Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Элюция

    Несмотря на различия физических процессов, лежащих в основе методов хроматографического фракционирования, можно провести теоретическое рассмотрение ряда основных вопросов, общих для всех этих методов. Разумеется, здесь нет места для глубокого изложения теории хроматографии, но ознакомиться с ее основными положениями и выводами имеет смысл как для понимания ссылок и терминов, встречающихся в литературе, так и потому, что некоторые из этих выводов носят сугубо практический характер. Кроме того, знание общих закономерностей процесса хроматографической элюции послужит основой для дальнейшего, более углубленного анализа каждого из описываемых ниже специфических методов хроматографии. [c.14]


    Количественное определение аминокислот методом элюции и последующим фотоколориметрированием [105, 106]. С помощью этого метода можно определять в растворе или гидролизате белка 0,05—0,15 мкг аминокислоты. Метод основан на реакции аминокислот с нингидрином в слабокислой среде с последующим превращением полученного в результате реакции синего производного — дикетогидринделидендикетогидриндиамина (ДИДА) в стабильное производное меди оранжево-красного цвета, имеющее максимум поглощения при 530 ммк. [c.117]

Рис. 7. Зависимость дисперсии ширины хроматографической зоны (2 ) от скорости элюции (и) Рис. 7. Зависимость дисперсии <a href="/info/429513">ширины хроматографической зоны</a> (2 ) от скорости элюции (и)
    Полярная неподвижная жидкая фаза ПЭГ-400 (30% от массы носителя), плотность 1,12 г/см полярность по Роршнейдеру 75. Твердая фаза сферохром-1 или хроматон N-AW, зернение 0,25—0,5 мм. Длина колонки 120 см, ее внутренний диаметр 0,4 см, температура 80°С. Газ-носитель — азот, его скорость 50 мл/мин Давление насыщенных паров при 80°С ССЦ 838,3 мм рт. ст. (111,7 кПа), гексана— 1062 мм рт. ст. (141,6 кПа). Скорость диаграммной ленты при элюции На 20 мм/мим, при элюции ССЦ и гексана 3 мм/мин. Объем пробы 6 мкл. [c.272]

    Количественной характеристикой поведения компонента в хроматографической системе может служить время пребывания его в системе от момента начала элюции до момента выхода из колонки, называемое временем удерживания. Эта величина для некоторого вещества зависит как от химической природы используемой системы, так и от размеров колонки и скорости тока элюента. В то же время в стандартизированных условиях оно является количественной характеристикой компонента и может использоваться для его обнаружения в анализируемой смеси. [c.342]

    Для количественной хроматографии методом элюции необходимо, во-первых, полное разделение веществ и, во-вторых, точный микрометод для определения элюированного вещества. [c.102]

    Адсорбция представляет собой обратимый процесс. Процесс, обратный адсорбции, называется десорбцией. Удаление адсорбированных веществ с адсорбентов при помощи растворителей называют элюцией. [c.130]

    Различие степени доступности объема неподвижной фазы для молекул различных компонентов исходной смеси веществ является фактором, определяющим возможность их фракционирования. Очевидно, что оно будет происходить по размерам молекул. Если в составе смеси имеются очень крупные молекулы, вовсе не проникающие внутрь гранул, то они будут выходить из колонки или достигать края хроматографической пластины вместе с передним фронтом подвижной фазы ( фронтом элюции ). В то же время мелкие молекулы, свободно диффундирующие внутрь гранул, часть времени будут находиться в неподвижной фазе. Статистически эта часть времени одинакова для всех молекул такого размера и зависит от соотношения объемов жидкости в неподвижной и подвижной фазах. Таким образом, все мелкие молекулы достигнут конца хроматографического пути более или менее одновременно и заведомо позднее, чем крупные. Молекулы промежуточных размеров, для которых из-за разброса значений эффективных диаметров пор внутри гранул неподвижной фазы доступна только часть ее объема, должны, очевидно, перемещаться вдоль колонки или пластины с промежуточной скоростью. [c.7]


    КЛАССИФИКАЦИЯ ПО СПОСОБУ ЭЛЮЦИИ [c.11]

