Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Леннарда-Джонса взаимодействия

Рис. 36. Зависимость потенциала межмолекулярного взаимодействия Леннарда — Джонса от расстояния между молекулами Рис. 36. Зависимость <a href="/info/300940">потенциала межмолекулярного взаимодействия</a> Леннарда — Джонса от <a href="/info/24920">расстояния между</a> молекулами

    Потенциал 0, определяющий взаимодействие одной молекулы адсорбента с одним атомом неполярного адсорбтива, приближенно можно выразить, например, уравнением Леннарда — Джонса  [c.86]

    Существенный прогресс в развитии теории жидкого состояния достигнут в последнее время благодаря применению компьютерной техники — методов численного моделирования Монте-Карло и молекулярной динамики. Вначале эти методы были применены для описания свойств объемных жидкостей — термодинамических и физических — на основании потенциалов межмолекулярного взаимодействия. Это позволило, прежде всего, путем сравнения с известными свойствами реальных жидкостей уточнить вводившиеся межмолекулярные потенциалы. Наиболее надежные результаты получены для простых жидкостей, когда достаточно учесть сферически симметричные силы дисперсионного притяжения и борновского отталкивания, например в форме известного потенциала Леннарда — Джонса. [c.116]

    Уравнение (3.39) получено с помощью соотношений (3.36) и (3.37), при этом предполагалось, что взаимодействие газа с матрицей мембраны неспецифично и описывается в первом приближении функцией типа парного потенциала Леннарда — Джонса (3.13). Если в мембране возможно специфическое взаимодействие одного из протекающих газов с элементами мат- [c.79]

    Потенциал <р взаимодействия молекулы с одним атомом неполярной решетки приближенно можно выразить, например, уравнением Леннард-Джонса  [c.487]

    ИЗ экспериментальных данных по потенциалу взаимодействия в системе Ср4-Аг. Параметры потенциала би а подбирались таким образом, чтобы сумма квадратов отклонений потенциала взаимодействия Ср4 с атомом Аг, полученного из эксперимента от усредненного потенциала, была наименьшей. Использовалась процедура минимизации, реализующая метод наискорейшего спуска [156]. В результате расчетов были получены следующие оптимальные параметры потенциала Леннард-Джонса (4.5) е = = 7 мэВ, а= 3,53 А. Использованные при расчетах величины энергии, передаваемой за одно столкновение, значения параметров потенциалов межмолекулярного взаимодействия приведены в табл. 4.5. [c.108]

Рис. 3-2. Потенциальная энергия взаимодействия в зависимости от расстояния между молекулами (по функции Леннарда-Джонса) Рис. 3-2. <a href="/info/301194">Потенциальная энергия взаимодействия</a> в зависимости от <a href="/info/357123">расстояния между молекулами</a> (по <a href="/info/729267">функции Леннарда</a>-Джонса)

    К началу нашего столетия механико-статистическая теория и эксперимент были достаточно развиты для исследования межмолекулярных сил с помощью второго вириального коэффициента. Первая серьезная попытка в этом направлении была ч де-лана Кеезомом [16] в 1912 г. К сожалению, второй вириальный коэффициент мало зависит от формы потенциала межмолекулярного взаимодействия, и, кроме того, теория межмолекулярных сил к 1912 г. была развита очень слабо. В связи с этим попытка Кеезом а оказалась не такой успешной, как могло быть, если бы он уже в то время использовал более реальный потенциал. Современный период в развитии настоящего вопроса начался в 1924 г., когда Леннард-Джонс [17] предложил более близкий к действительности закон межмолекулярного взаимодействия. Используя достижения квантовой механики и особенно работы Лондона [18—20], Леннард-Джонс получил важные количественные результаты для описания межмолекулярного взаимодействия ряда простых газов [21, 22]. С тех пор были успешно разработаны многие частные вопросы, например учет квантовых эффектов, проделаны сложные вычисления, получены данные по транспортным свойствам газов и т. д., однако общее развитие проблемы продвинулось незначительно. [c.13]

