Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Диэлектрические температура

    Растворитель Диэлектрическая температура, растворимость, проницаемость° °С г/100 г раствора [c.52]

    Растворитель Диэлектрическая температура, проницаемость °С растворимость, г/100 г раствора [c.53]

    Один из методов установления электрического момента диполя молекул основан на измерении диэлектрической проницаемости веществ при разных температурах. Для этого вещество в виде газа или разбавленного раствора в неполярном растворителе помещают между обкладками конденсатора. При этом емкость конденсатора увеличивается в е раз (е—диэлектрическая проницаемость). Если емкость конденсатора в вакууме обозначить С , а емкость с веществом С, то [c.156]


    Водородная связь объясняет аномально высокие температуры кипения и плавления ряда веществ, аномальную диэлектрическую проницаемость и не соответствующую строению молекул растворимость. Различают два вида водородной связи межмолекулярную и внутримолекулярную. В первом случае атом водорода связывает два атома, принадлежащих разным молекулам (например, растворителям и масляному сырью), во втором случае оба атома принадлежат одной и той же молекуле. Образование водородной связи наиболее вероятно при пониженных температурах с повышением температуры водородные связи ослабляются или рвутся вследствие усиления теплового движения молекул. [c.217]

    В процессе работы нефтяные масла под действием кислорода воздуха и повышенных температур окисляются, претерпевая при этом в течение времени более или менее заметные изменения. Окисление масел приводит к появлению в них кислот, способных при известных условиях вызывать коррозию деталей двигателей и механизмов. Помимо кислот в результате окисления образуются растворимые и не растворимые в маслах смолистые вещества и продукты их конденсации и полимеризации, которые, отлагаясь в маслопроводах, нарушают циркуляцию масел и загрязняют двигатели и механизмы либо оказывают отрицательное влияние на другие свойства масел (например, понижают диэлектрическую прочность трансформаторного масла). Многие масла (например, масла для двигателей внутреннего сгорания, для паровых машин) в зоне высоких температур подвергаются дополнительно термическому разложению, что в конечном счете приводит к нагарообразованию. [c.212]

    Испытания трансформаторных масел, помимо побочных показателей (температура вспышки и застывания, вязкость, диэлектрические свойства [112] и т. д.), включают в себя ускоренную пробу на окисление с целью определить вероятный срок эксплуатации масла. Для проведения этой пробы был предложен целый ряд методов [113—115]. Почти все они предусматривают нагревание масла в воздухе или кислороде при температуре около 120° обычно в присутствии меди в качестве катализатора окисления. При этом наблюдается изменение цвета, поверхностного натяжения [116, 117], кислотности, коэффициента мош,ности, образование осадка и воды [118—123]. [c.567]

    Полиизобутилены характеризуются высокой водо- и газонепроницаемостью даже при повышенной температуре. Они обладают высокими электроизолирующими свойствами тангенс угла диэлектрических потерь 0,0004—0,0005, удельное объемное электрическое сопротивление > 10 Ом-см, электрическая прочность 23 МВ/м. Высокомолекулярные полиизобутилены могут перерабатываться на вальцах, каландрах, шприц-машинах, в прессах только при повышенных температурах 100—200 °С, так как при низких температурах переработки происходит механическая деструкция макромолекул. Причем чем выше молекулярная масса полиизобутилена, тем интенсивнее протекает деструкция. [c.338]


    По комплексу свойств силоксановые вулканизаты существенно отличаются от всех других резин, а по отдельным из них значительно превосходят вулканизаты на основе большинства органических каучуков. Для них характерны 1) более высокая термическая стабильность на воздухе и в вакууме 2) лучшая морозостойкость 3) повышенная стойкость к озону и к атмосферным воздействиям 4) лучшие физико-механические свойства при высоких температурах 5) значительно более высокая и селективная газо- и паропроницаемость 6) более высокая стойкость к коронному разряду 7) прекрасные диэлектрические характеристики, [c.490]