    ЭЛЕМЕНТЫ ТЕОРИИ ХРОМАТОГРАФИЧЕСКОЙ ЭЛЮЦИИ [c.14]

    Кривыми в последней строке рис. 4 обозначены сглаженные профили зон для двух сопоставляемых случаев хроматографической элюции. Внизу этп профили совмещены на длине колонки. Такая картина может быть получена при внесении в исходную зону смеси двух веществ с различными коэффициентами распределения [К — I н К = 3). Существо проведенного рассмотрения позволяет заключить, что расхождение зои будет тем заметнее, чем сильнее отличаются между собой значения К для двух компонентов смеси или, что то же, чем сильнее они различаются по степени сродства к неподвижной фазе. Проведя соответствующие измерения, легко убедиться в том, что отношение расстояния, пройденного передним фронтом элюента (вертикальная линия), к расстоянию, пройденному центром тяжести зоны (стрелка), если отсчитывать их от начала колонки, для левого столбца К = 1) равно двум, а для правого К = 3) постепенно приближается к четырем. Оба эти отношения можно представить в виде суммы К. Далее мы увидим, что это отнюдь не случайно. [c.22]

    В проведенном теоретическом рассмотрении было сделано предположение, что исходная зона имеет очень малую (точнее, бесконечно малую) ширину. На самом деле это не так начальная зона имеет форму прямоугольника, который, очевидно, не может скачком превратиться в колоколообразную кривую распределения Гаусса. Вначале расширение зоны идет за счет размывания ее переднего и заднего фронтов (рис. 8). Можно доказать, что профиль каждого фронта может быть описан соответствующей половиной кривой Гаусса. Практически в большинстве случаев аналитического фракционирования хроматографические пики за время прохождения по колонке, расплываясь, успевают принять колоколообразную форму распределения Гаусса, поэтому сделанные выше качественные выводы относительно выбора скорости элюции и диаметра гранул сохраняют свою силу и для реального хроматографического процесса. [c.31]

    Условия опыта. 1. Жидкая фаза (НЖФ) — сквалап (2, 6, 10, 15, 19, 33-гекса-метилтетракозаи) СзоН а мол. вес 422, 83, плотность 0,81 нанесена на твердую фазу — 30% по массе полярность по Роршнейдеру ноль. Твердая фаза — диатомитовый кирпич ИНЗ-600 или сферохром-1, зернение 0,25—0,5 мм. Газ-носитель азот, скорость 50 мл/мин. Длина колонки 120 см, ее внутренний диаметр 0,4 см, температура колонки 80° С. Скорость диаграммной ленты при элюции СС и гексана 3 мм/мин. Давление насыщенного пара гексана при 80° С 1062 мм рт. ст. Проба 0,006 мл. [c.208]

    Жидкая фаза (НЖФ) — 30% ПЭГ-400 от массы твердой фазы, плотность 1,12, полярность по Роршнейдеру 75. Твердая фаза кирпич ИНЗ-600 или сферохром-1, зернение 0,25—0,5 мм. Длина колонки 120 см, ее внутренний диаметр 0,4 см, температура 80° С. Проба 0,006 мл. Давление насыщенных паров ори 80° С СС14 838,3 мм рт. ст, гексана — 1062 мм рт. ст. Скорость диаграммной ленты при элюции На 20 мм/мин, при элюции СС14 и гексана 3 мм/мин. [c.208]

    С целью уменьщения адсорбции растворителя при молекулярной сорбции из водных растворов обычно при.меняют гидрофобный адсорбент — активный уголь, а при сорбции из неполярных растворите.тей (углеводородов) гидрофильный адсорбент — силикагель. Адсорбция протекает по активным центрам адсорбента, часто мономолекулярно и высокоизбирате.тьно. Изотермы молекз лярной адсорбции из растворов, так же как газов и паров, имеют вид кривой, приведенной на рис. 10.10. Десорбцию, осуществляемую с помощью жидкостей, обычно называют элюцией, а жидкости или растворы, применяе.мые для этих целей, элюентами. [c.302]

