксируются до того, как они примут жесткую вытянутую форму, характерную для кристаллического состояния. Фиксации макромолекул способствует внутри- и межмолекулярное взаимодействие. Образуются локальные межмолекулярные связи - так называемые узлы. Система приобретает свойства твердого тела, но без регулярной трехмерной структуры, характерной для кристаллического состояния, те. образуется стеклообразное вещество. [c.149]

    Первая попытка теоретического рассмотрения процесса пластификации на молекулярном уровне с учетом сложившихся воззрений [88, 89] и основанных на господствовавших в то время представлениях о структуре аморфного и кристаллического состояния полимеров принадлежит Журкову [90—92], который полагал, что стеклование, или отвердевание , полимеров происходит в результате образования прочных межмолекулярных связей — узлов между макромолекулами. Пластификатор, введенный в полимер, блокируя полярные группы, выключает их из взаимодействия друг с другом. Вследствие этого между цепями полимера образуется меньшее количество узлов, что и приводит к снижению температуры стеклования. Чем больше сорбируется полярных групп, тем значительнее депрессия температуры стеклования (АГс), причем снижение температуры стеклования полимера пропорционально числу молекул пластификатора, не зависимо от формы и размеров молекул, т. е. [c.150]


    Из очевидных физических соображений следует, что существенное ослабление межмолекулярного взаимодействия, наблюдаемое в полимере с ростом температуры, влияет и на параметр р. Однако у жестких полимеров его резкое снижение происходит в достаточно узком температурном интервале. Важно еще раз отметить, что при достижении температуры стеклования (у аморфных термопластов) эффект концентрации напряжения практически незаметен, а у расплава он соверщенно исчезает. Поэтому в ряде случаев, очевидно, реализуется следующая зависимость [c.180]

    При переходе из высокоэластического состояния в стеклообразное модуль упругости вещества возрастает на три-четыре десятичных порядка. При этом наблюдаются перегибы на кривых температурной зависимости удельной теплоемкости, термического расширения, диэлектрической проницаемости и др. В настоящее время твердо установлен релаксационный характер происходящих при стекловании изменений механических [201, с. 563 208, с. 329, 210, с. 280], электрических [211, с. 608 212, с. 412], тепловых [213, с. 1114 214, с. 329], оптических [215, с. 1861 216, с. 489] и реологических свойств [611, с. 527—548]. Переход аморфных веществ в стеклообразное состояние обусловливается изменением межмолекулярного взаимодействия, связанным с образованием и разрывом межмолекулярных связей. Различают стеклование аморфных веществ в статических условиях, например при изменении температуры структурное стеклование), и стеклование в динамических условиях, т. е. при действии на образец периодических внешних полей, в частности электрических или механических [217, с. 805 219, с. 5]. [c.68]

    Здесь кратко отметим, что образцы одного и того же полимера с низкой и высокой молекулярными массами отличаются по структуре из-за наличия в полимере с низкой молекулярной массой молекулярных дефектов в виде концов макромолекул, низкой степени ориентации при их вытяжке и других факторов. Температура стеклования полимера с низкой молекулярной массой меньше, чем с высокой, что приводит к изменению механизма разрыва. У первого основную роль играет разрыв межмолекулярных связей, а у второго — разрыв химических связей в полимерных цепях. У полимерных стекол падение прочности с уменьшением М связано не только с увеличением роли сил межмолекулярного взаимодействия, но и с возрастанием хрупкости за счет потери гибкости короткими цепями. Аморфные полимеры с М = 10- 20 тыс. легко крошатся или дают трещины и их температура хрупкости более высока. Прочность кристаллических полимеров с теми же молекулярными массами выше, чем аморфных. [c.113]

