Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Глицеральдегид энергия

Рис. 15-7. А. Схема, поясняющая механизм действия глицеральдегид-З-фосфатдегадрогена-зы. Между субстратом и 8Н-группой в активном центре фермента возникает ковалентная связь - образуется тиополуацеталь. Этот промежуточный продукт, представляющий собой фермент-субстратный комплекс, окисляется за счет NAD , который также связан с активным центром фермента в результате образуется тиоэфир-ковалентный промежуточный продукт, называемый ацилферментом. Связь между ацильной группой и тиоловой группой фермента характеризуется очень высокой стандартной свободной энергией гидролиза, последнем этапе тиоэфирная связь претерпевает фосфоролиз, в результате чего происходит регенерация свободного фермента и образуется ацилфосфат, сохраняющий в себе значительную часть энергии, высвободившейся при окислении альдегидной группы. Б. Иодацетат является мощным ингибитором глицеральдегид-фосфатдегидрогеназы, потому что он образует ковалентную связь с важной функциональной 5Н-группой фермента и таким образом инактивирует фермент. Рис. 15-7. А. Схема, поясняющая <a href="/info/3768">механизм действия</a> глицеральдегид-З-фосфатдегадрогена-зы. <a href="/info/1320682">Между субстратом</a> и 8Н-группой в <a href="/info/99728">активном центре фермента</a> возникает <a href="/info/1282">ковалентная связь</a> - образуется тиополуацеталь. Этот <a href="/info/6222">промежуточный продукт</a>, представляющий <a href="/info/1795776">собой</a> <a href="/info/187584">фермент-субстратный комплекс</a>, окисляется за счет NAD , который также связан с <a href="/info/99728">активным центром фермента</a> в результате образуется тиоэфир-<a href="/info/1376657">ковалентный промежуточный</a> продукт, называемый ацилферментом. <a href="/info/26849">Связь между</a> <a href="/info/138450">ацильной группой</a> и <a href="/info/1376585">тиоловой группой</a> фермента характеризуется <a href="/info/1586589">очень высокой</a> <a href="/info/629901">стандартной свободной энергией гидролиза</a>, последнем этапе <a href="/info/490432">тиоэфирная связь</a> претерпевает фосфоролиз, в результате чего происходит <a href="/info/791843">регенерация свободного</a> фермента и образуется ацилфосфат, сохраняющий в себе значительную <a href="/info/145509">часть энергии</a>, высвободившейся при <a href="/info/46890">окислении альдегидной группы</a>. Б. Иодацетат является мощным <a href="/info/611724">ингибитором глицеральдегид-фосфатдегидрогеназы</a>, потому что он <a href="/info/821391">образует ковалентную</a> связь с важной функциональной 5Н-<a href="/info/1301407">группой фермента</a> и <a href="/info/461013">таким образом</a> инактивирует фермент.

    Живые организмы не могут существовать без энергии, и поэтому в цепи реакций брожения наиболее важное значение имеет реакция, обусловливающая образование АТР. В случае молочнокислого брожения и в большинстве других типов брожения такой реакцией является окисление глицеральдегид-З-фосфата в 3-фосфоглицерат. Окисление альдегида в карбоновую кислоту — реакция сильно экзергоническая, сопряженная с синтезом АТР. Поскольку из каждой молекулы глюкозы образуются две молекулы триозофосфата, при брожении на каждую молекулу израсходованной глюкозы образуются две молекулы АТР. Этого вполне достаточно для поддержания жизни у бактерий, если достаточно количество сбраживаемого сахара. Анаэробное превращение глюкозы в лактат — лишь один из примеров множества различных процессов брожения, которые мы рассмотрим в гл. 9. [c.85]

    Участвующий в этой реакции фермент сукцинил-СоА—синтетаза катализирует образование свободного сукцината и одновременно с этим-образование концевой высокоэнергетической фосфатной группы GTP из GDP и Pj за счет свободной энергии, высвобождающейся при расщеплении сукцинил-СоА. У этой реакции, сопровождающейся запасанием энергии, есть промежуточный этап, во время которого происходит фосфорилирование самой молекулы фермента по одному из гистидиновых остатков в его активном центре. Именно богатая энергией фосфатная группа, участвующая в этом фосфорилировании, и переносится на GDP с образованием GTP. Сопряженное образование GTP за счет энергии, выделяющейся при окислительном фосфорилировании а-кетоглутарата, представляет собой еще один пример фосфорилирования на уровне субстрата. Вспомним, что нам уже знаком один пример фосфорилирования этого типа, а именно сопряженный синтез АТР за счет энергии, выделяющейся при окислении глицеральдегид-З-фосфата в ходе гликолиза (разд. 15.7,6). Подобные реакции принято называть фосфорилированием на уровне субстрата, потому что ис- [c.488]

