Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Мышьяк в цинковых рудах

    С. Ю. Файнберг. Н. А. Филиппова. Анализ руд цветных металлов. Металлургиздат, 1963 (832 стр.). В руководстве описаны практические методы химического, полумикрохимического и физико-химического анализов руд цветных металлов и продуктов их обогащения. Первый раздел содержит краткие сведения о физико-химических и полумикрохимических методах анализа. Во втором разделе рассматриваются методы определения меди, свинца, цинка, олова, мышьяка, сурьмы, висмута, никеля, кобальта, молибдена, вольфрама, железа и серы в рудах и концентратах. Третий раздел содержит описание методов полного анализа полиметаллических руд, свинцовых, цинковых, медных, оловянных, молибденовых и вольфрамовых руд и концентратов, а также шлаков, получаемых при выплавке цветных металлов. В четвертом разделе описаны полярографические методы анализа цветных металлов. Последний раздел посвящен фазовому анализу соединений меди, цинка, сурьмы, никеля, молибдена и серы. [c.477]


    Прямое определение Sb в сочетании с рядом других элементов производится в самых разнообразных материалах, в том числе в алюминии [54, 55, 1134, бериллии и его соединениях [305, 1297], боре [778, 11171 и фосфиде бора [26], ванадии и его окислах [234, 491, 1117], висмуте [809, 909, 1134], вольфраме и его соединениях [195, 739, 795, 1265], вольфрамовых рудах [1480], германии и его соединениях [559, 634, 905], горных породах [386, 730, 1182, 1240, 1336, 1443, 1599], графите и углероде [235, 397, 612], жаропрочных и тугоплавких сплавах [176, 177, 379, 1278, 1593], железе [425, 1134, 14411, железных рудах и минералах [198, 386, 636, 971, 1336], сталях [176, 546, 1278, 1441, 1593] и чугуне [61, 274, 546, 1250], золоте [404, 754, 909, 1095] и его сплавах [196, 389,390, 1167], индии [1168, 1308] и сплавах на его основе [814, 815, 1267], иттрии и его окислах [234, 272], алюмоиттриевом гранате [82], кадмии [598, 599, 1134] и кадмиевых сплавах [819], кобальте [60, 153, 1134], кремнии [252, 1619], кварце [154], карбиде кремния 109, 110, 288, 789, 790, 1353], кремниево-медных сплавах 594], силикатах [1586], технических стеклах [612, 1579], меди 129, 482, 964, 997, 1176, 1599, 1609, 1645, 1654], медных сплавах 96, 482, 1048, 1188, 1457,1463, 1566], окиси меди [199], продуктах медеплавильного производства [3601 и медных электролитах [1298, 1600], молибдене и его соединениях [104, 237, 308, 795, 1325, 1347, 1443], мышьяке [472, 1134], никеле и никелевых сплавах [486], ниобии и его окислах [49, 972], олове [582, 744, 782, 812, 900, 1684] и его сплавах [1210, 1494, 1495], полупроводниковых материалах [668, 678, 806, 1298, 16841, припоях [210, 1101], свинце [481, 534, 908, 1154, 1155,1193, 1543,1655], свинцовых сплавах [126, 871], рудах [53, 667, 806, 1143] и пылях [811], РЗЭ и их окислах [234, 353], селене [154, 155, 499, 747, 818, 1134], селениде ртути [715], сере [189, 1134], серебре [388, 390, 391, 909, 1598], хло- иде серебра [1362], стеклоуглероде [397], сульфидных рудах 638], тантале [237], теллуре [156, 591, 592, 1134, 1613], теллуровом баббите [1656] и теллуриде свинца [342], типографских сплавах [323], титане и двуокиси титана [288, 306, 1262], тории и его окислах [272], уране [1447], окислах урана [878, 1182, 1240] и урановых рудах [1443], ферросплавах [792, 793], фосфоритах [879], хроме [555, 729, 792] и его окислах [54, 55, 571], цинке [976] и цинковых рудах и минералах [1142], цирконии [679] и двуокиси циркония [1368], производственных растворах [205, 882, 1290, 1323, 1324, 1483], сточных и природных водах [429], азотной, серной, соляной, уксусной, фтористоводородной и бромистоводородной кислотах [111, 121, 407, 552, 574, 10081, воздушной пыли [121. [c.81]