    Применяя потенциал Леннард-Джонса для описания взаимодействий между разнородными молекулами 1 и 2, его параметры связывают с параметрами потенциалов I—1, и 2—2 обычно с помощью следующих комбинационных правил (правила Лоренца—Бертло)  [c.121]

    Рассмотрим результаты расчета некоторых свойств объемной фазы воды для двух моделей. В модели межмолекулярного потенциала ST2 [340] используются четыре точечных заряда, расположенных в вершинах тетраэдра. Электростатическое взаимодействие плавно выключается при малых расстояниях между молекулами. Короткодействующие силы отталкивания учитываются потенциалом Леннарда — Джонса 6-12 между атомами кислорода. Дипольный момент. молекулы воды равен 2,35 Д, а абсолютный минимум энергии.-димера воды составляет 28,4 кДж/моль при расстоянии 0,285 нм между атомами кислорода. [c.120]

    Для неполярных молекул (Oj, Nj, Oj, СО и др.) потенциальную энергию взаимодействия в зависимости от расстояния между молекулами г можно аппроксимировать функцией Леннарда-Джонса  [c.68]

    Для полярных молекул (Н2О и др.) нужно еще учесть электростатическое взаимодействие диполей, при этом потенциальная функция получается более сложной. Однако для приближенных расчетов коэффициента диффузии и в этом случае можно использовать потенциал Леннарда-Джонса. [c.69]

    В теории строения вещества в настоящее время достигнуты большие успехи и, как выше уже отмечалось, некоторые свойства индивидуального вещества можно предсказать, если известны параметры взаимодействия его молекул между собой, и, наоборот, эти параметры можно определить исходя из тех же свойств, если последние известны. Вследствие обычно имеющего место отличия характеристик реального межмолекулярного взаимодействия от предсказываемых моделью Леннарда — Джонса определяемые значения его параметров будут зависеть от выбранного свойства. Совершенно очевидно, что точность расчета величины а при этом должна быть выше, когда параметры межмолекулярного взаимодействия определяются исходя из свойств, наиболее близких к коэффициенту разделения по физическому смыслу — давлению насыщенного пара Р рассматриваемого компонента и его плотности рж в жидком состоянии на линии насыщения. Соответствующие температурные зависимости, полученные на основании расчетов методом Монте-Карло можно представить в виде следующих интерполяционных формул  [c.38]

    Решение. Для расчетов надежнее всего использовать формулу (3-12), вытекающую из кинетической теории газов. Приняв для описания взаимодействия молекул потенциальную функцию Леннарда-Джонса, можно взять значения параметров а и е/к для составляющих смесей из табл. 3-1, величины можно приближенно использовать и для температур, более высоких, чем 1000° К (данные табл. 3-1 взяты из результатов измерения вязкости в диапазоне температур 300—1000° К). При определении параметров для смесей по параметрам для составляющих газов следует использовать комбинационные правила (3-14) и (3-15). Значения приведенного интеграла столкновений можно взять из графика на рис. 3-3. Результаты расчетов приводятся в табл. 3-3. [c.83]

    Для построения уравнения состояния можно применить два способа. Первый, эмпирический, дает эмпирические уравнения, соответствующие экспериментальным результатам. Такая методика расточительна по времени и трудна из-за высоких давлений и необходимости долго выдерживать образец при высоких температурах. Суть другого способа построения уравнения состояния заключается в использовании известных полей сил межмолекулярных взаимодействий. Как правило, считаются, что эти силы подчиняются соотношению потенциала Леннарда—Джонса. Для того чтобы получить макроскопически наблюдаемые характеристики, следует провести статистическое усреднение по молекулярным переменным. Это приводит к необходимости вычисления граничной функции [24]. Расчет последней очень труден, приходится делать множество допущений, касающихся молекулярной структуры и сил межмолекулярного взаимодействия. Только после этого можно построить уравнение состояния. [c.125]


