Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сернистые соединения, адсорбция из водорода

    Высокая селективность цеолитов по отношению к таким соединениям серы, как сероводород и меркаптаны, используется для удаления последних из смесей многих веществ, в том числе и из смесей углеводородов. Из циркулирующего в установках риформинга водорода и из сырья, идущего на изомеризацию, сернистые соединения необходимо удалять, чтобы предотвратить отравление катализаторов, чувствительных к сере. При переработке природного газа из него методом селективной адсорбции удаляют воду, СО2 и соединения серы до остаточного уровня не выше [c.724]


    Наибольшее влияние на емкость цеолитов ио сернистым соединениям оказывают пары воды. В случае очистки влажных углеводородных газов вода сорбируется в лобовых слоях цеолита, практически полностью вытесняя из пор сернистые соединения. Присутствие в газе диоксида углерода, особенно в больших количествах, обусловливает возникновение совместной адсорбции, которая снижает емкость цеолитов ио сульфиду водорода и меркаптанам [122, 137, 135, 126]. Изменение адсорбционной емкости цеолита МаУ ио сульфиду водорода ири различных соотношениях С02 Н23 в газе приведено в табл. 4.82. [c.388]

    При этом процессе, разработанном фирмой Лурги (ФРГ), удаление двуокиси углерода, сероводорода, органических сернистых соединений, цианистого водорода, бензола и смолообразующих углеводородов из синтез-газов осуществляется методом физической адсорбции метанолом при сравнительно низкой температуре. Процесс основывается на том, что перечисленные примеси, особенно двуокись углерода и сероводород, весьма хорошо [c.367]

    Сырьем для разделения ароматических компонентов по структуре их молекулы служат соответствующие фракции адсорбционного разделения на силикагеле, предварительно освобожденные от сернистых соединений адсорбцией на прокаленной окиси алюминия или окислением перекисью водорода. Последний метод описан на стр. 197. [c.217]

    Для очистки водорода употребляются адсорбенты, поглощающие окись и двуокись углерода, водяные пары, углеводороды, сероводород, органические сернистые соединения [8]. Такая избирательная адсорбция основана на образовании поверхностных химических соединений или на капиллярной конденсации. Наибольшее значение для очистки водорода имеет адсорбция на цеолитах, размер пор которых соизмерим с размерами молекул. Через поры проходят, не задерживаясь, только молекулы, имеющие размер меньше размера пор цеолита более крупные молекулы остаются на их поверхности. Водород по сравнению с другими газами имеет наименьший размер молекул и на цеолитах не задерживается. На поглощение вещества цеолитом еще большее влияние, чем размер, может иметь форма молекулы, ненасыщенный характер молекул. [c.51]

    Таким образом, адсорбат содержит три категории веществ физически адсорбированный сернистый ангидрид, обратно удаляемый из твердой фазы вакуумиро-ванием или продувкой газа при температуре адсорбции, например 100 °С необратимо адсорбированная серная кислота, не выделяющаяся при температуре до 190 °С, но удаляемая в результате промывки водой сернистые соединения, прочно связанные с углеродом (около 0,5 г/100 г адсорбента), они не удаляются при промывке водой, но их экстракцию можно осуществить перекисью водорода. Соотношение между обратимо и необратимо адсорбированным сернистым газом зависит от температуры адсорбции [4]. Эту зависимость иллюстрирует рис. 14,3. [c.273]


    В качестве одного из последних примеров селективного отравления можно привести использование сернистых соединений при превращении на никелевом катализаторе изопрена в метилбутены и изопентан и их влияние на величину соотношения между выходами этих продуктов. При адсорбции тиофена в присутствии водорода образуется бутан и связанный сульфид-ион. При молекулярной площадке тиофена, равной 33 А , диаметре сульфид-иона 1,84 А и межатомных расстояниях Ni —Ni на плоскостях [100], [ПО] и [111] (рис. 6), равных либо 2,48, либо 3,5 А, ближайшие соседи сульфидированного центра неспособны к дальнейшей адсорбции тиофена и, следовательно, защищены от отравления. Число таких защищенных атомов поверхности около каждого сульфидированного центра на [c.62]