    Шапиро М. Я- Колориметрический метод определения мышьяка [в ртутных и цинковых рудах], ЖПХ, 1943, 16, вып, 7-8, с. 330—336. Резюме на англ. яз. Библ.  [c.236]


    Для разложения сульфидных руд спеканием в восстановительных условиях применяют смеси порошкообразного железа и окиси цинка. В результате термической реакции образуется сульфид железа, а восстановленная до металла ртуть количественно отгоняется. Пары ртути конденсируют на охлаждаемой золотой крышке и в образующейся амальгаме определяют ртуть гравиметрическим методом. Окись цинка реагирует с мышьяком и сурьмой с образованием цинковых солей, поэтому эти металлы не отгоняются вместе с ртутью. Этот метод, предложенный Эшка, применяют до сих пор как стандартный для определения содержания ртути в киновари (93J. [c.139]

    Анализ свинцово-цинковых руд, описанный Амином и Фара-хом [55], является примером анализа, проводимого почти полностью комплексо метрическими методами. Эти руды наряду с основными металлами — цинком и свинцом — содержат еще различные количества железа, алюминия, марганца, магния и кальция. Кроме того, в этих рудах встречаются в небольших количествах мышьяк, кадмий, олово, медь, молибден и титан. [c.466]

    Индий — металл, по внешнему виду похожий на олово, был открыт всего лишь за два года до открытия периодического закона. Так как индий был выделен из цинковой руды, он был сочтен за металл, изоморфный с цинком, а поэтому, подобно цинку, двухвалентный. Его эквивалент оказался равным 37,7, а поэтому предполагаемый атомный вес 37,7-2= = 75, 4— промежуточный между атомными весами мышьяка и селена. Но периодическая система исключала возможность существования элемента, тем более металла, занимающего в системе промежуточное место между названными неметаллами. Поэтому Д. И. Менделеев отверг двухвалентность индия и счел его за трехвалентный металл. В таком случае атомный вес индия должен быть равен 37,7-3=113,1. При этом атомном весе индий попадает в незанятую клетку рядом с цинком и оказывается в соответствии с приписанной ему валентностью элементом III группы. [c.725]

    Германий является спутником углерода и кремния, он постоянно присутствует в природных силикатах и алюмосиликатах. Каменные угли, антрациты — важнейший источник германия. Германий в основном связан с органической частью угля. Присутствует Се и в сульфидных цинковых рудах. Постоянным спутником Се является мышьяк Аз, поэтому разделение Се и Ах относится к сложным технологическим задачам. [c.57]

    Экстракционно-фотометрическим методом с применением бриллиантового зеленого определяют Sb в железе, чугуне, сталях и сплавах на основе железа [408, 1074, 1351], индиевых сплавах [661, 662], кадмии и его солях [568], меди и ее сплавах [393, 408, 649, 686], минералах [1549], мышьяке [364], никелевых сплавах [686], оловянных рудах и продуктах их обогащения [1063], осадочных породах [1550], почвах [1549, 1550], продуктах свинцово-цинкового производства [626], сточных водах заводов цветной металлургии [784], титане и его окислах [1083, 1467], фармацевтических препаратах [1467], феррохроме и хроме [393], цинке [769], его сплавах с галлием [661], цинковых злектролитах [757]. [c.48]

    Медные, цинковые и свинцовые руды, из которых белый мышьяк получают в качестве побочного продукта при выплавке основного металла. Запасы извлекаемого белого мышьяка в этих месторождениях оцениваются в 1 млн. т. Руды подобного типа сосредоточены в основном иа западе страны в штатах Юта и Монтана. [c.271]

