Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Хлор, производство электролиз с ртутным катодо

    При производстве каустической соды по ртутному методу проводят электролиз насыщенного раствора хлорида натрия. В результате на анодах выделяется хлор, а на ртутном катоде образуется амальгама натрия. Обедненный в процессе электролиза раствор электролита отводится из электролизера, насыщается твердой солью, очищается и возвращается в процесс. [c.6]


    Производство хлора, каустической соды и водорода методом электролиза водного раствора поваренной соли на жидком ртутном катоде включает следующие технологические стадии  [c.49]

    В современной промышленности электролитическое производство хлора и каустической соды основано на использовании двух различных методов электролиза с твердым катодом (диафраг-менный) и с ртутным катодом. Эти методы различаются по реакциям, протекающим на катодах. На твердом катоде в процессе электролиза происходит разряд ионов водорода, а в электролите образуется щелочь. На ртутном катоде разряжаются ионы натрия, в результате образуется амальгама натрия, которую выводят из электролизера и разлагают водой при этом выделяется водород и образуется щелочь. Освобождающуюся при разложении амальгамы ртуть возвращают в электролизер. [c.131]

    Пути интенсификации электролиза с ртутным катодом. Техника электролиза с ртутным катодом за период 1960—1970 гг. претерпела существенные изменения. Нагрузка электролизеров за этот период возросла со 100 до 300 кА, и в ближайшие годы следует ожидать освоения электролизеров на 500 кА и более. Благодаря внедрению окисно-рутениевых электродов межэлектродное расстояние уменьшилось с 3—5 до 0,5—1 мм, плотность тока повысилась с 8—10 до 13 кА/м . Такое возрастание плотности тока при одновременном уменьшении межэлектродного расстояния не привело к заметному росту расхода электроэнергии на производство 1 т хлора. За счет увеличения наклона днища удельная закладка ртути уменьшилась от 20 до 11 кг/кА. [c.171]

    Волков Г. И. Производство хлора и каустической соды методом электролиза с ртутным катодом. М., Химия , 1968, 220 с, [c.230]

    На ртутном катоде, также используемом в производстве хлора, протекает иная электрохимическая реакция, чем при электролизе с твердым катодом. На ртутном катоде возможен разряд ионов натрия с образованием сплава натрия с ртутью — амальгамы  [c.145]

    Состав раствора. Выход щелочи по току зависит от концентрации хлорида натрия в анолите (рис. 2.42). Для питания электролизера с ионообменной мембраной используют рассолы, состав которых такой же, что и состав рассола для производства хлора, щелочи и водорода другими описанными выше методами. Однако степень разложения хлорида натрия составляет 0,7 по сравнению с 0,5 при электролизе с фильтрующей диафрагмой и 0,17 — при электролизе с ртутным катодом. [c.173]


    В производстве хлора и каустической соды для предотвращения проникновения хлора в атмосферу цеха вся аппаратура и трубопроводы должны быть герметизированы. Предельно допустимая концентрация хлора в атмосфере цеха составляет 1 мг/м . При содержании в водороде более 4 масс. % хлора возникает взрывоопасная смесь, поэтому вакуум в катодном пространстве электролизера должен быть выше вакуума в анодном пространстве. При электролизе с ртутным катодом особую опасность для обслуживающего персонала и для окружающей среды представляет ртуть. Предельно допустимая концентрация паров ртути в помещении составляет 0,01 мг/м . Для уменьшения потерь ртути процесс производства хлора и щелочи осуществляют по замкнутой технологической схеме, которая предусматривает возвращение загрязненных ртутью конденсатов и вод обратно в процесс. [c.232]

    Электрохимическое производство хлора с момента его зарождения развивалось по двум методам электролиза с твердым катодом и диафрагмой и электролиза с ртутным катодом. Оба метода имеют свои преимущества и недостатки. В различные периоды развития хлорной промышленности менялась доля каждого из методов в производстве хлора как в отдельных странах, так и в мировой хлорной промышленности. [c.14]

    В последнее время доля метода с ртутным катодом в общем производстве хлора и каустической соды возрастает. При общем большом росте производства по методу электролиза с диафрагмой доля егл  [c.16]