    С ростом температуры от 20 до 200 °С удельное объемное сопротивление снижается до 1,6-10 Ом-см, а тангенс диэлектрических потерь и коэффициент мощности возрастают до 0,74 и 12% соответственно, т. е указанные параметры меняются в нормальных для диэлектриков пределах. При этом увлажнение не оказывает существенного влияния на диэлектрические свойства резин. [c.519]

    Как видно из уравнения (XVI, 33), величина х является функцией состава раствора, его диэлектрической проницаемости и температуры. Эта величина характеризует изменение плотности ионной атмосферы р вокруг центрального иона с увеличением расстояния г от этого иона. Величина 1/и имеет размерность длины. Чем меньше величина х, тем медленнее плотность зарядов р в ионной атмосфере изменяется с увеличением г. [c.408]

    Как видно из электростатической теории электролитов, зависимость lgY от корня квадратного из ионной силы является линейной. Это было подтверждено многочисленными экспериментальными исследованиями электролитов с очень малыми концентрациями. Из всего сказанного следует, что уравнение (XVI, 48) справедливо лишь для сильно разбавленных растворов, так как при выводе уравнения для потенциала ионной атмосферы были сделаны некоторые существенные математические упрощения и физические предположения. Уравнение (XVI, 48) называется предельным уравнением Дебая—Гюккеля для Коэффициент А зависит от температуры (непосредственно и через диэлектрическую проницаемость О). Проверка [c.413]

    При конечной концентрации связь эквивалентной электропроводности с подвижностью несколько сложнее. Для слабого электролита (U+V)a. Если с повышением температуры подвижности ионов возрастают, то степень диссоциации может и уменьшаться, поскольку диэлектрическая проницаемость раствора при нагревании уменьшается, т. е. силы взаимодействия между ионами увеличиваются. Следовательно, кривая зависимости электропроводности от температуры может иметь максимум. [c.438]

    НИТЬ влиянием двух противоположно направленных воздействий. С одной стороны, всякая диссоциация протекает с поглощением тепла, и следовательно, при повышении температуры равновесие должно смещаться в сторону большей степени диссоциации. С другой стороны, при повышении температуры диэлектрическая проницаемость воды, служащей растворителем, уменьшается, а это способствует воссоединению ионов. Максимального значения константа диссоциации достигает при той температуре, при которой влияние второго фактора начинает преобладать. [c.462]

    I. Приготовить несколько разбавленных растворов полярного вещестьа в неполярном растворителе. 2. Измерить емкость конденсатора, заполненного растворителем и каждым из приготовленных растворов. 3. Рассчитать диэлектрическую проницаемость каждого из растворов, используя табличное значение диэлектрической проницаемости растворителя, взятое из справочника при той же температуре, при которой производились измерения емкости. 4. Измерить плотности растворов всех концентраций при той же температуре, при которой были измерены емкости. 5. Рассчитать по уравнению (И,22) поляризацию растворенного веш,ества. 6. Построить график зависимости поляризации растворенного вещества от концентрации раствора и экстраполировать завпсимость до предельного разбавления. 7. Определить показатель преломления растворенного вещества и вычис лить молярную рефракцию. 8. Рассчитать по уравнению (И, 17) ди польный момент растворенного вещества. [c.99]

    Замечено, что электропроводность нефтепродуктов сильно возрастает с повышением температуры. Диэлектрическая постоянная нефтепродуктов растет по мере перехода от низших фракций к более высоким. [c.56]

    Под действием электрического поля происходит нагрев изоляционного масла. Затраты энергии на нагрев диэлектрика называются диэлектрическими потерями. В нейтральных маслах диэлектрические потери связаны с электропроводностью, а в маслах с примесью полярных компонентов — и с поляризацией молекул в переменном электрическом поле. Диэлектрические потери, возникающие вследствие поляризации молекул, характеризуются тангенсом угла диэлектрических потерь (tg б). Эти потери достигают максимума при определенной вязкости масла и возрастают с повышением температуры. Нанример, для кабельных масел tg б при 100° С должен быть не более 0,003. [c.95]