    Руды цинка. Важнейшей рудой является цинковая обманка ZnS. Чаще всего она встречается как полиметаллическая руда с более или менее значительным содержанием меди и свинца, а также железа. Поэтому после измельчения руду разделяют флотацией на три концентрата — цинковый, медный и свинцовый и перерабатывают каждый из них в отдельности. Цинковый концентрат наряду с 40—60% Zn содержит еще 0,05—2,5% Си, 0,3—6% РЬ и 0,5—9% Fe. Кроме уже указанных, обычными примесями в концентрате являются кадмий, марганец, мышьяк, иногда также никель, кобальт, висмут, сурьма. В некоторых рудах содержатся серебро и золото как спутники меди и свинца. Наконец, в концентрат попадают и составляющие пустой породы ЗЮг, АЬОз, СаО, MgO. [c.463]

    Руды (продолжение) ртутные, определение мышьяка 6219 свинцово-цинковые, опреде-ление меди 5610, 5617 свинца 5610, 5618 цинка, кадмия и общей 5 5610 [c.384]

    В медных рудах часто, кроме меди, содержатся другие металлы цинк, свинец, никель, молибден, а также селен, мышьяк, теллур, таллий, золото и серебро. Бедные сульфидные медные руды и полиметаллические, как правило, подвергаются обогащению методом флотации, при этом получают медные концентраты, содержащие 10—30% меди. Из полиметаллических руд методом селективной флотации, кроме того, получают свинцовые, цинковые, никелевые и другие концентраты, служащие сырьем для производства соответствующих металлов. Богатые месторождения меднЫх руд находятся на Урале, в Казахстане и в других районах СССР. Кроме медных руд, в качестве сырья для производства меди применяют промышленные и бытовые отходы меди. Из вторичного сырья получают до 30/О медн от общего ее производства. [c.448]


    В кипящем слое печей КС находятся в основном не обжигаемые сульфидные руды (колчедан, цинковые концентрации и др.), а продукты их обжига — оксиды металлов (огарки), хорошо адсорбирующие АзгОз из газа, поэтому в обжиговый газ печей КС поступает значительно меньше мышьяка, чем в механических печах и печах пылевидного обжига. Установлено, Таблица 3-1. Уравнения для расчета содержания (теоретического) кислорода в обжиговом газе (без учета образования 80з) [c.65]

    В настоящее время для производства цинка используют почти исключительно сульфидные руды. Главным цинксодержащим минералом является сфалерит 2п5 ( цинковая обманка ). Кроме цинка в этих рудах содержатся в соизмеримых количествах свинец и медь, а также кадмий, серебро, золото, мышьяк и др. Поэтому эти руды называют полиметаллическими. [c.47]

    Главной составной частью серного колчедана является сульфид железа РеЗг (53,44% 5 и 46,56% Ре), который встречается в виде минерала пирита и реже марказита (минералы имеют одинаковый состав, но отличаются формой кристаллов). Кроме РеЗг природный серный колчедан содержит примеси соединений меди, цинка, свинца, мыщьяка, никеля, кобальта, селена, висмута, теллура, кадмия, карбонаты и сульфаты кальция и магния, небольщие количества золота и серебра и др. Медь находится в колчедане в виде СиРеЗг (медный колчедан), СигЗ (медный блеск) и СиЗ (ков-велин) цинк главным образом в виде 2пЗ (цинковая обманка), мышьяк в виде РеАзЗ (мышьяковый колчедан) и т. д. Руды, в состав которых наряду с пиритом входят значительные количества соединений нескольких цветных металлов, называют полиметаллическими. [c.46]