    Процесс стеклования можно представить следующим образом. При охлаждении полимерного расплава происходит повышение его вязкости и уменьшение энергии теплового движения макромолекул. Если передвижение молекул затруднено их большими размерами или по другим причинам, а построение в кристаллы — асимметрией, то при охлаждении полимера его частицы фиксируются до того, как они приняли регулярную, т. е. характерную для кристаллов, структуру. Фиксации структуры препятствует тепловое движение макромолекул, однако способствует внутри- и межмолекулярное взаимодействие, которое при понижении температуры полимера не изменяется или изменяется очень мало, энергия же теплового движения уменьшается значительно. Образуются местные межмолекулярные связи. Хотя эти связи значительно слабее химических и могут, легко разрушаться при нагревании, их появление фиксирует молекулы в некотором случайном положении система при этом становится жесткой и приобретает свойства твердого тела, но без регулярного строения дальнего порядка — образуется твердое аморфное вещество. [c.22]

    Большинство ароматических полиамидов и часть сополиамидов являются, как указывалось выше (см. гл. И), кристаллизующимися полимерами. Однако в силу замедленности релаксационных процессов перестройки структуры, обусловленной большой жесткостью цепей, сильным межмолекулярным взаимодействием и высокими температурами стеклования, по-видимому, очень многие представители этого класса полимеров могут быть получены в аморфном состоянии [c.165]

    Содержание отдельных компонентов колеблется в широких пределах в зависимости от назначения пленки и свойств самих компонентов. Введение различных добавок в поливинилхлорид (ПВХ) необходимо из-за характера самого полимера и особенностей его переработки. Поливинилхлорид является аморфным полимером со значительными силами межмолекулярного взаимодействия благодаря полярности заместителя. Он имеет высокую температуру стеклования (около 85° С), а температура текучести промышленных марок ПВХ близка к температуре разложения. Для предотвращения процесса термодеструкции ПВХ, идущего с выделением газообразного НС1, вводят стабилизаторы, а для снижения температуры стеклования (придания гибкости и эластичности, улучшения морозостойкости) и температуры текучести (облегчение переработки) — пластификаторы. Пигменты и наполнители создают определенный декоративный эффект, а также служат модификаторами пленок. Во избежание прилипания композиции к горячей поверхности рабочих органов машин вводят смазывающие вещества. [c.158]


    Процессы вытяжки аморфных полимеров, приводящие к повышению механической прочности изделий из них, в известной степени зависят от температурных условий и скорости вытяжки. Повышение температуры выше точки стеклования полимера уменьшает, с одной стороны, силы межмолекулярного взаимодействия, т. е. понижает вязкость продукта, а с другой стороны, способствует более интенсивному протеканию релаксационных процессов, приводящих к дезориентации цепей. [c.547]

    Если аморфный высокополимер находится при температуре, намного превышающей его температуру стеклования Tg, и если при этом он слегка структурирован вследствие образования химических связей или в результате сильного межмолекулярного взаимодействия (например, водородные связи или малые кристаллические области), то он обладает механическими свойствами, типичными для эластомеров или каучукоподобных полимеров. В идеализированном случае полимер называют эластомером тогда, когда вся энергия изотермической деформации затрачивается на уменьшение его энтропии. С этим связана также практически мгновенная реакция материала на прикладываемую деформацию. Поэтому следует ожидать, что поведение эластомера при растяжении должно быть практически независимым от скорости деформации, если длительность нагружения со- [c.388]

    Линейная форма макромолекул и наличие сильнополярных групп СМ предопределяют физическую структуру ПАН-волокна. Макромолекулы ориентированы вдоль оси волокна, а в результате интенсивного межмолекулярного взаимодействия за счет групп СМ создается своеобразная непрерывная сетчатая структура по всему объему полимера. Из-за сильного межмолекулярного взаимодействия и беспорядочного расположения групп СМ полимер находится в аморфном или слабовыраженном кристаллическом состоянии. Для подобных полимеров и волокон характерно изменение формы под воздействием температуры. При нагревании выше температуры стеклования (78—80°С) происходит сильная усадка волокна. На этом явлении основано получение объемных ПАН-нитей и изделий на их основе. [c.170]