    Масштаб производства хлора и каустической соды методом электролиза с ртутным катодом определяется потребностью народного хозяйства в чистой каустической соде. Остальное количество хлора и каустической соды целесообразно получать по методу электролиза с диафрагмой. [c.17]

    В электролизерах с диафрагмой применение металлических анодов позволяет повысить плотность тока до 2—3 кА/м , обеспечить стабильный во времени энергетический и температурный режимы работы электролизера и снизить затраты электроэнергии на производство при одновременной его интенсификации. Применение металлических анодов облегчает решение конструкции биполярного электролизера с диафрагмой, открывает новые пути развития электрохимического метода получения хлора и каустической соды как по методу с ртутным катодом, так и по способу электролиза с диафрагмой. [c.22]

    В производстве хлора и каустической соды по методу электролиза с ртутным катодом амальгама натрия используется только для получения гидроокиси щелочного металла и водорода. При этом водород часто не находит полезного применения, особенно в связи с загрязнением газа парами ртути. [c.117]

    В процессе производства хлора и каустической соды электролизом водных растворов хлоридов щелочных металлов выделяется водород, при производстве по методу электролиза с ртутным катодом водород загрязнен парами ртути. При диафрагменном методе производства водород не содержит ртути, но может включать помимо примесей кислорода и азота также небольшие количества хлорорганических продуктов, образующихся в анодном пространстве электролизера и поступающих затем в катодное пространство вместе с потоком анолита. [c.193]

    На рис. 4-2 приведена принципиальная схема производства хлора и каустической соды электролизом с ртутным катодом, причем [c.195]

    Если на одном производстве используются оба метода электролиза, обратная соль, выделяемая в производстве по методу с твердым катодом и диафрагмой, может быть использована [1] для питания цеха электролиза с ртутным катодом, как это показано на рис. 4-3. При этом необходимо принять меры против загрязнения обратной соли амальгамными ядами, содержащимися, например, в графитовых анодах или в продуктах коррозионного разрушения материалов аппаратуры, или предусмотреть очистку получаемого после донасыщения электролита от этих загрязнений. Ниже будут рассмотрены технологические процессы и схемы по отдельным стадиям производственного процесса получения хлора и каустической соды. [c.197]

    Большой интерес представляет комбинирование ртутного метода производства хлора с диафрагменным. При этом обратная соль стадии упаривания электролитических щелоков диафрагменного электролиза может быть использована для донасыщения анолита электролизеров с ртутным катодом. Отпадает необходимость строительства специальных выпарных установок для рассола, и производство электролиза с ртутным катодом обеспечивается дешевой солью [69—71]. [c.227]


    В производстве хлора и каустической соды электролизом с ртутным катодом всегда происходит потеря ртути, величина которой сильно зависит от состояния оборудования и общей культуры производства. На лучших предприятиях удельные затраты ртути на 1 т [c.270]

    Были сделаны попытки рассматривать электролиз расплавленных хлоридов натрия с движущимся свинцовым катодом как способ производства хлора а одновременным получением вместо металлического натрия его окисла или гидроокиси. Имеющиеся по этому вопросу публикации указывали на высокую экономичность способа по сравнению с электролизом с ртутным катодом [8—И]. Однако детальное рассмотрение показало, что предлагаемый способ не может конкурировать с используемыми в настоящее время способами электролиза с ртутным катодом и с диафрагмой. Метод электролиза расплавленной поваренной соли с применением движущегося свинцового катода при условии успешного решения ряда технических вопросов и разработки промышленной технологии может быть экономичным для крупного производства металлического натрия. [c.281]

    При производстве хлора электролизом с ртутным катодом содержание водорода обычно бывает выше и при нарушениях нормального хода технологического процесса может превышать 1-1,5%. [c.321]

    Важной задачей является автоматический контроль состава исходного хлора и абгазов после первой и второй стадий сжижения, а также автоматическое поддержание содержания водорода в абгазах на уровне, обеспечивающем безопасные условия производства. Это особенно важно при двухступенчатом сжижении с высоким коэффициентом сжижения, но такой контроль следует применять и при одноступенчатом сжижении, когда хлор поступает от цехов электролиза с ртутным катодом. - [c.361]

