Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Селективность ароматических углеводородов

    Углеводороды и кислородсодержащие органические соединения (отчетливо выраженная селективность), ароматические углеводороды от алифатических [c.239]

    ФИД Селективный Ароматические углеводороды 10  [c.26]

    Процесс, при котором образуются более высоко кипящие продукты, чем исходное сырье, можно рассматривать как результат вторичных реакций при крекинге. В результате этих вторичных реакций по большей части и идет образование кокса. Образование кокса при крекинге в общем тем больше, чем тяжелее исходное сырье. Это связано с повышенным содержанием ароматических углеводородов в сырье и, следовательно, с его обеднением водородом, что ведет к образованию высококонденсированных, не растворимых в углеводородах веществ. Кокс не является чистым углеродом — оп содержит еще некоторое количество водорода и летучих соединений. С другой стороны, крекинг идет тем труднее, чем ниже пределы выкипания фракций. Поэтому, если очень широкая фракция подвергается крекингу в условиях, обеспечивающих расщепление ее наиболее низкомолекулярной части, то одновременно более высококинящая часть ее, расщепляясь, дает много кокса. Чтобы этого избежать, необходимо крекинг-сырье предварительно разделять на фракции, кипящие в относительно узких пределах, и каждую из фракций подвергать крекингу в наиболее подходящих для нее условиях (селективный крекинг). [c.38]


    Разработка этого способа прекращена. В настоящее время ароматические углеводороды пз содержащих их фракций извлекаются при помощи селективных растворителей, например жидким сернистым ангидридом, но способу Эделеану и другими, которые ниже рассматриваются детальнее. [c.101]

    При избыточном содержании бу — танов за счет повышения растворяющей способности растворителя ухудшается качество деасфальтизата (возрастают коксуемость и вязкость, ухудшается цвет). Особенно нежелательно присутствие в пропане олефинов (пропилена и бутиле — нов), снижающих его селективность, вследствие чего возрастает содержа гие смол и полициклических ароматических углеводородов в деасфальтизате. [c.228]

    Назначение процессов селективной очистки — удаление смо — листых веществ и полициклических ароматических углеводородов из масел с целью повышения их индекса вязкости и снижения коксуемости. [c.236]

    Экстрактивная ректификация используется и для выделения практически чистых ароматических углеводородов, например бензола и ксилолов, из их смесей с неароматическими углеводородами. Используемый при этом высококинящий растворитель должен обладать ярко выраженной селективностью по отношению [c.338]

    При использовании смазочных материалов на базе минеральных масел необходимо учитывать возможное раздражающее воздействие углеводородных смесей и индивидуальных присадок. Частицы металлов, продукты сгорания в отработанных маслах могут усилить раздражение. Необходимо также учитывать вредное воздействие полициклических ароматических углеводородов, содержащихся в маслах селективной очистки. Предельная концентрация одорантов, содержащихся в минеральных маслах, при их попадании настолько низка (0,001 до 0,1 мг/л), что растворенные в такой воде углеводороды никакой опасности для здоровья человека и животных не представляют [c.230]

    Для выделения ароматических углеводородов применяют экстракцию. В качестве селективных растворителей используются полигликоли (ди-, три- и тетраэтиленгликоль), сульфолан, М-метилпирролидон, диметилсульфоксид. Повышение температуры увеличивает растворяющую способность экстрагентов, ио сии-л<ает избирательную способность. Добавление воды ее повышает, но снижает емкость растворителя. Широкое распространение получили установки с использованием 90—95%-иых растворов гликолей (ДЭГ, ТЭГ и тетраэтиленгликоль). На рис. 71 приведена схема экстракции гликолями. Экстракция проводится при 224 [c.224]