Рис. 93. Профиль элюции ионообменной хроматографии смеси олигомеров, построенных из остатков яуклеотида — адениловой кислоты, отличающихся числом звеньев цифрами около некоторых пиков отмечено число мономерных звеньев >2 — оптическая плотность прн Л—260 нм Рис. 93. Профиль элюции <a href="/info/5708">ионообменной хроматографии</a> смеси олигомеров, построенных из остатков яуклеотида — <a href="/info/35638">адениловой кислоты</a>, отличающихся <a href="/info/117972">числом звеньев</a> цифрами около <a href="/info/1687427">некоторых пиков</a> отмечено число <a href="/info/128626">мономерных звеньев</a> >2 — оптическая плотность прн Л—260 нм
    Кривые зависимости интенсивности сигнала детектора от объема газа-носителя, пропущенного через колонку, или от времени называют хроматограммой или элюци-онной кривой. [c.40]

    Метод вымывания (элюции). Метод вымывания применяется наиболее широко и, по-видимому, это наиболее точный количественный метод. Сущность метода состоит в том, что хроматограмму разрезают на части так, чтобы в каждой части находился только один из компонентов хроматографируемой смеси. Затем вещества экстрагируют из бумаги, элюаты собирают количественно и в них определяют компоненты смеси колориметрическим, полярографическим или радиометрическим методом [105]. [c.101]

    Разделение компонентов смеси может происходить по различным признакам коэффищ1ентам адсорбции, распределения, растворимости, ро способности к ионному обмену или размерам молекул и т. д Хроматографический анализ можно проводить в колонках, кациллярах, в тонком слое сорбента. Компоненты смеси собирают по фракциям на выходе из колонки после элюции соответствующим растворителем или вытеснителем. [c.169]


    Описанию современной хрэматографической техники (колонок, насосов, детекторов, коллекторов фракций и др.) также посвящена отдельная глава. Наряду с рассмотрением принципов работы этих устройств сюда включены и сопоставляются данные каталогов по последним (на конец 1983 г.) моделям соответствующей аппаратуры, особенно многочисленным для высокоэффективной хроматографии при высоком давлении. В этой же главе приведены подробные рекомендации по общим для всех вариантов хроматографии методическим приемам подготовке колонок, внесению препаратов, осуществлению элюции, детектированию фракций и др. [c.4]

    Возможность фракционирования компонентов смеси веществ обусловлена здесь различием в значениях их суммарных зарядов. Последние зависят как от числа и характера ионогенных групп в молекулах, так и от полноты их диссоциации, которую можно контролировать путем выбора pH и ионной силы элюента. Чем больше в данных условиях элюции суммарный заряд того или иного компонента смеси, тем сильнее его взаимодействие с ионообменни-ком н тем медленнее он мигрирует вдоль колонки. На очерченный здесь основной процесс ионообменной хроматографии влияет ряд дополнительных факторов. Среди них, кроме уже фигурировавшей ранее затрудненной (особенно для крупных молекул) диффузии внутри гранул, следует назвать возможность неионпой адсорбции на поверхности матрицы ионообменннка. Однако при правильном выборе материала обменника, и в частности его порнстостп, основную роль в процессе фракционирования играет явление понного обмена. [c.10]

    Иногда явление биологического сродства используется только в процессе олюцни. В этом случае вещество связывается с поверхностью твердого сорбента за счет ионного взаимодействия пли сил адсорбции, а элюцию осуществляют путем увеличения его сродства к элюенту, куда вводят биологически родственные (в указанном выше смысле) молекулы. Такой процесс было бы точнее называть аффинной элюцией. Имеются примеры, когда один из партнеров аффинной пары имеет не биологическое происхождение, а представляет собой, например, сложный краситель, пространственная конфигурация которого имитирует какую-либо биологическую структуру. [c.11]