    В настоящее время хлор и едкие щелочи вырабатываются двумя электрохимическими методами. Один из них — электролиз с с твердым катодом (диафрагменный метод производства), другой— электролиз с жидким ртутным катодом (ртутный метод производства), Оба метода дают хлор приблизительно одной и той же чистоты. [c.36]

    В воздухе определяют ртуть в основном с целью установления степени зараженности атмосферы производственных помещений предприятий различных отраслей промышленности (производство ртути производство хлора и едких щелочей электролизом с ртутным катодом пайка различных контрольно-измерительных приборов и источников света помещения подстанций электротранспорта, где работают ртутные выпрямители производство красящих пигментов и ядохимикатов на основе ртути химические производства, использующие ртуть и ее соединения в качестве катализаторов, и т. д.). Другим объектом определения ртути в воздушной среде являются отходящие газы печей ртутного производства и промышленных предприятий, связанных с потреблением ртути [104, 316, 420, 843, 9601. В данном случае анализы проводятся с целью установления загрязненности окружающей атмосферы, а через нее и почвы ртутью. [c.165]

    В нашей стране разработана технология получения таких анодов, которые называют ОРТА (зарегистрированный торговый знак) проведены испытания этих анодов в производстве хлора методом электролиза с диафрагмой и с ртутным катодом, хлоратов и в некоторых других процессах прикладной электрохимии разработаны конструкции электролизеров с ОРТА, которые успешно внедряют в промышленность [36]. [c.188]

    Много ртути требуется при производстве щелочей и хлора (электролиз раствора ЫаС1 с ртутным катодом). [c.599]

    Первый патент на электрохимический метод производства хлора был выдан в 1879 г. русским изобретателям И. Глухову и Ф. Ващуку. Б 1897 г. С. Степанов получил патент на аппарат для электролиза хлористого натрия. Промышленное производство хлора электрохимическим путем стало возможно в 80-х годах прошлого века, когда была разработана стойкая пористая цементная диафрагма, пригодная для разделения образующихся при электролизе хлора, водорода и каустической соды. Несколько позже был предложен способ электролиза с ртутным катодом. [c.131]

    Электрохимическое производство химических продуктов составляет большую отрасль современной химической промышленности, Среди крупнотоннажных электрохимических производств на n piiOM месте стоит электролитическое получение хлора и щелочей, которое основано на электролизе водного раствора поваренной соли. Мировое электролитическое производство хлора составляет —30 млн, т в год. Хлорный электролиз принадлежит к числу наиболее старых электрохимических производств, начало ему было положено еще в 80-х годах прошлого века. В настоящее время используют два метода электролиза с ртутным катодом и с твердым катодом (диафрагменный метод). На ртутном катоде разряжаются ионы Na+ и образуется амальгама, которую выводят из электролизера, разлагают водой, получая водород и щелочь, и снова возвращают в электролизер. На твердом катоде, в качестве которого используют определенные марки стали с относительно низким водородным перенапряжением, выделяется водород, а электролит подщелачивается. Диафрагма служит для предотвращения соприкосновения выделяющегося на аноде хлора со щелочным раствором. На аноде обоих типов электролизеров выделяется хлор, а также возможен разряд ионов гидроксила и молекул воды с образованием кислорода. Материал анода должен обладать высокой химической стойкостью, В качестве анодов используют магнетит, диоксид марганца, уголь, графит, В последнее время разработаны новые малоизнашиваемые аноды из титана, покрытого активной массой на основе смеси оксидов рутения и титана. Эти электроды называются оксидными рутениевотитановыми анодами — ОРТА, [c.271]

    Получение. В химической промышленности свободный хлор получают электролизом очищенного от примесей концентрированного раствора каменной соли. На производство 1 т хлора затрачивается 1г7—1,8 т соли. Хлорид-ионы окисляются в свободный хлор на графитовом аноде, а на железном или ртутном катоде выделяется газообразный водород и накапливается раствор NaOH., Водород отводится по металлическим, а хлор по стеклянным или керамическим трубам. Влажный хлор особенно агрессивен, поэтому его сушат концентрированной серной кислотой, после чего его можно хранить в стальных баллонах..  [c.219]

    Разложенпе амальгамы являете второй стадией производства хлора, ш,елочеЁ и водо]юда по методу электролиза с ртутным катодом. [c.146]