    Исходя из теоретических расчетов теплоемкости твердых полимеров, при низких температурах должна существовать область температур, в которой межмоле-кулярным взаимодействием можно пренебречь и где теплоемкость определяется лишь внутримолекулярными параметрами. После анализа экспериментальных данных для многих полимеров стало очевидно, что выше примерно 60 К различие в кристалличности, тактичности, плотности и других параметрах, характеризующих межмолекулярное взаимодействие, оказывает слабое влияние на теплоемкость [3]. Эти параметры опять начинают играть существенную роль выше температуры стеклования из-за различного теплового движения в аморфных и кристаллических областях (рис. П.5). Таким образом, при низких температурах имеется значительный температурный интервал, в котором различия в теплоемкостях твердых полимеров обусловлены массой повторяющихся звеньев макромолекулы и вкладами боковых групп. В связи с этим изменения теплоемкости, обусловленные изменением акустического спектра при переходе от одного карбоцепного полимера к другому, можно объяснить изменением массы повторяющегося [c.61]

    Неупорядоченность, присущая аморфным полимерам, является причиной появления структурных дырок , неподвижных при температуре, меньшей температуры стеклования, и подвижных при более высокой температуре. Поэтому выше температуры стеклования дырки играют роль центров движения, поскольку все свободное пространство необходимо для сегментальной диффузии (лежащей в основе течения). Иначе говоря, полимерные сегменты перепрыгивают в дырки (оставляя позади новые) в процессах диффузии и те-, чения. Скорость этих сегментальных процессов увеличивается с ростом температуры и уменьшается с увеличением энергии межсег-ментального (межмолекулярного) взаимодействия, обычно выражаемыми через энергию активации вязкого течения. Кинетическая теория жидкостей Эйринга [43] основана именно на этой молекулярной модели. Впервые она была сформулирована применительно к течению мономеров, при этом в ней предполагалось, что размеры дырок соизмеримы с размерами молекул, а не сегментов. [c.67]

    Пластические массы характеризуются значительно большими межмолекулярными взаимодействиями, хотя большинство их относится также к гибкоцепным (или полужесткоцепным) полимерам. В результате этого температуры стеклования или плавления пластмасс выше 80—100° С, при обычных температурах пластмассы находятся в твердом кристаллическом или аморфном (стеклообразном) состоянии. [c.11]

    Если изобразить графически зависимость удельного объема от температуры, то для атактического и изотактического полимеров получаются разные диаграммы. Кривая зависимости, полученная для атактического полипропилена, характерна для аморфных материалов и состоит в грубом приблгжении нз двух линейных ветвей, которые пересекаются в точке, обозначаемой как температура перехода второго рода, или как температура стеклования (рис, 5.16) [,40], Положение этой точки в известной мере зависит от метода измерения. Таким образом, мы имеем здесь дело не с типичным фазовым превращением, а скорее с изменением энергии межмолекулярного взаимодействия, в результате которого увеличивается подвижность отдельных участков макромолекулярной цепи (сегментов), В то время как ниже температуры стеклования взаимное положение сегментов практически фиксируется, выше этой температуры энергия теплового движения сегментов увеличивается и становится достаточной для преодоления межмолекулярного, а также внутримолекулярного взаимодействия. Особенно сильно это проявляется в изменении модуля упругости аморфных полимеров. Из твердого, а часто и хрупкого состояния полимер переходит в каучукоподобное (высокоэластическое), когда уже под действием небольшой внешней силы он приобретает значительную деформацию, которая после снятия нагрузки почти мгновенно исчезает. Высокоизотактический полипропилен практически вообще не обнаруживает перехода второго рода. Зато прн температуре, близкой к точке плавения кристаллитов, его удельный объем [c.112]