    В этом варианте в колонку или па стартовую линию хроматографической пластинки наносят определенную порцию раствора исходной смеси веществ, а затем ведут элюцию раствором вещества, обладающего заведомо большим сродством к неподвижной фазе хроматографической системы, чем любой из компонентов смеси. Происходит вытеснение их пз неподвижной фазы, причем в первую очередь тех, которые обладают меньшнм сродством к сорбенту, а затем и всех остальных. Элюеит выталкивает все компоненты смеси впереди себя наподобие поршня. Так как они выходят в подвижную фазу концентрированными, то между ними также идет конкуренция за связь с неподвижной фазой. Компоненты, уступающие другим в силе сродства к этой фазе, оттесняются еще вперед, где сорбируются, но только до тех пор, пока их опять не вытеснят компоненты, обладающие большим сродством к сорбенту. В результате такого чередования сорбции и вытеснения компоненты смеси будут выходить из колонки один за другим в порядке возрастания силы их связи с неподвижной фазой. Ясно, что при этом зоны соседних компонентов будут соприкасаться или даже немного перекрываться друг с другом. Для аналитического фракционирования метод непригоден, но хорош для препаративного или полупромышленного разделения веществ, поскольку емкость колонки здесь используется очень эффективно. [c.12]

    Экстраполяция этого наблюдения к условиям очень медленного ( равновесного ) движения зоны позволяет утверждать, что в отсутствие продольной диффузп зона будет перемещаться, практически не деформируясь. При этом велич на отставания зоны от фронта элюции останется неизменной — она зависит только от коэффициента распределения вещества между фазами. Таким образом, даже это первое, довольно грубое рассмотрение процесса хроматографической элюц и позволяет сделать два практически важных заключения. Во-первых, зона вещества будет двигаться вдоль колонки тем медленнее, чем сильнее выражено сродство этого вещества к неподвижной фазе сорбента. Во-вторых, во збежан е расширения зоны элюцию надо проводить достаточно медленно. [c.23]

    В отличие от предыдущего в этом методе элюирующий раствор обладает меньшим сродством к сорбенту, чем любой из компонентов вносимой на колонку или пластинку смеси веществ. Эти компоненты постепенно вымываются из неподвижной фазы и движутся вдоль колонки за счет непрерывного перераспределения их молекул между неподвижной фазой и элюентом. Каждый из них мигрирует независимо от других в соответствии с соотношением сил его сродства к неподвижной и подвижной фазам. Миграция идет тем медленнее, чем больше сродство к неподвижной фазе. Именно этот, пригодный для аналитических целей вариант хроматографии подробно рассмотрен в следующем разделе, поэтому здесь можно ограничиться указанием на то, что при хроматографической элюции компоненты смеси выходят из колонки отдельными, разделенными друг от друга зонами, которые в соответствии с типичной формой профиля распределения вещества в каждой такой зоне (см. нияге) часто называют хроматографическими пиками. [c.12]

    Пластинки, бумага или пленка могут располагаться горизонтально или вертикально в последнем случае движение подвижной фазы может быть восходящим или нисходящим — это не играет принципиальной роли, так как оно обусловлено в основном капил-лярнылги силами. Препараты на пластинки или бумагу чаще всего наносят в виде полоски или пятна раствора у одного края сорбента, неподалеку от уровня элюирующей жидкости, в которую этот край погружают. В последнее время для ТСХ все чаще применяют вариант кольцевой хроматографии, когда исходный препарат наносят в виде кольца, а элюция идет радиально. [c.13]

    Для того чтобы рассмотрение было действительно общим, оно должно опираться иа самое общее определение процесса хроматографической элюции, или хроматографического процесса. Хотя существенные особенности этого процесса уже были рассмотрены во введении, имеет смысл повторить их еще раз в виде краткой формулировки, исходной для всего дальнейшего анализа. Под хроматографическим процессом будем подразумевать процесс движения хроматографируемого вещества в системе двух фаз, одна из которых неподвижна, а вторая перемещается относительно первой. Это перемещение увлекает вещество и обусловливает его миграцию, в ходе которой оно непрерывно перераспределяется между двумя фазами. Скорость миграции зависит от соотношения степеней сродства вещества к неподвижной и подвижной фазам. Если эти соотношения для компонентов исходной смеси не одинаковы, то они мигрируют с разными скоростями и их удается физически отделить друг от друга, после того как они пройдут достаточно длинный для такого разделения путь. [c.14]