    Наибольшее промышленное значение имеет сульфид свинца — галенит. Непременным спутником этого минерала являются сульфиды цинка (сфалерит) серебра (аргентит). Одновременно с галенитом часто встречаются халькопирит и другие сульфиды меди, а также минералы сурьмы, висмута и мышьяка. Месторождения чистых свинцовых руд встречаются редко. Различают четыре категории свинцовых руд — чисто свинцовые, свинцово-цинковые, свинцово-серебряные и полиметаллические. Последние содержат в промышленных концентрациях несколько полезных компонентов — [c.69]

    Получение и использование. Галлий — рассеянный элемент, в самородном состоянии не встречается и собственных руд не образует. Только в последнее время было обнаружено несколько его минералов, из которых наиболее распространенным является гал-лит СиОаЗг. Обычно примеси галлия встречаются в алюминиевых, железных и чаще всего цинковых рудах. Для выделения галлия используется сложная комплексная совокупность нирометаллурги-ческих, гидро Металлургических и электролитических методов. Галлий начинает сейчас все шире применяться в полупроводниковой промышленности, где используется его способность давать интерметаллические соединения с германием, кремнием, сурьмой, мышьяком и другими элементами. Добавка галлия в стеклянную массу позволяет получать стекла с высоким коэффициентом преломления световых лучей, а стекла на основе ОагОз хорошо пропускают инфракрасные лучи. Стекло, покрытое слоем галлия, отражает практически весь падающий свет (до 90%). Используют способность галлия к переохлаждению (до —40° С) и его высокую темлературу кипения (2247° С) для изготовления термометров. [c.320]

    Гравиметрически кадмий обычно определяют в виде сульфида, осаждая его сероводородом и удаляя мышьяк, сурьму и олово при помощи аммиака. Цинковые руды растворяют в царской водке, а нерастворимый остаток удаляют фильтрованием. Фильтрат разбавляют по крайней мере в 10 раз по отношению к его первоначальному объему. Сульфид цинка удаляют соляной кислотой. В некоторых случаях кадмий удобнее определять электролитически с использованием в качестве электролита раствор цианида калия. К. Е. Мур и Т. А. Робинсон [49] показали, что реакция кадмия с 1-фенил-тетразолон-5-тионом дает легко фильтруемый осадок, который можно высушить при 100° С без разложения. Несмотря на то что реагент не совсем избирателен, высокая чувствительность реакции кадмия позволяет использовать метод для гравиметрического определения (1 мг осадка эквивалентен 0,2408 мг кадмия). [c.120]

    На рис. 79 представлена схема переработки германийсодержащих пылей, образующихся при плавке медно-цинковых руд. Пыль, увлажненную до содержания 20% воды, смешивают с 60—100% серной кислоты. Затем смесь подвергают сульфатизации во вращающейся печи при 450— 500° в течение 4 часов при этом из пыли удаляется 88—90% мышьяка, содержавшегося в ней. Полученный спек измельчают в молотковой дробилке и обрабатывают в течение IV., час. в с,мееителях смесью кислых растворов (отработанный электролит после выделения из пыли кадмия и промывные воды последующих стадий процесса), содержащи.х [c.195]

    Методы инверсионной вольтамперометрии находят широкое применение для определения Sb в различных материалах, в том числе в чугунах, железе и сталях [1348, 1575], меди и медных сплавах [87, 116, 526, 569, 1348, 1575,1585], олове[221, 222, 224, 225, 242, 318, 526], алюминии [131, 132, 731, 1503], галлии и его солях [243, 245, 293, 303], арсениде галлия [243, 245, 246, 303, 586], кадмии и его солях [302, 318, 737], германии, тетрахлориде и тетрабромиде германия [105, 134], кремнии, двуокиси кремния, тетрахлориде и тетрабромиде кремния и трихлорсиланах [105, 133, 271, 310, 1503], цинке и цинковых сплавах [67, 737], серебре [605, 731J, свинце [833], теллуре [116], мышьяке [303], хроме и его солях [940], барии [125], ртути [528], висмуте [1348], никеле и никелевых сплавах [590], припоях [1348], полиметаллических рудах и продуктах цветной металлургии [116], растворах гидрометаллургического производства [138, 319, 1545], шламах [1175], ниобии и тантале и их соединениях [223, 2901, химических реактивах и препаратах [105], криолите [245, 586], материалах, используемых в злектронной [c.68]