    Процессы, вызывающие токи ТСД, по-видимому, были связаны с перемещением катионов на вакантные места. Так, прогревание образца до 620 К и последующее сравнительно медленное охлаждение привели к возрастанию максимумов (рис. 16.5, кривые 2, 3), что можно объяснить появлением дополнительных дефектов в кристаллической решетке. Эти процессы могут быть связаны со значительным смещением зарядов и их последующим накоплением на неоднородностях по объему образца (объемная поляризация) или со смещением зарядов в пределах отдельных полостей. В пользу первой точки зрения говорит близость энергии активации процесса В (кривая /, рис. 16.5) и энергии активации электропроводности, а также большая величина времен релаксации (тысячи секунд), что на несколько порядков превосходит времена релаксации ионных процессов, определяемых из диэлектрических измерений при одинаковых температурах [694]. [c.260]

    Если диэлектрическая спектроскопия описывает релаксационный процесс в битумах, относящийся к дипольно-сегменталь-ному, то с ее помощью можно характеризовать и стеклование битумов. Это предположение подтверждается тем, что значения определенных дилатометрически и диэлектрически температур стеклования битумов удовлетворительно совпадают (Т определена диэлектрическим методом как температура,при которой lgTт, равен 15,4 (см. рис. За, табл. I). Совпадение значений температур стеклования в битумах, определенных дилатометрическим и диэлектрическим методами, свидетельствует о справедливости уравнения (3) ВЛФ для битумов при условии определения температур приведения по методике, изложенной в работе [28]. [c.85]

    Этот пластик производится в больших количествах и поступает в продажу под названием ТРХ. Плотность его 0,83 г/см , ниже чем у всех известных термопластов, температура плавления 240 °С. Изготовленные из этого материала прессованные детали сохраняют стабильность формы прп температуре до 200 °С. Кроме того, пластик ТРХ прозрачен. Светопроницаемость достигает 90%, т. е. несколько меньше, чем у плексигласа (у полиметилметакрилата 92%). Недостатком является деструкция под действием света. Поэтому нестаби-лизировапный ТРХ пригоден только для применения в закрытых помещениях. Этот материал стоек ко многим химическим средам, сильные кислоты и щелочи не разрушают его, однако он растворяется в некоторых органических растворителях, например в бензоле, четыреххлористом углероде и петролейном эфире. Ударная прочность нового термопласта такая же, как у высокоударопрочного полистирола. Диэлектрические свойства тоже хорошие (диэлектрическая ироницаемость 2,12). [c.236]

    Если использовать относительную диэлектрическую проницаемость чистой воды, равную примерно 80 прн комнатной температуре, то получится явно завышенное значение /, равное 31-Ю м. В двойном слое, однако, вода благодаря высоким электрическим полям должна находиться в состоянии, близком к диэлектрическому насыщению и фактическая диэлектрическая проницаемость будет по крайней мере на порядок меньше в этом случае толщина двойного слоя будет практически совпадать с размерами ионов (3-10"" м), что отвечает его модели ио Гельмгольцу, Точно так же подстановка в уравнение (12.4) вместо I радиуса иоиов (п-10 ° м), а вместо е значений, лежащих в пределах от 4 до 8, дает значения емкости двойного слоя, совпадающие с экснеримеи-тальными. Однако уравиения (12.3) и (12.4) не согласуются с наблюдаемым на опыте изменением емкости с потенциалом электрода и с концентрацией ионов в растворе. Теория Гельмгольца, таким образом, дает правильные значения емкости и реальные размеры двойного электрического слон и в какой-то мере отражает истинную его структуру, но она не мо><ет истолковать многие опытные закономерности и должна рассматриваться лишь как первое приближение к действительности, нуждающееся в дальнейшем развитии и усовершенствова1шн. [c.263]