    Активные угли селективно адсорбируют ароматические углеводороды, красители, хлоруглеводороды, фенолы, нитропроизводные и ряд других соединений. Стоимость высококачественных промышленных активных углей высока, поэтому их используют многократно. Активный уголь регенерируют либо промывкой соответствующим растворителем при наличии в сточных водах ценных компонентов, либо пиролизом в парогазовой среде при 750—900°С. Максимальные потери угля —5—10%  [c.96]


    Одно из основных направлений технического прогресса в нефтеперерабатывающей и нефтехимической промышленности — строительство высокопроизводительных комбинированных установок. Высокие технико-экономические показатели достигнуты при эксплуатации отечественных комбинированных установок глубокой переработки нефти (ГК-3), производства топлив (ЛК-6у), установок деасфальтизации и селективной очистки масел, депарафинизации масел и обезмасливания парафинов. Готовятся к пуску отечественные комбинированные маслоблоки КМ-1 и КМ-2, комбинированные установки глубокой переработки нефти КТ-1 и производства ароматических углеводородов и др. [1—5]. [c.118]

    N-метилпирролидона), которая позволяет снизить содержание тяжелых ароматических углеводородов, смол, асфальтенов и металлов. В настоящее время селективная очистка применяется в производстве базовых масел также с целью удаления тяжелых ароматических углеводородов и смол [4.9]. [c.110]

    Нефтяные фракции, полученные при прямой перегонке нефти, содержат различные количества нежелательных примесей и поэтому зачастую требуют дополнительной очистки при помощи химических методов. Некоторые классы соединений могут рассматриваться в качестве примесей или нежелательных компонентов только для определенных фракций. Так, ароматические углеводороды желательны в бензине, но нежелательны в керосине. Другие классы соединений следует считать примесями пли нежелательными компонентами для всех нефтепродуктов. Сюда в первую очередь относятся легко окисляемые и вообще химически нестабильные соединения, а также смолистые или асфальтеновые вещества. Вредными, как правило, являются сернистые соединения, и их предельно допустимое содержание обычно строго ограничивается техническими нормами на нефтепродукты. В тех случаях, когда очистка нефтепродукта от примесей или нежелательных компонентов недостижима обычными физическими методами, прибегают к химическим методам очистки при помощи различных реагентов, которые селективно реагируют с веществами, подлежащими удалению. [c.222]

    Поскольку селективный растворитель удаляет наиболее тяжелые ароматические углеводороды, можно заключить, что остающиеся углеводороды, дающие большие выходы лучших сульфокислот, пли совсем не имеют ароматических колец, или же их доля по отношению к нафтеновым кольцам и парафиновым цепям невелика. Поэтому кажется вполне вероятным, что в промышленности отдается предпочтение нафтеновым сульфокислотам. [c.572]

    Основные достоинства жидкой двуокиси серы как селективно-го растворителя следующие хорошая растворимость в ней ароматических углеводородов в широком интервале температур малая [c.61]

    Степень вовлечения парафиновых углеводородов в реакции ароматизации в процессе риформинга можно оценивать глубиной ароматизации и селективностью превращения в ароматические углеводороды. За глубину ароматизации принимаются отношения количества парафинов, превратившихся в ароматические, к общему количеству парафиновых углеводородов в сырье за селективность - отношение количества парафиновых углеводородов, превратившихся в ароматические, к общему количеству превратившихся парафиновых углеводородов. [c.9]

    Увеличение объёмной скорости подачи сырья приводит к увеличению выхода жидкого продукта при одновременном снижении выхода ароматических углеводородов. При этом, как видно из кривых рис. 2.12, скорость снижения выхода ароматических углеводородов меньше скорости увеличения выхода суммарного жидкого продукта, что является признаком увеличения селективности процесса. Действительно, при получении катализата с одним и тем же октановым числом, увеличение объёмной скорости приводит к заметному увеличению выхода катализата (см. рис. 2.13). Снижение выхо- [c.18]