    Спекание со смесью ZnO и Naa Og применимо для определения общего содержания серы в пиритных рудах, сырых и обожженных цинковых концентратах, в сульфидах мышьяка и сурьмы, арсенитах и особенно рекомендуется для определения серы в [c.165]

    Фотометрические методы определения мышьяка в виде мышья-ковомолибдеповой сини находят широкое применение. Они используются для определения мышьяка в его соединениях [529], железе, чугуне и стали [48, 540, 666, 698, 773, 785, 790, 885, 917, 943, 949, 952, 996, 1131-1133, 1147], ферросплавах [217, 702, 703, 1203], меди и медных сплавах [158, 195, 197, 216, 515, 562, 815, 886, 952, 1043, 1133, 1209, 1210], рудах и продуктах медного и свинцово-цинкового производства [21, 81], железных рудах [652, 822, 949, 1108], свинце [158, 264, 627, 695, 886, 926, 952, 990, 1133], серебре и его сплавах [1070], Вольфраме и его рудах [1203], олове [307, 585, 661, 1208], сурьме [91, 197, 198, 264, 284, 837, 886, 894, 952, 956], висмуте [265, 764], цинке [158, 627, 926, 952], ниобии и ванадии [284], галлии [284, 2881, индии [284, 289, 430], таллии [284, 287], кремпии [284, 872], германии ]б99, 700, 872], селене [637, 1016, ИЗО], теллуре [758], хроме и его окислах [198, 216], алюминии [144], кадмии [158], олове [886], молибдене и его окислах [459], никеле [402, 562], боре [893], уране [661, 760, 849, 928], минералах [415, 869, 994], пиритах и пиритных огарках [302, 491], фосфорной [940, 941], азотной [892], серной [939] и соляной [197, 452] кислотах, природных водах [785, 942, 993], дистиллированной воде [452], фосфатах [942] и фосфорсодержащих продуктах [980, 1091], силикатах и силикатных породах [869, 942, 964, [c.61]

    В некоторых методиках предусматривается одновременное полярографическое определение Bi, Sb и As. Цуики и Кавасэ [1157] разработали метод определения этих элементов в растворах сульфата марганца. В работах [79, 117, 1005] описано полярографическое определение мышьяка в цинковых и свинцовых концентратах и в некоторых рудах. [c.86]

    Метод отгонки мышьяка в виде трихлорида прост, надежен и позволяет выделять как макро-, так и микроколичества мышьяка из самых разнообразных материалов, в том числе из железа, чугуна и стали Г374, 552, 694, 986], сплавов на основе железа [380, 986], железных руд [373, 986], свинцово-цинковых концентратов [14, 375, 376], шлаков [986], горных пород и минералов [74, 781], платиновых металлов и продуктов их переработки [219], вольфрама и вольфрамового ангидрида [921], латуней [377], бронз [381], сурьмы J837], арсенида галлия [243] и арсенида индия [464]. [c.143]