    Итак, имеющиеся экспериментальные данные по адсорбции тиоэфиров, меркаптанов, сероводорода подтверждают сделанные на основе анализа свойств сернистых соединений и твердых катализаторов предположения о характере их взаимодействия. Эти соединения первоначально хемосорбируются без разложения, образуя поверхностный комплекс с переносом заряда, подобный комплексам с соединениями металлов в растворах, но часто включающий дополнительные связи атомов углерода, водорода с поверхностью. В результате хемосорбции происходит активация атома серы. При большой интенсивности взаимодействия, зависящей от силы донора и акцептора, а также от условий адсорбции, ослабляются и разрываются связи С—8, в результате на поверхности появляются продукты деструкции. [c.56]

    Многочисленные работы по каталитическому разложению пероксида водорода будут рассмотрены в разделе электрохимических реакций пероксида водорода. Активированные угли ускоряют окисление молекулярным кислородом солей двухвалентного железа, олова, аммиака и гидразина, оксида азота, нитритов, диоксида серы, сероводорода, мышьяковистой кислоты и арсенитов и др. [30]. При изучении окисления сернистого газа было показано, что поверхностные кислородные комплексы на угле представляют собой активные промежуточные соединения. Местами адсорбции ЗОа являются парамагнитные центры, фиксированные хемосорбированным кислородом [159]. Доля электрохимически активного хемосорбированного кислорода [166] соответствует его количеству, участвующему в каталитическом процессе. Это, по мнению авторов работы [166], позволяет предположить протекание реакции через промежуточное образование поверхностных оксидов. [c.67]

    С), где С — количество вещества в единице объема стандартного раствора или газа. После разделения вещество определяют любыми хим., физико-хим. или физ. методами. Различают X. а. газов и жидкостей. Кроме того, в зависимости от механизма разделения X. а. бывает молекулярный (адсорбционный и распределительный), ионообменный, осадочный, адсорбционно-комплексообразовательный, окислительно-восстановительный по форме проведения анализа — колоночный, капиллярный, на бумаге, тонкослойный и в гелях. Г азо-адсорбцион-н ы й X. а. основан на различной адсорбции компонентов газовой смеси твердым сорбентом (активированным углем, силикагелем, цеолитами и др.). Для продвижения пробы через колонку служит инертный газ-носитель (напр., азот, гелий, аргон). Анализ применяется для количественного определения кислорода, азота, водорода, окиси и двуокиси углерода, сернистого газа и др. В газожидкостном X. а. применяют установки (рис.), где используют различие в распределении анализируемых газообразных соединений между неподвижной жидкой фазой (нанр., силиконовым или вазелиновым маслом, дибутилфталатом), нанесенной на твердый сорбент, и газом-носителем, не взаимодействующим химически с жидкой фазой и с компонентами анализируемой смеси. При капиллярном газожидкостном [c.696]

    При этом процессе, разработанном фирмой Лурги (ФРГ), удаление двуокиси углерода, сероводорода, органических сернистых соединений, цианистого водорода, бензола и смо.лообразующих углеводородов из синтез-газов осуществляется методом физической адсорбции метанолом при сравнительно низкой температуре. Процесс основывается на том, что перечисленные примеси, особенно двуокись уг.терода и сероводород, весьма хорошо растворяются в метаноле нри низких температурах и повышенных давлениях и легко выделяются из растворителя при снижении давления. Зависимость растворимости двуокиси углерода в метаноле от температуры изображена графически на рис. 14. И [36]. Расход тепла на процесс ректизол весьма невелик, так как поглотительный растворитель охлаждается вследствие снижения давления на ступени регенерации, а поступающий газ охлаждается с широким использованием теплообмена с отходящими потоками очищенного газа и извлекаемых кислотных компонентов газа. [c.376]