    Литературы по производству неорганических хлорпродуктов крайне мало. В последние годы издано несколько инженерных монографий, посвященных производству хлора, каустической соды и некоторых неорганических хлорпродуктов. Так, с участием автора и под его редакцией вышли книги по производству хлора и каустической соды Методом электролиза с диафрагмой, а также с ртутным катодом, по подготовке и очистке рассола для электролиза, по хи1ши и технологии получения безводных хлоридов металлов, методам получения жидкого хлора. Однако по многим производствам — хлористого водорода и соляной кислоты, хлоратов натрия, калия, кальция, магния, перхлоратов и хлорной кислоты, водных растворов хлоридов железа, алюминия и некоторых других продуктов — [c.7]

    В настоящее время бколо 7,5 млн. т хлора производится на заводах, использующих метод производства с диафрагмой. В ряде стран, прежде всего в СССР, США, Японии [30] и некоторых странах народной демократии намечаются к строительству и строятся новые крупные цеха для производства хлора и каустической соды по методу электролиза с диафрагмой. В последние годы диафрагменный метод производства получил некоторое распространение даже в таких странах как ФРГ, где до последнего времени преимущественно применялся метйд электролиза с ртутным катодом. Это объясняется в значительной степени повышением требований органов санитарного надзора по ограничению выбросов ртути в атмосферу и водные бассейны. [c.17]

Рис. 4-3. Принципиальная схема кооперирования производства хлора и каустической соды электролизом с диафрагмор и ртутным катодом. Рис. 4-3. <a href="/info/24285">Принципиальная схема</a> <a href="/info/706819">кооперирования производства хлора</a> и <a href="/info/1043815">каустической соды электролизом</a> с диафрагмор и ртутным катодом.
    В производстве хлора и каустической соды методом электролиза с ртутным катодом образуются разнообразные твердые отходы, содержащее ртуть. По характеру их возникновения ртутные отходы могут быть разделены на богатые ртутью графитовые шламы, содержащие до 20% ртути, и бедные ртутью отходы, в которые входят шламы от установок очистки сточных вод от ртути, очистки рассола, остатки отработанных графитовых анодов, графитовой насадки разлагателей и различные загрязненные ртутью производственные отходы, получаемые при, ремонте и эксплуатации аппаратуры. [c.272]

    Как известно, вначале для производства хлора использовались способы окисления соляной кислоты перекисью марганца (способ Вельдона) или воздухом в присутствии катализаторов (способ Дикона). В начале XX века эти способы были полностью вытеснены электролизом водных растворов поваренной соли. При производстве хлора электрохимическими методами с твердым катодом и диафрагмой и с ртутным катодом получались одновременно эквивалентные количества каустической соды или едкого кали при электролизе растворов KG1. В течение длительного времени потребности народного хозяйства в каустической соде превышали потребность в хлоре и недостаюш ее количество каустической соды производилось химическим способом из кальцинированной соды. Однако применение во многих отраслях народного хозяйства широкого ассортимента различных хлорпродуктов привело к необходимости очень быстрого развития производства хлора и его производных. При этом потребность в хлоре росла быстрее, чем в каустической соде [1—4], и вновь возник интерес к химическим методам производства хлора, поскольку они не связаны с одновременным получением каустической соды. [c.280]

    Примеси из анолита уходят также вместе с амальгамным маслом — это пенистая смесь ртути и амальгам различных металлов. Оно легче ртути, образуется и плавает на поверхности катода и удаляется из электролизера ручным вычерпыванием. Ртуть из амальгамного масла и осадков регенерируется. Хлор, входящий из электролизера, осушается и, если нужно, сжижается. Количество и состав иримесей в продукте определяются наличием примесей в воде, подаваемой в разлагатель. Гидроксид калия производят электролизом из растворов хлорида калия как в электролизерах с жидким ртутным катодом, так и в электролизерах с твердым катодом. Технологическая схема, аппаратура, режим аналогичны с производством гидроксида натрия. Однако основные технические показатели в производстве гидроксида калия ниже, чем в производстве гидроксида натрия. Так, выход по току на 10—15% меньше, а срок службы графитовых анодов короче. Это определяется свойствами раствора хлорида калия — исходного сырья для получения гидроксида калия. Его растворимость в воде в противоположность растворимости хлорида натрия с изменением температуры заметно увеличивается. Поэтому, чтобы исключить кристаллизацию хлорида калия при охлаждении растворов, работают с ненасыщенными растворами. С этой же целью температуру электролиза поддерживают-сравнительно низкой на уровне 70° С. [c.39]