    Фторсодержаш,ие эфирные масла fluorосагbons - FK). Эти масла по стандарту D1N 51 502 обозначаются FK. Основные их преимущества - химическая инертность, негорючесть, высокая стойкость к окислению и к повышенной температуре, очень хорошие диэлектрические свойства. Недостатки - относительно низкий индекс вязкости, высокая температура застывания. Фторсодержащие масла применяются в холодильной технике и в установках, где масло находится в контакте с кислородом или другими агрессивными веществами. Эти масла очень дорогие, в сотни раз дороже минерального масла. [c.18]

    При квалификационных, стендовых и эксплуатационных испытаниях ГСМ обязательно определяют физико-химические показатели качества испытуемых опытных и эталонных образцов ГСМ (по методикам ГОСТ и ТУ) фракционный состав, плотность, вязкость, поверхностное натяжение, теплоту сгарания, показатель преломления, электропроводность, теплопроводность, диэлектрическую проницаемость, давление насыщенных паров, температуру кипения и кристаллизации (застывания), температуру вспышки (в закрытом и открытом тигле) и самовоспламенения, коксуемость, кислотность, зольность. [c.20]

    Комплексные соли, как правило, слабополярны (по диэлектрической проницаемости их бензольные растворы незначительно отличаются от чистого бензола), они легко взаимодействуют с водой, отличаются низкой стабильностью. Дифференциальнотермическим анализом было показано, что соли аминов и органических (жирных) кислот разлагаются при температурах примерно 125°С. Сравнительно низкая термическая стабильность соединений этого класса, зависящая от типа связи анионной и катионной частей ингибиторов, определяет такие важные их свойства, как объемные (изоляционные) и поверх- [c.294]

    Плотность (комнатная температура). ... Прочность на ра.зрыв, кг/с.и2 (22°). .... Растяжение при разрыве, %........ Деформация при ударном изломе, кг/сж2, (0°) Предел прочности на сжатие, г/сл 2. ... Текучесть на холоду, % (22 680 кг нагрузка) Диэлектрическая прочность, в/мм. .... 0,980 182 27 3.5 378 (21°) 38,6 (21°) 47 500 1,016 336 1,3 2,87 742 (24°) 17,3 (24°) 50 ООО 0.993 329 1.7 2,94 602 (32°) 30,4 (24°) 55 200 [c.214]

    Диизобутилев холодной сернокислотной полимеризации. Олефины Се, получаемые при сернокислотной полимеризации изобутилена, могут применяться для получения нонилового спирта. Фталевые эфиры этого спирта хотя и придают пластика-там из полихлорвинила низкую морозостойкость, но обеспечивают им высокие диэлектрические свойства. В качестве сырья для получения нонилового спирта используется фракция диизобутилена, выкипающая в пределах 95—115° С и получаемая при обработке 65%-ной серной кислотой сырой бутан-бутиленовой фракции нефтезаводских газов. При соответствующих температурах серная кислота абсорбирует практически исключительно изобутилен, не затрагивая к-бутиленов. Извлечение изобутилена может осу-ществляться двумя способами с использованием системы смесительный насос-отстойник или в реакторе с мешалкой, оборудованной электромагнитным приводом. [c.107]

    Окисление вызывает понижение диэлектрической постоянной, увеличение кислотности и шламовыделепий в изоляционных маслах, в паротурбинных маслах увеличивается кислотность и появляются эмульсии, а в автомобильных смазочных маслах — нагарообразование и картерная грязь. Подобные изменения наблюдают и в лабораторных условиях при повышенных температурах. При этом исследования проводятся в следующих направлениях  [c.81]

    Температура стеклования, °С Диэлектрическая проницаемость Удельное объемное электрическое сопротивлгние. Ом см Тангенс угла диэлектрических потерь Электрическая прочность, МВ/м [c.357]

    Для герметизации изделий электронной, радио- и электротехнической промышленности трансформаторных катушек индуктивности, электронно-лучевых приборов и т. д., уже применяют 11 марок компаундов, разработанных в СССР на основе жидких каучуков с концевыми гидроксильными, изоцианатными, эпокси- и акрилатуретановыми группами. Отвержденные компаунды имеют отличные диэлектрические свойства, не изменяющиеся в широком диапазоне температур, выдерживают резкие перепады температур, устойчивы к условиям тропического климата, не вызывают коррозии металлов [94]. На основе полимера с эпоксиуретановыми группами создана стойкая антикоррозионная краска. Получены [c.455]