    Вторая стадия гликолиза, также состоящая из пяти ферментативных реакций, представляет собой, образно говоря, выплату процентов на этой стадии энергия, высвобождающаяся при превращении двух молекул глицеральдегид-З-фосфата в две молекулы пирувата, запасается (в результате сопряженного фосфорилирования четырех молекул ADP) в виде четырех молекул АТР (рис. 15-2). Общий выход АТР в процессе гликолиза равен, однако, не четырем, а только двум молекулам АТР в расчете на одну расщепленную молекулу глюкозы, поскольку две молекулы АТР были уже израсходованы на первой стадии гликолиза. [c.445]


    Вторая стадия гликолиза (см. последовательность реакций на рис. 15-5) включает реакции фосфорилирования, в ходе которых свободная энергия, содержавшаяся в исходной молекуле глюкозы, высвобождается и запасается в форме АТР. Поскольку из одной молекулы глюкозы образуются две молекулы глицеральдегид-З-фосфата, обе половины молекулы глюкозы на второй стадии гликолиза во- [c.448]

    Конечный результат этих двух реакций, обратимых в условиях клетки, заключается в том, что энергия, высвободившаяся при окислении альдегидной группы до карбоксильной, оказывается запасенной благодаря сопряженному образованию АТР из ADP и фосфата. Такое образование АТР, сопряженное с ферментативным превращением одного из субстратов , т. е. одного из промежуточных продуктов метаболизма, например глицеральдегид-З-фосфата, назы- [c.452]

    Уравнение для первой стадии гликолиза. Напишите уравнения химического баланса для последовательности реакций, в ходе которых происходит расщепление С-глю-козы на две молекулы О-глицеральдегид-З-фосфата (первая стадия гликолиза). Для каждого уравнения укажите изменение стандартной свободной энергии. Напишите также суммарное уравнение первой стадии гликолиза и укажите суммарное изменение стандартной свободной энергии, соответствующее этой стадии. [c.472]

    Вполне понятно, что значение процесса гликолиза заключается не только в полезном использовании свободной энергии процесса в форме АТФ, но и в образовании ряда важных промежуточных продуктов обмена, которые показаны на схеме цикла фосфорной кислоты в гликолизе. Например, взаимопревращение диоксиацетонфосфата и глицеральдегид-1-фосфата при каталитическом участии НАД имеет большое значение в связи с биосинтезом жиров и лецитина. [c.163]

    Хранение энергии фосфорилирование, сопряженное с окислением глицеральдегид-3-фосфата [c.31]

    На предыдущих стадиях гликолиза происходило превращение одной молекулы глюкозы в две молекулы глицеральдегид-З-фос-фата. Извлечение энергии при этом еще не имело места. Напротив, на этой стадии расходовалось две молекулы АТР. Мы переходим теперь к ряду стадий, на которых происходит потребление энергии, содержащейся в глицеральдегид-З-фосфате. [c.31]

    Расщепление фруктозо-1,6-дифосфата (ФДФ) на диоксиацетонфосфат (ДОФ) и глицеральдегид-З-фосфат (ГАФ) входит в последовательность реакций, которые во многих живых организмах используются для получения энергии. При 37° С и pH 7 значение ДОдабл реакции ФДФ=ДОФ+ГАФ равно 5,73 ккал/моль. Чему равно значение ДО дз л для этой реакции, протекающей в эритроцитах, если в этом случае [ФДФ]=3 мкМ, [ДОФ] =138 мкМ и [ГАФ] = 18,5 мкМ  [c.235]