    Выделяющиеся при высоких температурах в верхней части колонны высокомолекулярные соединения (смолы) и полициклические ароматические углеводороды извлекают из про-панового раствора низкомолекулярные смолы благодаря действию дисперсионных сил. Таким образом, наряду с процессом фракционирования пропаном здесь наблюдается процесс селективной экстракции смолами и полициклическими ароматическими углеводородами. [c.40]

    Решающее значение имеет углеводородный состав исходного бензина чем больше сумма нафтеновых и ароматических углеводородов в бензине, тем селективнее процесс, т. е. тем больше выход [c.39]

    Термодинамически возможно получение из метанола углеводородов указанных групп. Обращают внимание большие энергетические потери при селективном получении ароматических углеводородов. Поэтому синтез ароматических углеводородов [c.343]

    Установлено, что на катализаторе СГ-ЗП происходит образование ароматических углеводородов за счет реакций дегидрирования и дегидроизомеризации нафтеновых углеводородов, а также дегидроциклизации парафиновых углеводородов с высокой селективностью протекает реакция [c.5]


    Он основан на применении гликолевоводной смеси (8—10% воды), обладающей очень высокой селективностью по отношению к ароматическим углеводородам. Поэтому нет необходимости применять при экстракции узкие фракции, но можно бензол, толуол и ксилолы экстрагировать совместно. Экстракция производится, как и в методе Эделеану, в условиях противотока в очень эффективной, специально для этого процесса разработанной колонне. Экстрагирующую среду (растворитель) подают в голову колонны, экстракт отводится снизу. Экстрагируемое масло поступает в среднюю (по высоте) часть колонны. Часть ароматических подается в низ колонны как орошение . Обогащенный ароматическими растворитель поступает в разде- литоль, где ароматические отделяются от растворителя, который возвращается в экстракционную колонну. [c.107]

    Плохая растворимость парафинов в нитрометане и сравнительно легкая растворимость в нем ароматических углеводородов явилась основанием для применения нитропарафннов в качестве селективного растворителя при рафинировании смазочных масел [151]. [c.317]

Рис. 6. Продукты, получаемые на установках АВТ, и пути их использования г / — вторичная перегонка, гидроформинг 2 — пиролиз, производство ароматических углеводородов 3 — депарафиннзация, компаундирование 4 — компаундирование керосина, гидроочистка 5 — депарафиннзация, пиролиз 6 — каталитический крекинг 7. 8, 9, 10 — селективные очистки дистиллятных масел депарафиннзация карбамидом, адсорбционная очистка //—I3 — производство кокса, котельного топлива, сортовых мазутов /4 — переработка газа полученне сырья для нефтехимических производств 15—17 — деасфальтизация, производство кокса, термический крекинг. /—V — компоненты светлых нефтепродуктов (°С) н. к.— 62. 62—85, 85—105, 105—120, 120—140, 140—240, 240—300, 300—350 V/— мазут, >350 V//— газ V///— гудрон, >500 /Х—Х///— вакуумные фракции ("С) 350—400, 400—420, 420—490 (500) >490 (500). Рис. 6. Продукты, получаемые на установках АВТ, и пути их использования г / — <a href="/info/309778">вторичная перегонка</a>, гидроформинг 2 — пиролиз, <a href="/info/404901">производство ароматических углеводородов</a> 3 — депарафиннзация, компаундирование 4 — компаундирование керосина, гидроочистка 5 — депарафиннзация, пиролиз 6 — <a href="/info/25178">каталитический крекинг</a> 7. 8, 9, 10 — <a href="/info/63444">селективные очистки</a> дистиллятных масел депарафиннзация карбамидом, <a href="/info/310106">адсорбционная очистка</a> //—I3 — <a href="/info/652480">производство кокса</a>, <a href="/info/80857">котельного топлива</a>, сортовых мазутов /4 — <a href="/info/1619770">переработка газа полученне</a> сырья для <a href="/info/1469975">нефтехимических производств</a> 15—17 — деасфальтизация, <a href="/info/652480">производство кокса</a>, <a href="/info/66231">термический крекинг</a>. /—V — <a href="/info/1455545">компоненты светлых нефтепродуктов</a> (°С) н. к.— 62. 62—85, 85—105, 105—120, 120—140, 140—240, 240—300, 300—350 V/— мазут, >350 V//— газ V///— гудрон, >500 /Х—Х///— вакуумные фракции ("С) 350—400, 400—420, 420—490 (500) >490 (500).
    Применяемые на современных нефтеперерабатывающих заводах процессы очистки весьма разнообразны. При очистке ряда нефтепродуктов, особенно смазочных масел, для достижения требуемых свойств применяют не один, а ряд последовательных процессов, каждый из которых предназначен для удаления определенной группы примесей. Например, при деасфальтиза-ции удаляют смолистые и асфальтовые соединения селективная очистка обеспечивает удаление смол и части ароматических углеводородов при депарафинизации выделяют из продуктов твердые парафины очистка глинами улучшает цвет масла и т. д. [c.91]