    Для описания межмолекулярного взаимодействия в растворах предложено несколько моделей из них наиболее часто применяют модель Леннарда — Джонса, в соответствии с которой выражение для потенциала межмолекулярного взаимодействия записывается в виде [c.36]

    Для молекулярного взаимодействия часто принимают потенциал Леннард—Джонса [c.290]

    Модель Леннарда — Джонса. Из известных в литературе моделей, предложенных для описания межмолекулярного взаимодействия, наиболее часто используется модель, в которой постулируется, что сила притяжения между молекулами, как и сила их взаимного отталкивания, описывается степенной зависимостью. Следовательно, результирующую силу межмолекулярного взаимодействия в этом случае можно выразить с помощью соотношения [c.164]

    Применительно к бинарной системе выражение для потенциальной энергии 1,2 парного взаимодействия молекул первого и второго компонентов смеси в рамках рассматриваемой модели при Уа=13 и vь = 7 характеризуется соотношением Леннарда — Джонса [см. уравнение (11.10)] [c.165]

    В том случае когда потенциальная энергия взаимодействия двух молекул описывается потенциалом Леннарда — Джонса  [c.58]

    Это уравнение называется формулой Леннарда—Джонса (1924 г.). Она отвечает кривым на рис. 117. Минимум на суммарной кривой соответствует энергии межмолекулярного взаимодействия и равновесному расстоянию Гд. между молекулами. Эти кривые напоминают кривые, характеризуюш,ие зависимость энергии межионного взаимодействия от межионного расстояния (см. рис. 96). Однако графики рис. 96 и 117 количественно сильно отличаются, так как отличаются и масштабы значений и и г, п выражения зависимости и [c.243]

    Таким образом, эти потенциалы можно рассматривать как подходящий инструмент для расчетов Ф и К, требующий, однако, дальнейшего уточнения параметров. При расчетах К на ГТС была выбрана более обоснованная форма атом-атомного потенциала межмолекулярного взаимодействия (6, 8, ехр), а именно уравнение (9.34). На рис. 9.3 показан атом-атомный потенциал Рс(5рз)...с(гтс) в этой форме. Как уже было отмечено, форма атом-атомного потенциала мало влияет на результаты молекулярно-статистического расчета при соответствующем подборе параметров этого потенциала. Поэтому для упрощения записи воспользуемся потенциалом Леннард-Джонса (6, 12), т. е. уравнением (9.36). В минимуме потенциальной кривой ( Р/ / )г=г =0,, поэтому из уравнения (9.36) следует, что параметр отталкивания В равен [c.169]

    Методом молекулярной динамики исследовалась диффузия полимерной цепи в 10%-ном растворе на ансамбле из 1000 частиц, которые взаимодействуют между собой согласно потенциалу Леннарда-Джонса. Все частицы, включая цепь, первоначально находятся в узлах гексагональной кристаалической решетки с ребром а. Исследуемый объем представляет собой куб размером ЮдхЮахЮа со стандартными периодическими граничными условиями, позволяющими избежать влияния поверхностных эффектов. Кристаллу сообщается внутренняя энергия, характерная для жидкости несколько выше температуры замерзания. Для этого каждой частице приписывается случайное значение скорости, величина и направление которой определяется распределе шем Максвелла и условием неподвижности центра масс исследуемого объема. [c.104]

    Потенциал Леннард-Джонса (первый член в правой части) учитывает отталкивательные, дисперсионные и индукционные взаимодействия. [c.121]

    В последние годы для описания взаимодействия между двух-и многоатомными молекулами широко пользуются атом-атом-ными потенциалами. Взаимодействия между валентно не связанными атомами описывают сферически симметричными потенциалами (обычно это потенциалы Леннард-Джонса или ехр—6), и потенциальную энергию системы представляют как сумму таких потенциалов. Так, для пары двухатомных молекул (рис. П. 14) = 13 + 14 + W23 + 24, где Uij = Uij(r ) — функция (П. 107) или (II. 109). [c.121]