    При иромышлеппой реализации адсорбционных процессов сероочистки приходится решать вопрос утилизации газов регенерации, в которых концентрируются сернистые соединения. Выбор способа обработки газов регенерации зависит от состава сернистых соединений и их концентрации. Как правило, сернистые соединения извлекаются из газов регенерации жидкими поглотителями и затем направляются на установки Клауса для переработки. Необходимость дополпитель-пой обработки газов регенерации является существенным недостатком адсорбционного метода сероочистки. Указанный фактор регулирует экономику ироцесса в целом. Поэтому адсорбционные методы сероочистки для установок большой иро-изводительпости пе применяют в тех случаях, когда количество газов регенерации превышает 20 % от объема очищаемого газа. Эта область для давлений на стадии адсорбции 4 МПа и выше ири внешней теплоизоляции адсорберов ограничена концентрациями сульфида водорода и меркаитаиов в природном газе 1,5-2,0 г/м . [c.423]


    Углубление понимания реакций, происходящих на поверхности раздела жидкость — твердое тело во время адсорбции, должно привести к разработке методов приготовлёиия высокодисперсных никеля, кобальта, железа, меди, серебра, золота и рутения. Такие улучшенные методы дадут существенный импульс в изготовлении полиметаллических кластеров. Данная работа может быть применена для синтеза на основе оксида углерода и водорода и процессов общей очистки и переработки жидких продуктов гидрогенизации каменного угля. Метод закрепления металлоорганических комплексов может найти применение в двух областях синтезы на основе оксида углерода и водорода (особенно метанирование и синтез метанола) и, возможно, каталитическая конверсия оксида углерода. Эта надежда базируется на предположении, что будут синтезированы металлоорганические комплексы, активные в реакции оксида углерода с водородом, и что такие комплексы будут стойкими к сернистым соединениям. [c.60]

    В газе определяли сероводород, меркаптан, сероокись углерода и сероуглерод. Для этого из газа, отсасываемого в точках 14 (рис. 2), выделяли воду, деготь, аммиак и нафталин в аппаратуре, показанной на рис. 6. Часть очищенного газа пропускали для поглощения сероводорода и меркаптана через дрексели, наполненные 10 %-ным раствором d lj и 0,1 н. раствором карбоната натрия в отношении 10 1 сероокись углерода и сероуглерод осаждались в виде калийэтилмоно- и калийэтилдитиокарбонатов в двух следующих дрекселях, наполненных спиртовым раствором едкого кали (10 %-ный раствор КОН в 95%-ном спирте). Часть газа (//) пропускали через дрексели с подкисленным раствором хлорида кадмия (0,3% НС1), в которых осаждался только сероводород в виде сульфида кадмия. Газ отсасывали из отводящей трубы водоструйным насосом, к которому был присоединен газовый счетчик. При этом скорость отсасывания следовало поддерживать постоянной. Для определения количества и происхождения серы в газе в зависимости от продолжительности коксования, установки для адсорбции сернистых соединений сменяли каждые 15 мин. и определяли сернистые соединения, образовавшиеся за этот период времени. Для этого подготавливали второй ряд дрекселей и переключали ток газа после указанного времени. Для перевода осадков в сульфат бария их растворяли в соляной кислоте в специальном приспособлении. Образующийся сероводород при продувании азотом пропускали через раствор перекиси водорода. [c.58]

    Пр11 низких концентрациях сернистого соедипения в водороде гидрирование сероокиси углерода и сероуглерода протекает приблизительно одинаково легко при высоких концентрациях сероокись углерода реагирует легче, так как реакция гидрирования сероуглерода несколько замедляется вследствие покрытия поверхности катализатора сероуглеродом. Показано [44], что в большом избытке водорода реакция гидрирования метантиола имеет первый порядок по отношению к сернистому соединению в интервале температур 200—250°, когда происходит активированная адсорбция метантиола [69], эта реакция протекает с большой скоростью. Скорость гидрирования метантиола меньше, чем сероуглерода вследствие этого при гидрировании сероуглерода в мягких условиях из продукта реакции можно выделить метантиол. [c.373]

