Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Элюирование комплексообразующе

    Ионный обмен как метод разделения. I. Выделение искусственных радиоизотопов, в том числе и индивидуальных редкоземельных элементов с помощью элюирования комплексообразо-вателями колонок из смолы амберлит [1884]. [c.313]

    На эффективность разделения компонентов в хроматографическом процессе влияет очень много факторов. Сорбент (твердый или жидкий) должен обладать определенной селективностью. Элюент должен быть инертным по отношению к компонентам и сорбенту, обладать малой вязкостью, обеспечивать высокую чувствительность детектора. При хроматографировании растворов часто применяют комплексообразующие вещества, которые способствуют разделению компонентов (разное вымывание компонентов с сорбента — изменяются константы Генри). Уменьшение скорости элюирования приближает процесс к равновесному и улучшает разделение компонентов. Если с увеличением длины колонки растет степень разделения, то увеличение ее диаметра приводит, как правило, к ухудшению разделения вследствие конвекционного перемешивания разделяемой смеси. [c.182]


    Фосфорная кислота образует довольно прочные комплексы с железом и алюминием и, следовательно, может применяться в качестве комплексообразующего элюента при отделении этих металлов от двузарядных ионов, в частности, от марганца и меди [29]. Высокой устойчивостью отличаются анионные комплексы с пирофосфатом и полиметафосфатом (ср. рис. 5,4) с их помощью некоторые элементы, например, медь, цинк и марганец, могут быть отделены от железа методом селективного поглощения. Железо, образующее прочные анионные комплексы, не поглощается катионитом, который лучше всего использовать в КН4-форме [34 80, 108, 109 ]. В качестве комплексообразователя для меди иногда используется несколько необычный элюент — раствор тиосульфата. А. М. Васильев, В. Ф. Торо-пова и А, А. Бусыгина [134 ] применяли раствор тиосульфата для отделения меди от цинка или кадмия, а Д. И. Рябчиков и В. П. Осипова [109 ] — для отделения меди от алюминия и магния. Коэффициенты распределения [59 ] определяют следующий порядок элюирования медь, кадмий, свинец, цинк. Такие элементы, как никель, кобальт, марганец, алюминий, железо, кальций и барий, весьма прочно удерживаются катионитом. [c.364]

    Ионообменная хроматография. С ее помощью можно отделять мешающие определению элементы или, наоборот, определяемые элементы при прохождении анализируемого раствора через ионообменную колонку. Если определяемый элемент затем выделить в небольшой объем растворителя, можно сконцентрировать следовые количества элемента до легко измеримых концентраций, и поэтому такой способ концентрирования приобретает все большее значение при анализе следовых количеств элементов. Четкость разделения элементов, сорбируемых ионообменной смолой, можно увеличить, применяя при элюировании комплексообразующие реагенты. Особенно эффективным вариантом метода является нспользование комплексообразующих ионообменных смол. Эти смолы содержат активные группы, способные к образованию специфичных комплексов с определяемыми ионами, которые задерживаются смолой. При этом происходит эффективное разделение. [c.421]

    При успешном элюировании в конце концов для всех зафиксированных комплексообразующих ионов металлов достигается состояние равновесия при данном значении DpH [рис. 15.1, (147) и (148)]. Это постоянство равновесия сохраняется лишь в зоне комплексов, вновь образующейся в условиях элюирования. Комплексообразующие ионы металлов, находясь в таком постоянном равновесии , перемещаются в виде целой зоны по колонке вниз. Процессы, происходящие внутри зоны комплексов в условиях определенного значения DpH и спо- [c.124]


    Выше было показано, что комплексообразующие реагенты можно применять для избирательного элюирования из хроматографических колонок отдельных ионов анализируемой смеси. [c.242]

    С аналитической точки зрения регулирование селективности смолы имеет важное значение. Наиболее удобным способом является введение комплексообразующих веществ в ионообменную систему (на стадии сорбции или элюирования). Поскольку ионогенные группы смол имеют различную селективность, подбором соответствующего агента можно легко разделить смеси ионов (либо селективной сорбцией, либо селективным элюированием). [c.27]

    Для полного превращения ионообменников в Н-форму из форм тех ионов, которые располагаются в ряду селективности после ионов Н +, необходим небольшой (по сравнению со стехиометрией) избыток сильной минеральной кислоты. Для других ионных форм требуется значительно больший избыток кислоты. Второй путь превращения смолы в Н-форму — предварительное элюирование катионов подходящим комплексообразующим веществом. [c.34]

    В отличие от катионообменников при разделении лантаноидов на анионообменниках органические хелатообразующие или комплексообразующие агенты не находят широкого применения. В большинстве случаев разделение соседних лантаноидов менее эффективно. По сравнению с катионообменниками наблюдается обратный порядок элюирования [32, 38, 39]. [c.203]