    Влияние давления водорода на селективность протекания Сз- и Сб-дегидроциклизации н-гептана и н-октана в присутствии нанесенных Pt-катализаторов обсуждается в интересном цикле работ И. И. Левицкого, X. М. Ми-начева и сотр. [132—135]. В частности показано, что увеличение давления Нг изменяет направления Сз- и Сб-дегидроциклизации н-октана при 375°С над Pt/ в сторону большего образования 1,2-дизамешенных циклов (1-метил-2-этилциклопентан и о-ксилол). Предполагают, что обе реакции проходят через обшую стадию— образование моноадсорбированных комплексов, строение которых определяет направление этих реакций, а последуюшие превращения ведут к возникновению пя-ти- или шестичленных циклов. При этом авторы исходят из развиваемой ими концепции, согласно которой направления Сз- и Сб-дегидроциклизации н-октана определяются соотношением эффективных зарядов С-атомов реагирующей молекулы углеводорода и атомов (ионов) металла, входящего в катализатор. В зависимости от указанного соотношения атом металла вытесняет из молекулы углеводорода либо протон (далее осуществляется протонный механизм), либо гидрид-ион ( гидрид-ионный механизм) с последующим образованием моно-адсорбированного комплекса. Последующий путь циклизации н-октана с образованием пятичленного цикла или ароматического углеводорода определяется второй стадией процесса циклизации — образованием диадсор-бированного комплекса. Представления, изложенные в работах [132, 134], иллюстрируются следующей схемой, [c.234]

    Химические методы могут быть использованы или для разделения некоторых классов углеводородов, или для идентификации индивидуальных углеводородов в узких фракциях. Ароматршеские углеводороды могут быть количественно отделены от насыщенных углеводородов сульфированием олефины могут быть количественно и селективно гидрированы при низких температурах в присутствии эффективных катализаторов циклогексаны (исключая четвертичные производные) дегидрируются в ароматические углеводороды над платиновым катализатором и т. д. [c.13]

    Олефины с третичной основой большей частью труднее поддаются гидрированию, чем внутренние непредельные соединения с прямой цепью, а те в свою очередь, более устойчивы, чем термические олефины [176]. Благодаря тому, что реакция устойчива к катализатору, температуре, давлению и углеводородной структуре, создаются благоприятные условия для селективного гидрирования примером этого служит удаление олефинов из ароматических углеводородов при низкой температуре (20° С и давлении водорода 28 кПсм или 115—175° С при атмосферном давлении водорода) над никелевым катализатором [177] и насыш ение бензино-лигроиновой фракции термического крекинга [178]. [c.90]