    Здесь в левом столбце снова воспроизведены два первых этапа перемещения зоны путем грубых скачков, как на рис. 4. Ширина зоны при этом увеличивается втрое. Такое же увеличение для аналогичной псходнои зоны К = 1) оппсывают диаграммы правой части рисунка, расположенные лестницей . Однако в этом случае скачки выбраны вчетверо меньшими, т. е. в модели элюции предполагается, что после каждого мгновенного перемещения подвижной [c.22]

    Но за время очевидно, пз колонки выходит вся жидкость, которая исходно находилась между гранулами, т. е. свободный ( мертвый ) объем колонки У . Далее при иеизменной скорости элюции и к моменту д, когда хроматографическая зона достигнет конца колонки, из последней успеет выйти объем жидкости Уд, который можно назвать объелюм элюцииь зоны. Из соотноитения (8) следует, что и объем элюции будет в (1 + А) раз больше, чем свободный объем  [c.28]

    При составлении первого уравнения движения зоны предполагают, что в начальный момент времени = О на колонку длиной Ь вносят в виде очень тонкого слоя конечную массу вещества М и немедленно начинают элюцию так, что подвижная фаза перемещается вдоль колонки с линейной скоростью и, которую условимся называть скоростью элюцпи. Далее рассматривают бесконечно тонкий слой внутри зоны в момент I, когда максимум ее находится на расстоянии X от начала колонки. Для этого слоя составляют дифференциальное уравнение баланса, имея в виду, что скорость из.менения количества вещества в неподвижной и подвижной фазах слоя (суммарно) обусловлена разностью потока вещества на границах слоя в обеих фазах с учетом диффузии. В таком уравнении фигурируют две функции, например концентрации вещества в подвижной фазе (Ст) и неподвижной фазе (С ), и два аргумента, неявно связанные между собой,— X а 1. С помощью второго уравнения, описывающего переход вещества из одной фазы в другую, первое уравнение можно преобразовать так, что оно будет записано только для одной функции, например С . Пнтересуясь формой зоны в тот момент, когда она подходит к концу колонки, можно положить X = Ь. Тогда получается дифференциальное уравнение для = / [1), т. е. описание того, как [c.26]

    Таким образом, мы приходим к важному заключению о том, что хроматографическая зона мигрирует вдоль колонки со скоростью, в (1 -f К) раз меньшей, че.м скорость элюцпи. Выше было показано качественно, что с увеличением К движение зоны замедляется, а на частных примерах даже обнаружилось, что оно замедляется в (1 + -Ь К) раз по сравнению со скоростью движения фронта элюента. Оказывается, что это соотношение можно получить строго для реальных условий хроматографии. Отношение скоростей дгиграць и зоны и элюции обозначают символом R и называют факторам задержки (чем меньше R, тем сильнее выражена задержка)  [c.27]

    Запишем некоторые вытекающие из полученного заключения следствия. Время, необходпмое для того, чтобы передний фронт элюента дошел до конца колонки ( о), очевидно, можно подсчитать по скорости элюции п длине колонки =. Ыи. Сопоставляя это с вглражением (5), найдем, что время элюции зоны д в (1 + К) раз больше, чем [c.28]

    Каждая отдельная дисперсия вносит свой вклад в суммарную дисперсию, т. е. в расширение хроматографической зоны. Приведенные выражения позволяют понять характер влияния выбора параметров хроматографического процесса на ширину зоны, т. е. содержат в себе очень важную практическую информацию. Наг рпмер, легко видеть, что с увеличением диаметра гранул зона расширяется как за счет неоднородности тока жидкости, так и особенно за счет неравновесности распределения молекул вещества по объемам подвижной и неподвижной фаз. Эта неравновесность будет сказываться тем меньше, чем больше значения коэффициентов диффузии и Оа, т. е. чем легче диффундирует вещество. С другой стороны, облегчение диффузии (увеличение и О ) влечет за собой раси]и-рение зоны за счет продольной диффузии (особенно в подвижной фазе). Скорость элюции и) также влияет двояким образом. С ее увеличением вклад продольной диффузии в расширение зоны умень-шается, зато сильнее сказываются все неравновесности распределения. Наконец, все факторы без исключения увеличивают дисперсию зоны пропорционально длине колонки L. Отсюда следует, что движение хроматографической зоны вдоль колонки в неидеальных условиях связано с непрерывным расширением зоны. Это должно нас насторожить в отношении целесообразности увеличения длины колонки. [c.29]