    Отделение -алюминия и железа. Отделение алюминия и железа от кальция возможно проводить тремя путями сорбцией их на катионите с последующим селективным элюированием сорбцией на катионите в присутствии комплексообразующих агентов для алюминия и железа, переводящих их в анионную форму сорбцией А1(1П) и Fe(III) на анионите в виде устойчивых анионных комплексов, кальций при этом всегда остается в фильтрате. [c.177]

    В экстракционной колоночной хроматографии неорганических веществ программирование состава подвижной фазы предполагает элюирование колонки элюентами, содержащими переменные концентрации реагентов, что и приводит к изменению коэффициента распределения экстрагируемого соединения. Изменения в коэффициентах распределения могут быть вызваны высаливанием, реагентами, которые взаимодействуют с экстрагентами, входящими в состав неподвижной фазы, окислительно-восстановительными и комплексообразующими реагентами. [c.89]

    В хлоридных растворах металлы платиновой группы образуют устойчивые хлорокомплексы, которые, как правило, не взаимодействуют с катионитами. Из перхлоратных растворов, в которых отсутствуют комплексообразующие лиганды (например, галогенид-ионы), большая часть платиновых металлов может быть поглощена количественно. Так, например, имеются сведения о полном поглощении палладия, родия, иридия [35] и рутения [2]. Количественное разделение палладия и родия легко осуществляется путем элюирования соляной кислотой. Палладий элюируется 0,ЗМ, а родий — 6А/ НС1 [17 ]. Во избежание трудностей, с которыми бывает связано-количественное извлечение родия, рекомендуется обработать ионит кипящей кислотой в течение нескольких часов [34]. [c.375]

    Ионнообменная хроматография. Метод состоит из двух последовательных операций 1) поглощение катионов из раствора в колонке, наполненной кусочками смолы, предварительно переведенной в Н" -, NHt-, Си +- или форму по мере продвижения раствора по колонке вниз катионы лантаноидов обмениваются с катионами смолы и сорбируются на поверхности по определенным зонам (в каждой из сорбционных зон содержится катион определенного лантаноида) 2) элюирование (вымывание) катионов лантаноидов растворами (элюентами) веществ, образующих комплексные соединения. При элюировании катионы лантаноидов вымываются в определенной последовательности. В качестве комплексообразующих веществ используются лимонная кислота, натриевые или аммонийные соли органических кислот — нитрилтриуксусиой (трилон А), этилендиаминтетрауксусной (трилон Б) и др. Вымывание производится элюентами с определенной концентрацией и при оптимальных значениях pH. [c.279]

    Однако возможности хроматографического метода не являются безграничными. В жидкостной хроматографии пользуются различными приемами для выделения чистых компонентов или хотя бы отдельных групп веществ из сложной смеси. В зависимости от разнообразия задач и способов ведения процесса эти приемы связаны, например, с разделением смеси электролит — неэлектролит на ионообменных адсорбентах, с разделением на группы веществ, с применением растворителей и элюирующих растворов для элюирования распределительной и первичной ионообменной хроматограммы, с заменой одних катионов и анионов на другие, с процессами в смешанном слое, с разделением сильных и слабых электролитов, с применением осадителей в колонках (осадочная хроматография), с применением комплексообразующих веществ для элюирования или для маскировки мешающих ионов и т. д. Все эти приемы неизбежно приводят к тому, что для получения чистого компонента из сложной смеси, как правило, требуется осуществить несколько стадий процесса. [c.99]


    Комплексообразующие агенты в хроматографии применяют главным образом при комплексообразовательном элюировании первичных ионообменных хроматограмм и в качестве хемосорбентов в осадочно-хроматографических колонках. В последнем случае их смещивают с инертным по отношению к реагирующим веществам и продуктам реакции носителем [1, 2], обеспечивающим достаточно быстрое и равномерное прохождение раствора через колонку. [c.355]

    В противоположность комплексообразовательному элюированию ионообменных хроматограмм 14], при разделении катионов металлов на адсорбционно-комплексообразовательной колонке, последовательность их попадания в фильтрат совпадает с рядом уменьшения констант нестойкости соединений этих металлов с комплексообразующим агентом. [c.359]

    Вариантом элюентного метода является промывание комплексообразователем (комплексообразующее элюирование), которое позволяет при меньшей длине колонки в ряде случаев достигнуть более полного разделения компонентов смеси. Более подробно этот вариант элюентного метода будет описан ниже. Этот метод наиболее применим для разделения радиоактивных изотопов. [c.216]