    Диэлектрические свойства силоксановых вулканизатов очень высоки и мало изменяются при повышении частоты до 10 Гц и даже до 10 ° Гц, а также при повышении температуры и в условиях теплового старения (при 250 С —за 10 000 ч). Они сохраняются также длительно в воде. Так, за три недели пребывания резины в воде при 20 5°С удельное объемное сопротивление снижается лишь до 10 10 Ом-см. Изоляция из силок-сановой резины при однократном пробое или действии открытого огня образует, в отличие от органической резины, непроводящую золу (SIO2), способную некоторое время предотвращать падение напряжения в сети. Введением проводящих наполнителей (газовой сажи или металлических порошков) можно получить силоксановые резины с низким электрическим сопротивлением (до 3—5 Ом-см) [72, с. 137—139]. [c.494]

    Их высокие диэлектрические характеристики в широком диапазоне частот и температур в сочетании с морозо-, термо- и влагостойкостью широко используются в электротехнике, радиоэлектронике, кабельной промышленности. Силоксановая изоляция проводов и кабелей температурного класса К может эксплуатироваться 40 лет при 150 °С, 10 лет при 180 °С, 2 года при 200 °С или 1 год при 220°С. Ее применение позволяет либо вдвое увеличить силу тока, либо значительно уменьшить сечение и массу проводника и всего кабеля. Замена изоляции из органических резин силоксановой в электродвигателях обеспечиваёт 10-кратное увеличение срока их службы или повышение мощности на 30—40% без изменения габаритов и массы. Силоксановая изоляция незаменима в высоковольтных и высокочастотных проводах и кабелях. Для изоляции вводов и различных узлов электрических машин применяется термоморозостойкая самослипающаяся изоляционная лента из бор-силоксановой резины. Из силоксановых резин изготовляют также штепсельные разъемы, изоляционные трубки, прокладки и уплотнения для электрических машин и бытовых и промышленных нагревательных приборов, оболочки нагревательных элементов с наружной температурой до 180 °С и т. д. [c.496]

    Для очень разбавленных растворов сильных электролитов формула (XVIII,24) хорошо подтверждается опытными данными (рис. XVIII, 2). При полной диссоциации одно- одновалентных электролитов с равно молярности с. При неполной диссоциации величину с необходимо заменить произведением Са, где с — молярность раствора а — степень диссоциации. Отметим, кроме того, что D — диэлектрическая проницаемость среды и т) — вязкость среды при постоянной температуре в разбавленном растворе являются величинами постоянными. Введя в уравнение (XVIII, 24) значения этих величин при 298° С, получнм  [c.467]

    Последовательность выполнения работы. Для измерения диэлектрических ироиицаемостей при разных температурах сосуд I (рис. 52) с впаянными в него электродами 2 помещен в термостати[)ующую рубашку 3, через которую циркулирует иода из ультратермостата. Сосуд крепят непосредственно на приборе так, чтобы длина проводников, соединяющих измерительньи сосуд с измерительным прибором была ио возможности минимальной. Это обеспечивает уменьшение емкости самих нроводииков. Эталонное или исследуемое вещество заливают в сосуд для измерения емкости I. [c.96]

    Добиться максимального отклонения стрелки вращением лимба отсчет по стрелочному прибору. 6. Увеличить чувствительность прибора поворотом рукоятки Чувствительность по часовой стрелке. При этом показание миллиамперметра должно уменьшаться, а чувствительность возрастать. 7. Вновь настроить рукояткой отсчег Сд иа максимальное иоказание миллиамперметра. 8. Увеличить по возможности отклонение стрелки прибора и опять добиться максимального отклонения стрелки прибора рукояткой компенсация потерь . 9. Произвести отсчет по барабану и лимбу. Измеряемая емкость равна сумме показаний на лимбе и на барабане. Полученную величину умножить на показание переключателя множитель . 10. Измерить емкость конденсатора (в пикофарадах), заполненного эталонной жидкостью с известным значением диэлектрической проницаемости и исследуемой. И. Измерить емкость конденсатора с эталонной и с исследуемой жидкостью нри четырех-няти температурах. 12. Вычислить дипольный момент по уравнениям (И,15) и (11,16). [c.96]