    Очевидно, что должен существовать какой-то оптимум скорости элюции, ири котором обеспечивается минимальное расширение зоны. Действительно, построение графика зависимости = / и) дает всегда кривую с минимумом (рис. 7), которому и отвечает оптимальная скорость элюции. Практически ее не рассчитывают, а подбирают эксперп.ментально по минимально.му расширению хроматографического пика. Но это не делает наше теоретическое рассмотрение излишним. Оно показывает характер зависимости рас]пирепия зоны от скорости элюции. Из рис. 7 легко видеть, что для скоростей,, не превышающих оптимальную, дисперсия очень резко (ио гипер- [c.29]

    Чем меньше величина Я, тем лучше работает колонка. В современных колонках добиваются того, что Я = (1 -н 2) т. е. величине Я отвечает размер порядка малых долей миллиметра. Отсюда появилось наглядное представление о тонком диске, как бы вырезанном из колонки. Его образно назвали теоретической тарелкой , а величину Я именуют высотой теоретической тарелки . Исторически этот термин появился при рассмотрении людели хроматографического процесса, где непрерывную элюцию заменяли малыми скачкообразными продвижениями зоны, подобно тому как это было сделано выше в методе диаграмм. Кстати, с помощью этого метода понятию теоретической тарелки можно придать наглядный смысл. Как было установлено при сопоставлении диаграмм рис. 5, с уменьшением ширины гипотетического скачка, описывающего продвижение зоны вдоль колонки, меняется и форма зоны, в частности степень ее расширения. Представим себе, что при хроматографировании определенного вещества в реальных условиях мы экспериментальным путем нашли закон расширения зоны, а затем подобрали ширину теоретического скачка так, чтобы расширение, описываемое методом диаграмм, следовало бы точно такому же закону. Ширина этого скачка и отвечает понятию высоты теоретической тарелки Я. В методе диаграмм мы не принимали во внимание продольной диффузии, однако можно себе представить, что существует более сложная модель скачкообразного движения зоны, учитывающая все факторы, ведущие к размыванию зоны. Ширина эквивалентного скачка в этой модели может служить наглядной иллюстрацией понятия о величине Я. [c.32]

    Следует подчеркнуть, что высота теоретической тарелки характеризует отнюдь не только саму колонку. Из параметров собственно колонки на величину Я явныд образом влияет диаметр гранул (с1), а неявным — коэффициент л, значение которого сильно зависит от степени однородности набивки колонки. Однако, кроме этих параметров, высоту Я определяют и выбор скорости элюции (и), и характер диффузии вещества в обеих фазах ( , , В ), и распределение вещества между зонами (Л), и кинетика сорбции (к). Таким образом, для разных препаратов или при разных условиях элюции одна и та же колонка может характеризоваться различнылш значениями Я. [c.32]


Смотреть страницы где упоминается термин Элюция: [c.168]    [c.342]    [c.5]    [c.10]    [c.12]    [c.27]    [c.30]    [c.30]    [c.33]   
Общая химия 1982 (1982) -- [ c.323 ]

Общая химия 1986 (1986) -- [ c.313 ]

Физическая и коллоидная химия (1957) -- [ c.258 ]

Общая химия Издание 18 (1976) -- [ c.320 ]

Общая химия Издание 22 (1982) -- [ c.323 ]

Физическая и коллоидная химия (1964) -- [ c.170 ]

Электрофорез в разделении биологических макромолекул (1982) -- [ c.119 , c.123 , c.151 ]




ПОИСК







© 2025 chem21.info Реклама на сайте