    Основными потребителями ртути являются электротехническая промышленность (производство жидких контаков, выпрямителей и люминесцентных ламп) и металлургия, где используют ее свойство растворять металлы с образованием амальгамы. Химическая активность металлов, растворенных в ртути, мала, и поэтому таким способом могут быть получены металлы, в чистом виде разлагающие воду. Например, при электролизе водного раствора КаС1 на ртутном катоде образуется амальгама натрия. Ее удаляют из электролизной ванны и обрабатывают водой. Таким образом, при электролизе удается получить два ценнейших продукта щелочь в катодном пространстве и хлор на аноде. Амальгамными способами извлекают Аи, С , Т1, Оа, 1п, РЗЭ, РЬ, Zn, 8Ь и другие металлы. Металлы отделяют от ртути отгонкой или электрохимическим способом с амальгамой в качестве анода. [c.179]

    Свинцово-щелочные сплавы и ртутные амальгамы могут быть использованы как биполярные электроды, у которых иа катодной стороне идет разряд щелочного металла из расплавов или водных растворов солей, а на анодной стороне — ионизация этого металла с последующим получением чистой щелочи в водных растворах или чистого металла в неводном электролите. На таком включении амальгамного электрода основывается большинство предложений по полезному использованию энергии разложения амальгамы в производстве хлора и каустической соды по методу с ртутным катодом. Возможно сочетание амальгамного электрода с катионообменной мембраной для осуществления непрерывного процесса электролиза с неподвижным ртутным катодом [14]. При использовании неподвижных жидких катодов такого типа обычно наблюдается высокий градиент концентрации щелочного металла в слое жидкого катода, и чтобы повысить выход по току, необходимо перемешивать яшдкий электрод или работать с движущимся жидким электродом. [c.38]

    Графитовые анрды обладают серьезными недостатками, ослож-няюпщми процесс электролиза. Графитовые аноды в процессе электролиза подвергаются разрушению. Так, например, при производстве хлора и каустической соды в электролизерах с твердым катодом и диафрагмой расход анодов на тонну хлора при правильном ведении процесса составляет от 3,5 до 6,0 кг [1] и при электролизе с ртутным катодом соответственно от 2 до 3 кг [2]. Вследствие износа анодов в электролизерах с твердым катодом и диафрагмой в течение тура работы изменяются напряжение и температурный режим. В электролизерах с ртутным катодом приходится часто регулировать межэлектродное расстояние по мере износа анодов. В производстве хлората натрия расход графитовых анодов в зависимости от схемы производства и технологического режима колеблется от 8 до 25 кг/т хлората натрия [3]. Необходимы большие затраты труда и материалов, чтобы заменить изношенные аноды в электролизерах. [c.81]

    В начале разви1ия производства хлора и каустической соды электролизом водных растворов поваренной соли платиновые аноды использовали и при электролизе с ртутным катодом, и нри электролизе с твердым катодом и диафрагмой. На одном из первых в нашей стране хлорном заводе в Донсоде, работавшем по методу электролиза с ртутным катодом, длительное время использовали платиновые аноды. Вместо чистой платины часто применяли ее сплавы с иридием (10%) [1 . [c.136]

    ИСПОЛЬЗОВАНИЕ OPTA В ПРОИЗВОДСТВЕ ХЛОРА И КАУСТИЧЕСКОЙ СОДЫ ЭЛЕКТРОЛИЗОМ С РТУТНЫМ КАТОДОМ [c.209]


Смотреть страницы где упоминается термин Хлор, производство электролиз с ртутным катодо: [c.402]    [c.233]   
Производство хлора и каустической соды (1966) -- [ c.12 , c.15 , c.16 , c.27 , c.33 , c.66 ]




ПОИСК





Смотрите так же термины и статьи:

Катод

Катод ртутный

Ртутный электролиз

Цех электролиза в производстве хлора

ртутный



© 2024 chem21.info Реклама на сайте