    Описание процесса (рис. 15). Технологический газ, поступающий в конвертор первой ступени, обессеривается адсорбцией на активированном угле или других адсорбентах. Очень важно полностью удалить сернистые соединения, чтобы предотвратить отравление катализатора. Затем газ сжимают до 21 ат и выще, смешивают с водяным паром и перегревают в конвекционной секции конвертора первой ступени. В вертикальных трубах печи газовая смесь нагревается до температуры реакции образующийся газо образный продукт состоит в основном из окиси углерода и водорода. [c.31]

    При разделении масляных фракций по групповому составу экстракцией или адсорбцией сернистые соединения всегда выделяются вместе с ароматическими углеводородами. Для их разделения можно применить окисление перекисью водорода (метод Гинзбурга) сернистых соединений до сульфонов и сульфоксидов. [c.197]

    Известный метод БЭТ — низкотемпературной адсорбции азота или других газов — дает значение общей поверхности сложного катализатора, которая мало характеризует свойства металла на носителе. Для определения величины активной поверхности металла наиболее пригодным оказался хемосорбционный метод, заключающийся в измерении количества хемо-сорбирующихся газов — окиси углерода, кислорода, водорода и др. Этот метод нашел применение в более ранних работах [13, 14] в последние годы появился ряд исследований, расширяющих круг его приложения [15—17]. Мы применили измерение адсорбции кислорода для оценки дифференциальной поверхности никелевых [18], а затем и медных катализаторов в сочетании [10] с измерением каталитической активности ряда катализаторов и адсорбции сернистых соединений (определение сероемкости). Такое сочетание измерений дает возможность проводить более уверенную оценку поверхности металла сложного катализатора. [c.393]

    Боннер при обсуждении этих результатов ссылается на рассмотренные выше работы Гауптмана и Владислава [43, 44]. Как и последние, он считает, что при обессеривании никелем Ренея образуются свободные радикалы. Указанные авторы постулировали, что адсорбция сернистого соединения на поверхности металла происходит за счет неподеленных электронов атома серы. Это, по-видимому, приводит к уменьшению прочности связи С—5 в соответствии с этим выделяющийся свободный радикал восстанавливается в углеводород адсорбированным на поверхности никеля водородом,как это и было показано Боннером (см. стр. 122). Если адсорби- [c.126]

    А (Вестгрен [31]). На плоскости 100 этого кристалла нет ни одной пары атомов никеля, находящихся один от другого на точном или почти точном расстоянии, требующемся для двухточечной адсорбции тиофена. На плоскости 111 имеются группы из трех атомов никеля, расположенных по треугольнику (рис. 9), и расстояние между любой парой из этой группы атомов точно соответствует расстоянию, необходимому для адсорбции органической молекулы, однако эти группы недостаточны для требуемой одновременной адсорбции двух атомов водорода. Поэтому субсульфид никеля является активным катализатором для гидрирования сероуглерода и других простых органических сернистых соединений, адсорбируемых в одной точке катализатора (Кроули и Гриффит [32]), но не для деструктивного гидрирования органических молекул. [c.93]

    Получаемые из сернистых нефтей В. содержат в своем составе различные сернистые соединения, наличие которых снижает восприимчивость В. к ТЭС. Некоторые сернистые соединения, например HjS, элементарная сера и низшие меркаптаны вызывают коррозию металлов и присутствие их в В. недопустимо. Очистка В. от нежелательных примесей является одним из важных элементов их технологии. Необходимо удаление сернистых соединений, смолистых веществ, органич. к-т и их солей и др. Очистка В. может производиться серной к-той, щелочью, плюм-битом натрия, гипохлоритом, действием водорода под давлением (гидроочистка) и др,, а также обработкой адсорбентами, катализаторами, избирательными растворителями, В. газовые и прямой перегонки из малосернистых нефтей очищаются от сероводорода и меркаптанов щелочью, В случае высокосернистого сырья применяют гидроочистку, Крекинг-Б, обессеривают обработкой щелочью, после чего в них вводят ингибиторы. Последнее время в США получили распространение процессы удаления из В. нормальных парафиновых углеводородов путем адсорбции на высокоизбирательных адсорбентах — цеолитах ( молекулярных ситах ). При этом поры адсорбента заполняются только молекулами углеводородов с прямой цепью. Этот процесс позволяет значительно повысить 04 В, прямой перегонки и термич, крекинга. [c.202]