    Теперь сформулируем общее правило, согласно которому брожение может осуществляться в том случае, когда субстраты, состоящие преимущественно из атомов, связанныА одинарными связями, а также таких групп, как карбонильная, с довольно слабой резонансной стабилизацией, превращаются в продукты, содержащие карбоксильные группы, или в СОг. Принимая эффективность равной 30%, получим, что на каждую вновь образованную карбоксильную группу или молекулу СОг освобождается энергия, как раз достаточная для синтеза одной молекулы АТР. Следует, однако, иметь в виду, что для образования АТР должен еще существовать специальный механизм. Интересно отметить, что синтез АТР в большинстве случаев непосредственно связан с теми же химическими процессами, в результате которых при брожении образуются карбоксильные группы или молекулы СОг. Наиболее важной реакцией является окисление альдегидной группы глицеральдегид-З-фосфата в карбоксильную группу 3-фосфоглицерата (рис. 8-13). [c.347]

    Было предложено множество схем образования высокоэнергетических промежуточных соединений в результате переноса электронов. В этом случае естественна аналогия с субстратным фосфорилировани- ем, при котором высокоэнергетические промежуточные соединения образуются при переходе электронов от субстрата к субстрату. Как мы уже видели (гл. 8, разд. 3,5), альдегидная группа глицеральдегид-З-фосфата превращается в ацилфосфат, который после переноса фосфатной группы на ADP освобождается в виде карбоксилатной группы. В этом процессе свободная энергия окисления альдегида в карбоксильную группу расходуется на синтез АТР. Реакция отличается от митохондриального переноса электронов тем, что продукт 3-фосфоглицери-Новая кислота уже не превращается обратно в глицеральдегид-З-фос- фат. В то же время переносчики электронов дыхательной цепи должны быть регенерированы в каком-то циклическом процессе. Последнее тре- бование вынуждает искать какие-то иные механизмы окислительного фосфорилирования. [c.410]

    Бисфосфоглицерат представляет собой высокоэнергетическое соединение (макроэргическая связь условно обозначена знаком тильда ). Механизм действия глицеральдегидфосфатдегидрогеназы сводится к следующему в присутствии неорганического фосфата НАД выступает как акцептор водорода, отщепляющегося от глицеральдегид-З-фосфата. В процессе образования НАДН глицеральдегид-З-фосфат связывается с молекулой фермента за счет 8Н-груип последнего. Образовавшаяся связь богата энергией, но она непрочная и расщепляется иод влиянием неорганического фосфата, ири этом образуется 1,3-бисфосфоглицериновая кислота. [c.331]


    Таким образом, благодаря действию двух ферментов (глицеральде-гидфосфатдегидрогеназы и фосфоглицераткиназы) энергия, высвобождающаяся ири окислении альдегидной груииы глицеральдегид-З-фосфата до карбоксильной груииы, запасается в форме энергии АТФ. В отличие от окислительного фосфорилирования образование АТФ из высокоэнергетических соединений называется субстратным фосфорилированием. [c.331]

    В результате этого процесса одна молекула D-глюкозы превращается в две молекулы лактата (путь углерода). Две молекулы ADP и две молекулы фосфата превращаются в две молекулы АТР (путь фосфатных групп). Четыре электрона (в форме двух гидрид-ионов) переносятся с помощью двух молекул NAD от двух молекул глицеральдегид-З-фосфата на две молекулы пирувата с образованием двух молекул лактата (путь электронов). Процесс гликолиза включает два окислительно-восстановительных этапа, однако суммарного изменения степени окисления углерода в результате этого процесса не происходит. В этом можно убедиться, сравнив эмпирические формулы глюкозы ( gHijOg) и молочной кислоты (СзНбОз). Легко видеть, что соотношение атомов С, Н и О в молекулах двух этих соединений одинаково и, следовательно, превращение глюкозы в молочную кислоту не сопровождается окислением углерода. Тем не менее при анаэробном гликолизе какая-то часть энергии, заключенной в молекуле глюкозы, все же извлекается этой энергии достаточно для того, чтобы обеспечить суммарный выход двух молекул АТР в расчете на каждую расщепленную молекулу глюкозы. [c.455]

    Вторая стадия гликолиза в скелетных мышцах. В работающей скелетной мышце при анаэробных условиях глицеральдегид-З-фосфат превращается в лактат (вторая стадия гликолиза). Напииште уравнения химического баланса для последовательности реакций в этом процессе с указанием изменения стандартной свободной энергии для каждой из реакций. Напишите также суммарное уравнение для второй стадии гликолиза и укажите суммарное изменение стандартной свободной эн гии для этой стадии. [c.472]