    Рис. V-4 показывает поведение системы, в которой один из углеводородных компонентов полностью смешивается с растворителем при данной температуре это типично для многих систем, состоящих из циклопарафинов (или алканов), ароматических и селективного растворителя. В этом случае область сосуществования двух фаз ограничена кривой ab , а равновесные составы соединяются подами е/, е / и e"f". Максимальное содержание ароматических углеводородов, полученных в экстракте, свободном от растворителя, независимо от числа ступеней фракционирования находится экстраполяцией линии Sb до нулевого содержания растворителя в точке d. Нафтеновые компоненты могут быть получены в чистом виде с помощью разделяющей системы с достаточным числом фракционирующих ступеней. [c.278]

    Металлический компонент катализатора, обладающий дегидриче-скими свойствами, ускоряет реакции дегидрирования и гидрирования. Он также способствует образованию ароматических углеводородов, частичному удалению промежуточных продуктов реак ц11и, ведущих к коксообразованию. Металлы-промоторы полиметаллических катализаторов, помимо взаимодействия с основным активным компонентом катализатора (платиной), влияют на селективность процесса, взаимодействуя с носителем (окисью алюминия). [c.10]

    В то же время, при слабой активности кислотной функции скорость реакций с участием иона карбония, включая дегидроизомеризацию и дегидроциклизацию, недостаточно велика, что, в свою очередь, должно вести к увеличению образования углеводородов -С и к снижению выхода риформата, т.е. к снижению селективности поцесса. Активность кислотной функции катализатора риформинга в основном определяется наличием на его поверхности хлора. При этом вполне закономерно ставится вопрос какое же конкретное содержание хлора должно поддерживаться на поверхности катализаторов риформинга, как алюмоплатиновых, так и новых би- и полиметаллических. Проведенные нами исследования показали, что для алюмоплатинового катализатора АП-64 оптимальное содержание хлора находится в пределах 0,55-0,65 % мае. Потеря хлора ниже 0,55 % приводит к значительному снижению активности и стабильности катализатора, при превышении оптимума наблюдается резкое увеличение гидрокрекинга углеводородов, падение выхода риформата, быстрое закоксовывание катализатора. Для полиметаллических платино-рений-кадмиевых катализаторов (типа КР-104, КР-108, КР-110) оптимальное содержание хлора, как показали наши исследования, находится на уровне 0,9-1,0 % мае. Регулирование содержания хлора на поверхности катализатора во время его эксплуатации служит технологическим приёмом, использование которого, наряду с обычными параметрами процесса, делает возможным получение высоких выходов высокооктанового бензина или ароматических углеводородов. [c.38]

    Компания Аврора газолин в 1955 г. построила установку рексформинга [180]. Установка сооружена на базе установки платформинга. К ранее действующей установке платформинга была добавлена экстракционная секция юдекс для выделения из продуктов риформинга ароматических углеводородов при помощи селективной экстракции водным раствором диэтилен-гликоля. [c.154]

    Фирма Шелл ойл на установке в Хоустоне для извлечения ароматических углеводородов пользуется методом селективной перегонки с фенолом. [c.155]

    Долгое время считалось, что непредельные углеводороды бензинов крекинга имеют, в основном, алифатическое строение и относятся к классу моноолефинов [46]. В работах более позднего периода при использовании селективного каталитического гидрирования [47, 4 ] удалось доказать наличие непредельных углеводородов циклической структуры. Так, при селективном каталитическом гидрировании бензина термического крекинга, содержащего 36 вес. % непредельных углеводородов, было найдено, что 33% непредельных превращается в парафины, 37% — в нафтены и 30% — в алкиларо-матические углеводороды [4]. Следовательно, исходный бензин содержал олефины, циклоолефины и ароматические углеводороды с двойной связью в боковой цепи. [c.15]

    Состав сырья может быть облагорожен его предварительной гидооочисткой для снижения содержания сернистых и азотистых соединений, а также частичного перехода полициклических ароматических углеводородов в алкилароматические с меньшим числом колец. Эффективен также способ предварительной экстракции тяжелых ароматических и смолистых соединений. Ниже представлены результаты каталитического крекинга вакуумного газойля ромашкинской нефти без предварительного облагораживания и после селективной очистки его фурфуролом [7]  [c.50]