    I — руда (сульфид Цинка с содержанием германия 0,01—0,015 %) 2 — обжиг и спекание рудного концентрата 3 — ЗО, иа завод по производству серной кислоты 4 — оксид цинка Для дальнейшего производства 5 — дым 6 — вода, серная кислота 7 — сбор, выщелачивание и фильтрация кадмиево-германиевого раствора 8 — сульфат свинца на плавление 9 — отделение кадмиево-германиевого раствора 10 — точка отделения 11 — цинковая пыль 12 — осаждение германия (вместе с медью, мышьяком и другими примесями в небольших количествах) 13 фильтрация 14 — раствор кадмия в дальнейшее производство 15 — осадок (1 % Ое) 16 — серная кислота 17 — повторное растворение 18 — цинковая пыль 19 — осаждение 20 — бедный кадмием раствор в цикл получения кадмия 21 — фильтрация 22 — концентрат германия (10—15 %) 23 — высушивание и прокаливание 24 — концентрированная соляная кислота 25 — растворение 26 — тетрахлорид германия 27 — перегонка 28 — отработанный раствор 29 — неочищенный тетрахлорид германия (с примесями мышьяка и др. веществ) 30 — фракционная перегонка 31 — медь 32 — нагрев с вертикальным холодильником 33 — арсенид меди 34 — перегонка 35 — чистый тетрахлорид германия 36 — вода 37 — гидролиз Ое(ОН)4, фильтрование, вакуумная сушка 38 — чистый диоксид германия 39 — воДороД 40 — восстановление водородом в трубчатой печи 41 — порошок германия 42 — азот или аргон 43 — плавление и отливка в формы (1000 °С) 44 — стержни из германия 45 — повторная плавка и кристаллизация (зонная плавка) 46 — высокочн-стый германий для целей электроники ( <1 ррт примесей) [c.162]

    Для металлургии редких металлов чрезвычайно важна комплексная переработка сырья, являющаяся необходимой предпосылкой дальнейшего развития промышленности редких металлов. В Программе Коммунистической партии Советского Союза, принятой ХХИ съездом, говорится Особенно ускорится производство легких, цветных и редких металлов.., . Одной из главных задач в области науки Программа считает совершенствование существующих и изыскание новых, более эффективных методов разведки полезных ископаемых и комплексного использования природных богатств . Это особенно важно для развития промышленности редких металлов, так как полиметаллические руды, главной составной частью которых являются цинк и свинец, часто содержат также (кроме сурьмы и мышьяка) кадмий, таллий, галлий, индий, германий, которые концентрируются в отходах производства свинцовых и цинковых заводов. Эти отходы являются, таким образом, исходным сырьем для получения целого ряда ценных элементов. Пыли и илы сернокислотного прозводства могут содержать селен, теллур, таллий. Шлаки черной металлургии могут служить источником получения ванадия и титана. Золы некоторых углей и сланцев содержат значительные количества германия, ванадия, иногда молибдена, галлия, циркония, редких земель и других элементов. В Калийных солях обнаруживаются рубидий, цезий, в глиноземном сырье — галлий, индий и т. д. [c.20]

    Экстракцию германия при помощи СС14ИЗ растворов НС1 7М использовали для отделения его от некоторых элементов [732, 734, 742—744], в том числе от циркония [733], от мышьяка [736, 737, 741], при определении германия в цинковых концентратах и окиси цинка [735], при фотометрическом отделении следов германия [738, 739], фотометрическом определении германия в рудах, углях, промышленных отходах [740], анализе руд [744], получении As без носителя [99, 745], определении германия в морской воде [642]. Экстракцию керосином [730], МИБК [748] применяли при непосредственном фотометрическом определении германия в органической фазе после введения подходящего реагента. Мышьяк-77 можно получить, удаляя радиоактивный германий экстракцией бензолом [731]. [c.131]

    Руды, содержащие два или несколько технически важных металлов, например свинцово-серебряные, медно-цинковые, железо-ванадиевые и т. д., называют нолиметалличес1 ими. Руды, содержащие, кроме основного компонента—металла, ценные металлоиды, поддающиеся извлечению, называют комплексными. Примером комплексных являются керченские железные руды, содержащие ванадий, мышьяк и фосфор. Очень ценны уральские титаномагнетиты, содержащие железо, ванадий, хром и титан. [c.324]