    Последующее дегидрирование представляет собой с энергетической стороны важнейший этап данного пути, а также других путей, приводящих к образованию глицеральдегид-З-фосфата. Часть энергии, освобождающейся при окислении глицеральдегид-З-фосфата в 3-фосфоглице-рат (AGq = - 67 кДж), сохраняется в форме высокоэнергетического фосфата. Сначала происходит присоединение альдегидной группы к SH-группе глицеральдегидфосфат-дегидрогеназы, а затем отщепление водорода, который переносится на NAD. Образовавшийся ацил-8-фермент представляет собой тиоэфир, богатый энергией. В результате фосфоро-лиза (при котором ацильная группа отделяется от фермента с присоединившимся к ней ортофосфатом) эта энергия сохраняется в 1,3-бисфосфо-глицерате. При участии фосфоглицераткиназы богатая энергией фосфатная группа переносится на ADP с образованием 3-фосфоглицерата и АТР. Такого рода процесс называют фосфорилированием на уровне субстрата. Для предшествующего окисления глицеральдегид-З-фосфата [c.225]

    Стадия 4 представляет собой альдольное расщепление фруктозо-1,6-дифосфата под действием фруктозо-1,6-дифосфатальдолазы на две фосфотриозы дигидроксиацетонфосфат и глицеральдегид-З-фосфат. Данная реакция протекает с незначительным изменением свободной энергии и обратима в физиологических условиях  [c.404]

    Фруктоза, поступающая в организм лишь после расщепления сахарозы в кишечнике, всасывается более медленно, но утилизируется быстрее, чем глюкоза. В печени она превращается во фруктозо-1-фосфат, расщепляющийся до триозо-дегидрооксиадетонфосфата и глицеральдегида, которые могут служить источниками энергии в тканях. Поскольку эти процессы не зависят от инсулина, фруктоза в ограниченном количестве может утилизироваться больными диабетом. [c.16]

    Среди продуктов, образующихся из глюкозы с меньшим выходом, находится глицеральдегид [Р26]. Глицеральдегид легко изомеризуется в диоксиацетон, особенно в щелочных условиях. Присутствие глицеральдегида и диоксиацетона, вероятно, приводит к появлению полосы поглощения вблизи 265 ммк, которая обнаружена в облученных растворах глюкозы и других углеводов [Н89, К32]. Не ясно, как по простой свободнорадикальной реакции может образоваться глицеральдегид. В этой связи уместно вспомнить, что продукты облучения глюкозы, по-видимому, подобны продуктам, образующимся при ультрафиолетовом облучении [В88]. Это наводит на мысль о том, что при действии излучения высокой энергии может происходить возбуждение некоторого количества молекул сахара. [c.238]

    Т.— важнейший фермент гликолиза, играет важную роль в энергетич. обеспечении процессов жизнедеятельности. В результате ее действия энергия окисления альдегидной группы )3-глицеральдегид-3-фосфата аккумулируется в виде макроэргич. фосфоангидрид-ной связи в молекуле 1,3-дифосфоглицериновой к-ты. Перенос образующегося макроэргич. фосфата на аденозиндифосфорную к-ту приводит к генерации аденозинтрифосфорпой к-ты (АТФ). В реакции, катализируемой Т., происходит также восстановление молекулы НАД-Из. Перенос электронов от НАД-Нд но дыхательной цени к кислороду (см. Окисление биологическое и Оксидоредуктазы) сопровождается генерированием еще 3 молекул АТФ. [c.132]

    Обмен фруктозы. Около 80% поступающей с пищей фруктозы метаболизируется в печени двумя путями. Главный путь фруктоза фосфорилируется в первом положении с образованием фруктозо-1-фосфата, который специфической альдолазой Ф-1-Ф расщепляется на диоксиацетонфосфат и глицеральдегид. Глицеральдегид превращается в 3-ФГА при участии АТФ и триозокиназы. Образовавшийся диоксиацетонфосфат и 3-ФГА могут превращаться в глюкозу по реакции глюконеогенеза или подвергаться распаду (аэробному или анаэробному). Для глюконеогенеза фруктоза нерентабельна, поскольку ее концентрация в крови ниже концентрации глюкозы в 20 раз. Для продукции энергии в клетках (и прежде всего в печени) фруктоза особенно важна, так как ферменты фруктокиназа и альдолаза Ф-1 -Ф не находятся под строгим гормональным контролем. Поэтому при патологии систем регуляции обмена углеводов и поражениях печени целесообразно назначать фруктозу (как источник энергии для клеток). [c.179]