    Одной из о ень вероятных причин изменения активности катализаторов под влиянием сернистых соединений (так же, как и других ядов) является избирательная адсорбция серусодержащего вещества на активных центрах катализатора. При этом благодаря прочной хемосорбции затрудняется доступ к ним реагирующих молекул (блокировка, экранирование активных центров поверхности). Доказательством существования такого типа отравления служит то, что, по крайней мере в начальной стадии, кривая отравления сернистым соединением совпадает с кривой его адсорбции и наблюдается линейная зависимость каталитической активности от количества введенного сернистого соединения [226, 244, 314, 336, 362, 385]. Если в систему с отравленным серой катализатором внести вещество, которое более прочно хемосорбируется, то отравляющее действие сернистого соединения снимается. Например, осерненный никель неактивен в реакции гидрирования олефинов. В присутствии водорода катализатор проявляет активность в изомеризации бутена и в реакции обмена С2Н4—С2В4 после контакта [c.74]

    Высушенный осадок фениларсоната тория не является весовой формой как вследствие зависимости его состава от условий осаждения, так и адсорбции осадителя, благодаря чему процентное содержание мышьяка в осадке превышает его стехиометрическое количество в формуле. В случае непосредственного длительного прокаливания при 1000 чистого фениларсоната тория до ТЬОг результаты искажаются вследствие захвата следов мышьяка осадком. Окись тория, свободную от мышьяка, можно получить при сжигании осадка в тигле Розе в токе водорода с последующим прокаливанием при 1000°. Рекомендуют также удалить мышьяк упариванием с HF и H2SO4 и затем прокалить соединение при 1000° до окиси [1209]. Однако наиболее простой путь в этом случае — перевод фениларсоната в оксалат, что позволяет не только удалить мышьяк, но и отделить Zr, Hf и Ti [1686]. Вместе с торием фениларсоновой кислотой осаждают также Fe, Ai и Церий должен быть предварительно восстановлен до трехвалентного состояния сернистой кислотой [1686]. Другие р. з. э. осаждаются лишь частично поэтому в случае их присутствия необходимо переосаждение. [c.46]

    В большинстве таких случаов используется высокая избирательность адсорбции полярных и ненасыщенных соединений на молекулярных ситах. Такие полярные соединения, как вода, двуокись углерода, сероводород, сернистый ангидрид и меркаптаны, сильно адсорбируются и легко могут быть выделены из смесей с неполярными соединениями, такими как природный газ или водород. На рис. 12.24 представлены типичные изотермы адсорбции двуокиси углерода, сероводорода и сернистого ангидрида на молекулярных ситах тина 5А. В литературе описаны [171 три примера промышленного [c.309]

    В больтинстве таких случаев исиоль-. уется высокая избирательность адсорбции по.тярных и ненасыщенных соединений на молекулярных ситах. Такие полярные соединения, как вода, двуокись углерода,сероводород,сернистый ангидрид и меркаптаны, сильно адсорбируются и легко могут быть вьщелены из смесей с неполярными соединениями. такими как природный газ или водород. На рис. 12. 24 представлены типичные изотермы адсорбцип двуокиси углерода, сероводорода п сернистого ангидрида на молекулярных ситах типа 5А. В. литературе описаны [17] три нрпмерс пролгышленного применения молекулярных сит для одновременной адсорбции воды и одной или пескольких кислотных примесей. Эти установки кратко рассмотрены ниже. [c.318]


Смотреть страницы где упоминается термин Сернистые соединения, адсорбция из водорода: [c.288]    [c.411]    [c.375]    [c.202]    [c.46]    [c.137]    [c.611]   
Химия углеводородов нефти и их производных том 1,2 (0) -- [ c.257 ]




ПОИСК





Смотрите так же термины и статьи:

Адсорбция водорода

Водород сернистый

Водород соединения



© 2025 chem21.info Реклама на сайте