    Чайковская В. С, Методы определения мышьяка в продуктах цинкового производства. Науч. конференция, посвященная 80-летию университета. Тезисы докладов (Ростовск. уи-т), 1949, вып, 2, с. 53. 6102 Чарова А. М, и Рутенбург Е, Б. Ускоренный метод определения закиси железа в железу ных рудах, агломерате и колошниковой пыли. Зав, лаб,, 1948, 14, № 7, с, 872, 6103 Чебуркова Е. Е, Определение сульфидных включений железа и марганца в металле сварного 1ива. Зав. лаб., 1948, 14, N° 6, с. 654—657. Библ. 5 назв. 6104 [c.232]

    Больщинство таллийсодержащих руд можно разложить смесью азотной, серной и фтористоводородной кислот. При анализе медных, цинковых и свинцовых руд применяют смесь азотной и соляной кислот в случае высокого содержания свинца большую часть его лучше осадить в виде хлорида [32]. При анализе оловянных руд их сплавляют со смесью едкого натра и перекиси натрия с последующим удалением большей части олова путем упаривания солянокислого раствора, содержащего пергидроль [2]. При определении таллия в рудах с высоким содержанием ртути, сурьмы и мышьяка основную массу их рекомендовано отделять нагреванием раствора с едким натром и сульфидом натрия, переводящим их в растворимые тиосоли [12]. [c.243]

    Редкий элемент таллий является постоянным спутником цинковых, свинцовых и медных руд, а также серных колчеданов, в которых он встречается в крайне незначительных количествах. Минералы таллия крайне редки. Из них известны лорандит (сернистые таллий и мышьяк) и крукезит (состоит из селенистых свинца, таллия и серебра). За границей сульфат таллия получается не только при производстве серной кислоты, но и при гидрометаллургическом получении цинка, кадмия и т. д. из цинковых концентратов [48]. [c.62]

    Медные, цинковые, свинцовые руды и конце1 траты, 1 г Сульфиды мышьяка, 0,5—0,8 г [c.205]

    Раствор rS04 позволяет успешно определять мышьяк в некоторых минералах, рудах, цинковых белилах, пылях и других материалах. [c.62]

    Кроме пыли, в газе содержатся еще другие вредные примеси, которые также могут быть удалены при мокрой очистке. В сульфидных рудах (колчеданах, цинковых и медных концентратах) содержатся соединения мышьяк и селена в процессе обжига при высокой температуре эти прьшйси переходят в газовую фазу в виде АзгОз и ЗеО . Хотя ванадиевый катализатор в гораздо меньшей мере, чем платина, подвержен отравлению мышьяком, но [c.180]

    Сырьем для производства меди являются медные руды. Медь встречается в природе в виде сульфидных, окисленных, смешанных и самородных руд. Наибольшее значение имеют сульфидные руды (около 80% от общего количества руд). Содержание меди в рудах обычно колеблется от 1 до 5% руды, содержащие меньше 0,5% меди, при современном уровне техники нерентабельны для переработки. В медных рудах часто кроме меди (1—6%) содержатся другие металлы цинк, свинец, никель, молибден, а также селен, мышьяк, теллур, таллий, золото и серебро. Бедные сульфидные медные руды и полиметаллические, как правило, подвергаются обогащению методом флотации, при этом получают медные концентраты, содержащие 10—30% меди. Из полиметаллических руд методом селективной флотации, кроме того, получают свинцовые, цинковые, никелевые и другие концентраты, служащие сырьем для производства соответствующих металлов. Богатые месторождения медных. руд находятся на Урале, в Казахстане и в других районах F . Кроме медных руд в качестве сырья для производства меди применяют промышленные и бытовые отходы меди. Из [c.123]


Смотреть страницы где упоминается термин Мышьяк в цинковых рудах: [c.42]    [c.657]    [c.25]    [c.305]    [c.289]    [c.179]    [c.1406]    [c.156]    [c.909]    [c.491]    [c.90]   
Химико-технические методы исследования (0) -- [ c.580 ]




ПОИСК





Смотрите так же термины и статьи:

Цинковая



© 2024 chem21.info Реклама на сайте