    Включение в цикл четырех атомов водорода. Активированный водород вводится в цикл с помощью двух молекул НАДФНг (AF= 2X52,6 ккал), а само восстановление, сопряженное с затратой энергии двух молекул АТФ, сводится к превращению 3-фосфоглицериновой кислоты (через 1,3-дифосфоглицериновую кислоту) в триозофосфат (глицеральдегид-З-фосфат)  [c.95]

    Генетически обусловленные повреждения ферментов гликолиза. Один из наиболее важных путей катаболизма в зрелых эритроцитах, необходимый для образования богатых энергией фосфатов (АТР),-анаэробный гликолиз, или путь Эмбдена— —Мейергофа (рис, 4,3), Эта цепь анаэробных реакций приводит к образованию на один моль глюкозы двух молей молочной кислоты и четырех молей АТР, из которых один затрачивается в ходе гликолиза на фосфорилирование глюкозо-6-фосфата и превращение его в фруктозо-1,6-ди-фосфат и еще один-на превращение глюкозы в глюкозо-6-фосфат. Итого, в полной цепи реакций на моль глюкозы образуется 2 моля АТР, необходимого для разнообразных клеточных функций эритроцитов, таких как поддержание формы (эритроциты представляют собой двояковогнутый диск), работы катионного насоса, а также синтеза разных метаболитов, например глутатиона (GSH) или АМР. Гликолиз катализируется 13 ферментами. Приблизительно 5-10% глюкозо-6-фос-фата окисляется на пути так называемого гексозомонофосфатного шунта в результате последовательности реакций пентозо-фосфат превращается в фруктозофосфат или глицеральдегид-З-фосфат, которые [c.15]

    Окисление 3-ФГА до 1,3-дифосфоглицериновой кислоты (1,3-ФГК) — один из наиболее важных этапов гликолитического пути, поскольку именно на этом этапе энергия, освобождающаяся при окислении альдегидной группы 3-ФГА, запасается в молекуле 1,3-ФГК- Реакция катализируется ферментом глицеральдегид-З-фосфат-дегидроге-назой (3-ФГА-дегидрогеназой)  [c.183]

    Функционирование всех путей передачи энергии (рис. 1.9,Л) можно объяснить, если постулировать существование общего переносящего энергию интермедиата, который принято обозначать значком . Единственным примером биоэнергетического механизма, включающего подобный интермедиат, служит субстратное фосфорилирование, катализируемое глицеральдегид-3-фосфатдегидрогеназой и фосфоглицераткиназой в гликолизе (рис. 1.10). В этих реакциях окисление субстратов приводит к образованию связи фермента с фосфатом. Эта так называемая макроэргическая связь имеет очень высокую свободную энергию гидролиза. Затем фосфат может быть перенесен на ADP. В случае приложения этой схемы химического сопряжения к митохондриям (Slater, 1953) требовалось лишь учесть следующие экспериментальные данные. Во-первых, то, что во всех трех пунктах сопряжения образуется единый общий интермедиат, и, [c.20]

    Другой ТИОЛОВЫЙ фермент — глицеральдегид-З-фосфатдегидро-геназа (гл. 14), катализирующий окисление альдегидного субстрата, глицеральдегид-З-фосфата, образует богатый энергией тиоловый эфир (по 5Н-группе активного центра). Образовавшийся ковалентный ацилтиоэфир подвергается фосфоролизу, давая ацил-фосфат, который сохраняет энергию ацилтиоэфирнон связи ковалентного интермедиата. [c.296]