    Для водных и органических оастворителей на температурную зависимость электроироводпосги влияют вязкость, диэлектрическая проницаемость, степень диссоциации и подвижности ионов. Для водных растворов степень диссоциации для большинства электролитов уменьшается с ростом температуры, уменьшается вязкость растворов и возрастает подвижность нонов. Для органических растворителей температурный коэффициент электропроводности положителен. Изме- [c.281]

    Электроизоляционные >масла выполняют роль диэлектрика и теплоотводящей среды. К чжлу их относятся трансформаторные, конденсаторные и кабельные масла. Помимо высоких диэлектрических свойств электроизоляцишшые масла дофясны обладать высокой химической стабильностью (Ъри конт те с медью, свинцом и другими металлами, являющимися катализаторами окисления), низкой температурой застывания, хорошими противокоррозионными свойствами при минимальном значении тангенса угла диэлектрических потерь. Эти масла не должны содержать смолистых и асфальтообразных веществ, а кабельные, помимо того, и ароматических [c.140]

    Заметим, что для тонких водных прослоек между частицами монтмориллонита характерно повышение вязкости при уменьшении Ь [16] и понижение диэлектрической проницаемости ео. В работе [37] получены значения ео = 23- -25 для прослоек толщиной /г = 5- 8 нм. Хэкстра и Дойл- [38] получили 60 = 35—40 для /1=1,5- 1,8 нм и ео = 3-н4 для /г = 0,5- -0,6 нм. Несмотря на некоторые количественные различия полученных оценок, они явно указывают на ограничение вращательной подвижности молекул воды в тонких прослойках. Повышение температуры, как и следовало ожидать, приводило к росту измеренных значений о, приближая их к объемному значению для воды (ео = 80). [c.14]

    Большое число работ убедительно демонстрирует отличие свойств жидкости, находящейся вблизи поверхности, от свойств в ее объеме [14, 36, 87, 114, 466—475]. Так, обнаружена аномалия диэлектрических свойств [469, 470], эффект ск ачкообразно-го изменения электропроводности [470], изменение вязкости в зависимости от расстояния до твердой- стенки [114, 471, 472], появление предельного напряжения сдвига жидкости при приближении к поверхности твердого тела [14, 473, 474]. Для набухающего в водных растворах 1 а-замещенного монтмориллонита обнаружена оптическая анизотропия тонких прослоек воды [36] найдено изменение теплоемкости смачивающих пленок нитробензола на силикатных поверхностях [475]. Установлено отличие ГС от объемной жидкости по растворяющей способности, температуре замерзания, теплопроводности, энтальпии. В. Дрост-Хансеном опубликованы обзоры большого числа работ, содержащие как прямые, так и косвенные свидетельства структурных изменений в граничных слоях [476—478]. В качестве косвенных доказательств автор приводит, в первую очередь, существование изломов на кривых температурной зависимости ряда свойств поверхностных слоев. Эти температуры отвечают, согласно Дрост-Хансену, разной перестройке структуры ГС. Широко известны также работы Г. Пешеля [479] по исследованию ГС жидкостей (и, прежде всего, воды) у поверхности кварца в присутствии ряда электролитов. [c.170]


Смотреть страницы где упоминается термин Диэлектрические температура: [c.49]    [c.55]    [c.83]    [c.133]    [c.146]    [c.460]    [c.207]    [c.259]    [c.150]    [c.263]    [c.86]    [c.347]    [c.248]    [c.8]   
Вода в полимерах (1984) -- [ c.441 ]




ПОИСК







© 2025 chem21.info Реклама на сайте