    Используя теорию переходного состояния, можно рассчитать [117] значение к , В процессе атаки радикала ОН атомом О образуется активированный комплекс без нарушения правила Вигнера. Из общих соображений (поскольку это — реакция двух активных частиц) ясно, что энергия активации Ei равна нулю или, по крайней мере, невелика. Комплекс имеет очень рыхлую структуру, и оба радикала не утрачивают своей индивидуальности, а радикал ОН сохраняет угловой момент. Силы взаимодействия хорошо описываются потенциалом Леппарда — Джонса 6—12 (см. гл. 2). Центробежный потенциальный барьер включает в себя сумму потенциала Леннарда — Джонса Vij и вращательную энергию комплекса Уд, и, как обычно, достигает максимального значения на разделительной линии [c.255]

    Если взаимодействия молекул сорта г и / с матрицей неспеци-фичны и описываются потенциалом типа Леннарда — Джонса, то можно полагать, что коэффициент разделения в первом приближении будет определяться энергетическими параметрами парного потенциала взаимодействия данных молекул ег г и [c.51]

    Третья часть, наибольшая по объему, посвящена развитию модельных представлений о потенциале межмолекулярного взаимодействия. Конкретно рассмотрены следующие модели жесткие сферы и кубы, точечные центры отталкивания, потенциалы треугольной и трапецеидальной формы, прямоугольная потенциальная яма, потенциалы Сюзерленда и Леннарда-Джонса, не-сфернческие жесткие тела и суперпозиция некоторых потенциалов. Далее даются рекомендации по использованию конкретных модельных потенциалов для расчета интегралов столкновений применительно к транспортным свойствам. И наконец, излагаются методы построения потенциалов для смесей и последующие расчеты их термодинамических и транспортных свойств. [c.6]

    Влияние неаддитивности на С (Г) было рассмотрено также для потенциала Леннарда-Джонса. Чтобы учесть это, необходимо слегка изменить модели и включить в потенциал вклады от неаддитивности. Эти вклады существуют как для дальнодействующих, так и для короткодействующих взаимодействий. Самым простым изменением модели является добавление неадди- тивного вклада в дисперсионную и обменную компоненты энергии. Неаддитивная часть дисперсионной энергии, приведенная в уравнении (4.92), характеризуется коэффициентом V, пропорциональным коэффициенту в выражении для дисперсионной энергии при Г двух тел, причем в соответствии с уравнением (4.93) коэффициент пропорциональности равен-За/4. Неаддитивная компонента энергии обмена, которая выражается более сложно, была рассчитана в общем виде только для упрощенной модели с одним электроном (модель Гаусса) [87] и для модели учитывающей искажение электронного поля [87а]. В обоих случаях неаддитивная компонента энергии обмена может быть записана как величина, приблизительно пропорциональная аддитивной энергии обмена, причем константа пропорциональности некоторым образом зависит от используемой модели парного, взаимодействия. Обозначая два неаддитивных параметра в безразмерном виде как а =а/а и (е ) /2 = (еа/е ) /= (где е — заряд, электрона), неаддитивную часть С (Т) можно разложить в ряд. Тейлора [c.217]

    Потенциал (12—6—4). Потенциал (12—6—4) был предложен Мейсоном и Шампом [125] в качестве модели для взаимодействия иона с нейтральным атомом. Аналогично потенциалу Леннарда-Джонса (12 — 6) этот потенциал содержит член характеризующий короткодействующие силы отталкивания. Дальнодействующая часть потенциала состоит из двух членов. Первый член, пропорциональный учитывает силы притяжения, возникающие между зарядом иона и диполем, который этот заряд индуцирует в нейтральном атоме. Второй член, пропорциональный представляет сумму лондоновской энергии и энергии квадруполя, индуцированного зарядом. Иначе говоря, потенциал (12—6—4) эквивалентен потенциалу (12—6) с дополнительным индукционным членом r- . Этот потенциал может быть полезен при расчете второго вириального коэффициента fii2 для случая слабо ионизированного газа. В приведенной форме потенциал может быть записан следующим образом  [c.223]