    Главное различие в прочностных свойствах полимеров с кристаллической и аморфной структурой рассмотрено в 1 и 2 гл. П. На прочность полимеров, кроме того, влияют плотность унаковки—одна из характеристик первичной структуры полимера, определяемая гибкостью (или жесткостью) цепей, и межмолекулярные взаимодействия цепных молекул. Например, по Ла-зуркину рыхло упакованные каучуки (СКБ, СКС) при низких температурах в стеклообразном состоянии обладают лучшими прочностными свойствами, чем плотно упакованные каучуки (НК, бутилкаучук, полихлоропрен). У рыхло упакованных полимеров температурный интервал вынужденной эластичности необычайно широк (около 100 °С), ВТО время как у плотно упакованных полимеров хрупкий разрыв наблюдается лишь на 20—25 С ниже температуры стеклования. Дипольные и водородные межмолекулярные связи повышают хрупкую прочность полимера и поэтому понижают температуру хрупкости. Это особенно четко [c.131]

    Пластические массы характеризуются значительно большими, чем у эластомеров, межмолекулярными взаимодействиями . при обычных температурах они находятся в твердом (кристаллическом пли аморфном) состоянии. Температуры плавления или стеклования пластмасс выше 80—100°С. Пластмассы могут быть получены как на основе линейных, так и пространственных полимеров их получают из гибкоцеппых, полужестких и даже жесткоцепных полимеров. Пластмассы — важнейшие кон-струкц]юнные материалы и могут в ряде случаев заменять металлы. При этом если эластомеры — низкомодульные конструкционные материалы, то пластмассы — высокомодульные, но их жесткость все же значительно ниже жесткости металлов. [c.11]

    Цитированные работы в основном посвящены исследованию механизма образования и роста трещин серебра , а не построению теории долговечности полимера в этой области температур. Как видно из рис. 7.1, переход аморфного полимера из области IV в область V происходит при температуре структурного стеклования Тс, причем, но данным Степанова с сотр. [5.37—5.45], межмолекулярные взаимодействия при переходе через Тс не претерпевают изменений. Никаких особенностей не наблюдается при Тс и на температурной зависимости прочности (см. рис. 7,1). Это указывает на то, что трещина серебра с микротяжами при повышении температуры постепенно превращается в высокоэластическом состоянии в надрыв с макро-тяжами. [c.213]

    Аморфные полимеры выше температуры стеклования находятся в высокозластичеоком состоянии вплоть до температуры раз- мягчения (текучести). Область перехода их в вязкотекучее состояние достаточно размыта, что связано с наличием в них большого т1абора структурных образований с различной упорядоченностью и различным межмолекулярным взаимодействием (кривая 4 на рис. 1.1). Поэтому имеющиеся в литературе данные о температурах плавления или температурах текучести (размягчения) аморфных полимеров несколько условны и связаны с конкретной методикой определения  [c.17]

    Наиболее газопроницаемым из известных полимеров является полидиметилсилоксан (ПДМС) — термически стабильный гидрофобный аморфный полимер с очень низкой температурой стеклования (150 К). Полимер содержит кремний как в основной цепи, так и в обрамляю-ш,их ее группах и отличается высокими параметрами селективного газопереноса. Его молекулы наряду с небольшими потенциальными барьерами вращения вокруг связи 81—0 имеют спиралевидную структуру, способствующую рыхлой упаковке молекул полимера,-и отличаются сравнительно небольшой энергией межмолекулярного взаимодействия. Работы по улучшению газоразделительных и механических свойств ПДМС ведутся разными путями введением наполнителей, сшивкой, блок-сополимеризацией, нанесением тонких слоев на полимерные подложки. [c.55]


Смотреть страницы где упоминается термин Температура стеклования аморфной межмолекулярных взаимодействий: [c.158]    [c.360]    [c.245]    [c.41]    [c.461]    [c.360]    [c.360]    [c.360]   
Технология синтетических пластических масс (1954) -- [ c.99 ]




ПОИСК





Смотрите так же термины и статьи:

Взаимодействие межмолекулярное

Межмолекулярные

Температура межмолекулярных взаимодействи

Температура стеклования

Температуры стеклования с г Стеклования температура



© 2025 chem21.info Реклама на сайте