    Совместно с П. И. Галичем и с участием О. Д. Коповальчикова и Ю. Н. Сидоренко исследованы реакции алкилирования метилзамещенных ароматических углеводородов метиловым спиртом па цеолитах типа фожазитов и ионообменными катионами щелочных и щелочноземельных металлов. Выявлено принципиальное различие превращений углеводородов в присутствии аморфных и кристаллических алюмосиликатов с катионами I и II групп. В присутствии аморфных алюмосиликатов и цеолитов типа X и с катионами щелочноземельных металлов, а также лития и натрия алкилирование толуола, ксилолов и метилнафталинов метанолом происходит в ароматическое ядро с образованием соответствующих полиметилбензолов и нафталинов различного изомерного состава. Те же цеолиты с катионами калия, рубидия и цезия селективно метилируют боковую цепь, и получаются соответствующие этил-и винилзамещенные ароматические углеводороды. Эта неизвестная ранее реакция может служить новым общим методом одностадийного получения этил- и винилзамещенных ароматических соединений путем конденсации метилзамещенных ароматических углеводородов и метанола. [c.14]

    Общая картина окисления ароматических углеводородов очень близка к тому, что было описано для олефинов атака боковой цепи в бензильном положении с образованием альдегида или кислоты происходит быстрее и легче, чем атака ядра, при которой образуются хиноидные соединения и продукты их разложения. Селективному окислению благоприятствуют те же слабые катализаторы (УгОа, М0О3, ШОз), в то время как сильные катализаторы (N10, МпОг) и металлы (Р1, N1, Аи) приводят к полному разложению до СО2 и СО. Каталитическое сгорание ароматических углеводородов, по-видимому, протекает легче, чем сгорание алканов, но медленнее, чем сгорание олефинов [5]. [c.173]

    Значительную часть авиационных бензинов также получают на базе катализатов риформинга. Кроме того, в товарную композицию, соответствующую бензину Б-91/115, входят дефицитные и дорогостоящие компоненты до 35% алкилата и до 13% ароматических углеводородов. Чтобы снизить себестоимость производства авиабензинов, необходимо разработать новые способы получения высокооктановых компонентов с пониженным содержанием ароматических углеводородов. В связи с этим была разработана технология получения бензина Б-91/115 на базе головной фракции катализата жесткого риформинга [121-124, 149-151]. По этой технологии из риформинга выделяют фракцию, выкипающую до 150 С, и подвергают ее гидрированию и гидроизомерезации с целью превращения избыточного количества ароматических углеводородов в нафтеновые. Затем для повышения сортности проводят процесс селективного гидрокрекинга парафиновых углеводородов нормального строения. Однако для реализации этой технологии требуется наличие свободной установки типа Л 35-5 [123 . [c.27]

    Уникальные свойства разработанного металлцеолитного катализатора, совмещающие в значительной степени свойства традиционных катагшзаторов риформинга и селективного гидрокрекинга, позволили по-новому подойти к рещению проблемы повышения октанового числа получаемых при каталитическом риформинге рафинатов. Использование в процессе каталитического риформинга металлцеолитного катализатора дает возможность получить рафинаты с октановым числом выше на 8-10 пунктов (для безолтолуольного рафината) и 15-17 пунктов (для ксилольного рафината) в сравнении с рафинатами, получаемыми на традиционных платиновых катализаторах риформинга. При этом выход ароматических углеводородов не только не уменьшается, но в большинстве случаев увеличивается на 10-20% [c.114]


Смотреть страницы где упоминается термин Селективность ароматических углеводородов: [c.189]    [c.7]    [c.478]    [c.111]    [c.14]    [c.230]    [c.261]    [c.356]    [c.97]    [c.160]    [c.112]   
Окисление углеводородов на гетерогенных катализаторах (1977) -- [ c.287 , c.288 ]




ПОИСК







© 2024 chem21.info Реклама на сайте