    Критический коэффициент сжимаемости ( 2 ) является теоретичесю важным свойством химических веществ, характеризующим энергетику I структуру межмолекулярных взаимодействий. Он используется во многих корреляциях физико-химических свойств веществ, в частности, для расчетов критического параметра Риделя, фактора ацентричности Питцера,- констант меж-молекулярного взаимодейств1м потенциала Леннарда - Джонса и др. По 2 , предложено множество эмпирических уравнений (например, Риделя, Лидерсе-на). [c.101]

    Как видно из выражения (11.10), модель Леннарда—Джонса является моделью парных взаимодействий молекул, и в соответствии с ней энергия раствора должна определяться суммарной энергией таких парных взаимодействий. В интересующем нас случае бинарного раствора индексы I и / будут относится к молекулам примесного (2) и основного (1) компонентов соответственно, т. е. в этом случае значения 821 и 021 в соответствии с выражениями (11.11), (11.12) будут определяться по параметрам Ё22, ец и 022, Ом для ИНДИВИДУзльных компонентов раствора. [c.37]

    В течение последнего десятилетия Леннард-Джонс, Попл, Лин-нетт, Уолш и др. рассматривали проблемы геометрических форм молекул, пользуясь новым теоретическим подходом. Их метод, хотя и использует в некоторой мере тот же математический аппарат и те же основные идеи, что и в теориях валентной связи и локализованных молекулярных орбиталей, но обращает основное внимание на число электронов в валентном уровне и на свойства этих электронов. Все электронные системы (атомы, молекулы или твердые тела) обладают одним свойством — электроны с одним и тем же спином не могут одновременно находиться % одной и той же области пространства. Так как все электроны заряжены отрицательно, они будут взаимно отталкиваться в соответствии с законом Кулона. Однако даже более важным в определении форм и свойств молекул является то, что электроны с одним и тем же спином, как оказалось, имеют очень малую вероятность нахождения близко один от другого из-за жестких требований принципа запрета Паули . Вообще говоря, только из рассмотрения спинового взаимодействия, не принимая во внимание возмущения, возникающего из-за электронного отталкивания, стало возможным установление геометрического расположения электронов, которое было выше описано для 2, 3, 4, 5 и 6 электронных пар. [c.199]

    На близких расстояниях наряду с силами ван-дер-ваальсова притяжения действуют силы ван-дер-ваальсова отталкивания между одноименно заряженными электронными оболочками атомов. В результате этого две частицы сближаются лишь до определенного минимального расстояния, отвечающего равенству сил притяжения и отталкивания, т. е. минимуму энергии взаимодействия. Приближенно зависимость энергии ван-дер-ваальсова отталкивания от расстояния можно записать в виде степенной функции с показателем степени, существенно большим чем 6. Широко используемым приближением является выражение для энергии ван-дер-ва альсо-вых взаимодействий в форме так называемого потенциала Леннарда—Джонса  [c.114]

    Конечно, существует множество унитарных преобразований, но нас интересуют такие, которые позволят осуществить идею локализации МО, сосредоточения их на химических связях или отдельных участках молекулы. Это возможно сделать, наложив дополнительные требования. Для МО естественно потребовать (Дж. Леннард-Джонс, С. Эдмистон, К. Рюденберг), чтобы критерием максимальной локализации было условие минимального взаимодействия (отталкивания) всех электронных пар в молекуле. Для двух электронов на орбиталях Я, и lj это взаимодействие определяется как [c.382]

    Рис. п.п. Потенциал взаимодействяя дву молекул [потенциал Леннард-Джонса (П. 107)]. [c.116]


Смотреть страницы где упоминается термин Леннарда-Джонса взаимодействия: [c.74]    [c.11]    [c.106]    [c.42]    [c.109]    [c.112]    [c.75]    [c.210]    [c.104]    [c.262]    [c.263]    [c.126]   
Вода в полимерах (1984) -- [ c.34 ]




ПОИСК





Смотрите так же термины и статьи:

Джонс

Леннарда Джонса



© 2025 chem21.info Реклама на сайте