    Важным преимуществом механизмов, включающих стадию образования ковалентных субстрат-ферментных интермедиатов, является избирательное увеличение вероятности протекания определенной реакции. Ковалентно связанный интермедиат обладает лишь весьма ограниченной подвижностью в активном центре фермента и может, следовательно, занимать более благоприятное положение для завершающей реакции с соответствующими группами активного центра. Кроме того, при функционировании ряда ферментов, таких, как глицеральдегид-З-фосфатдегидрогеназа и сукцинат-тиокиназа, при образовании продукта используется энергия ковалентного интермедиата. Увеличение скорости реакции в результате образования ковалентных интермедиатов может быть весьма значительным (как, например, для альдолазы и трансами-назы), однако в других случаях фактор ускорения не превышает 10 —103. [c.297]

    В гл. 9 было показано, что энергия связывания субстрата с ферментом потенциально является очень большой величиной, однако экспериментально определяемые значения Км. обычно сравнительно высоки. Разительным примером в этом отношении является связывание ЫАО+. Этот большой по размерам субстрат содержит два остатка рибозы, остатки аденина и никотинамй-да и пирофосфат. Если бы реализовалась вся потенциальная энергия связывания указанных групп, то константа диссоциации могла бы быть величиной порядка 10 ° М. И действительно, константа диссоциации для связывания первой молекулы ЫАО+ тетрамерной глицеральдегид-З-фосфат—дегидрогеназой оказалась меньше 10-" М, что свидетельствует о чрезвычайно высокой прочности связывания [15]. Однако обычно Км и константы диссоциации комплексов ЫАО+ с дегидрогеназами оказываются равными 0,1—1 мМ. Еще более впечатляющим является тот факт, что константа диссоциации комплекса АТР и миозина равна 10- з М [16], в то время как обычно Км для АТР равна [c.307]

    В качестве примера вычислим ДО и АС для изомеризации дигидроксиацетонфос-фата в глицеральдегид-З-фосфат. Эта реакция идет при гликолизе (гл. 12). В состоянии равновесия отношение концентрации глицеральдегид-3-фосфата к концентрации дигидроксиацетонфосфата при 25 С (298 К) и pH 7 составляет 0,0475. Изменение стандартной свободной энергии для этой реакции рассчитывается из уравнения (И)  [c.9]

    Арсенат (AsO ) очень сходен с по структуре и реакционной способности. В реакции, катализируемой глицеральдегид-З-фосфат-дегидрогеназой, арсенат может заменять фосфат по воздействию на богатый энергией тиоэфирный промежуточный продукт. Образующийся в результате этой реакции 1-арсено-З-фосфоглицерат в противоположность 1,3-бисфосфоглицерату неустойчив. 1-арсено-З-фосфоглицерат и другие ациларсенаты очень быстро и самопроизвольно гидролизуются. Поэтому суммарная реакция, протекающая в присутствии арсената, выглядит следующим образом  [c.41]

    Гликолиз-это совокупность реакций превращения глюкозы в пируват. У аэробных организмов гликолиз служит как бы прелюдией к циклу трикарбоновых кислот и цепи переноса электронов, в ходе которых запасается большая часть свободной энергии, содержащейся в глюкозе. Десять реакций гликолиза протекают в цитозоле. На первой стадии глюкоза превращается во фруктозо-1,6-бисфосфат путем фосфорилирования, изомеризации и второй реакции фосфорилирования. В этих реакциях, играющих роль подготовительного этапа для генерирования АТР, на каждую молекулу глюкозы расходуются две молекулы АТР. На второй стадии фруктозо-1,6-бисфосфат расщепляется альдолазой на дигидроксиацетонфосфат и глицеральдегид-З-фосфат, которые легко подвергаются взаимопревращению. Г лицеральдегид-З-фосфат затем окисляется и фосфорилируется с образованием 1,3-БФГ-ацилфосфата, обладающего высоким потенциалом переноса фосфатной группы. Образование [c.44]


Смотреть страницы где упоминается термин Глицеральдегид энергия: [c.279]    [c.339]    [c.358]    [c.450]    [c.777]    [c.54]    [c.233]    [c.234]    [c.208]    [c.68]    [c.88]    [c.89]    [c.435]    [c.437]    [c.199]    [c.89]    [c.40]   
Фотосинтез 1951 (1951) -- [ c.54 ]




ПОИСК





Смотрите так же термины и статьи:

глицеральдегид



© 2024 chem21.info Реклама на сайте