    Сначала вытекает чистый растворитель, затем наименее адсорбируемый компонент и т. д. Приведенный график позволяет провести качественный И количественный анализ смеси. Вытеснительное элюирование является, наряду с комплексообразующим, важнейшим способом разделения радиоактивных изотопов. На рис. 8.9 показаны схемы приборов для непрерывной регистрации активности элюата. [c.217]

    Значительно большая полнота разделения достигается при комплексообразующем элюировании. В этом случае десорбция производится раствором соединения, которое с катионом, поглощенным смолой, образует комплексный ион часто с противоположным [c.224]

    Возможно разделение урана, нептуния, плутония и продуктов деления хроматографией на катионитах и анионитах. Элюирование смеси с катионита осуществляется соляной, азотной или комплексообразующими органическими кислотами — лимонной, молочной, а-оксиизомасляной, этилендиаминтетрауксусной. Порядок десорбции ионов со смолы следующий М,е 0 ,Ме " 02 ,Ме , Ме . [c.464]

    Сначала вытекает чистый растворитель, затем наименее адсорбируемый компонент и т. д. Приведенный график позволяет провести качественный и количественный анализ смеси. Вытеснительное элюирование является, наряду с комплексообразующим, важнейшим способом разделения радиоактивных изотопов. [c.250]

    Высокое сродство поливалентных катионов к активным группам фосфорсодержащих сорбентов снижает скорости движения хроматографических зон и вызывает серьезные трудности при выборе регенерирующих растворов. Так, на фенолфосфатных смолах [1] при использовании теоретического количества элюеита полное элюирование достигают только для щелочных металлов для двухвалентных металлов регенерируемая емкость составляет 0,4 от исходной. Десорбцию урана и тория осуществляют лишь при использовании раствора карбоната аммония или комплексонов, образующих прочные комплексы с этими ионами [2]. Применение для элюирования комплексообразующих реагентов позволяет повысить эффективность регенерации [3], а в ряде случаев представляет единственную возможность полностью отмыть ионит от поглощенных катионов. Так, установлено, что наиболее эффективно десорбцию железа (П1) с фосфо-рилированной целлюлозой осуществляют при помощи растворов цитрата и оксалата аммония [4]. [c.81]

    Теоретическому обоснованию прогнозирования условий хроматографического разделения смесей редкоземельных элементов с применением комплексообразующего элюирования посвящено исследование А. М. Сорочан и М. М. Сенявина [45]. Они вывели уравнение, связывающее коэффициент распределения Кр с величинами, характеризующими процесс комплексообразующего вымывания, — константой обмена иона металла на водород /Сме.н и константой устойчивости несорбируемого комплекса Куст-Ме + + пкч- = [MeA ] -  [c.138]

    По уравнению (200) можно рассчитать относительную избирательность элюирования исследуемых ионов из осадочной хроматограммы с помощью комплексообразующих реагентов. Рассчитаем отношение ионов М " и (в виде их комплексов) в элюате при промывании осадочной хроматограммы С(1 (ОН)а и 2п (0Н)2 растворами K N и НзаЗаОз. Из справочной литературы находим  [c.240]

    Изучение воиросов, связанных с механизмом взаимодействия иоликомплексонов с катионами, кинетикой процесса, составом и стабильностью образуемых комплексов, осложнено трудностями в исследовании гетерогенных систем. Весьма успешно для этих целей применен ряд косвенных методов, основными из которых являются потенциометрическое титрование полимера в присутствии ионов металлов, определение значения pH, при котором наблюдается вымывание катиона из ионита, так называемое рН-декомплексование (О pH) изучение равновесных систем катион — поликомплексон — раствор мономерного лиганда элюирование катиона из ионита хелантами с различной комплексообразующей способностью, изотопный обмен [1, 167, 547, 548, 553—557]. [c.296]

    Разработан атомно-абсорбционный метод определения хрома и других элементов с предварительным их обогаш ением путем соосаждения с 8-оксихинолинатом кадмия в присутствии органических комплексообразующих веществ [789]. Микроколичества хрома в природных водах определяются после концентрирования Сг04 на анионите AG-1X4 и элюирования раствором, содержащим 30 мл i М Na l ж iO мл 0,5 М раствора соли Мора в 1 М НС1 [945]. Анализ фосфатных горных пород на содержание хрома проводится с предварительным отделением мешающих примесей на катионите Дауэкс-50 WX8 в Na -форме [803]. Сг(1П) окисляют до r(VI) раствор подщелачивают до pH 12 и пропускают через колонку. [c.94]

    Важным параметром при разделении лантаноидов является температура. Ее положительное или отрицательное влияние зависит как от природы комплексообразующего агента, так и от типа образующихся комплексов. Например, при использовании гликолевой кислоты в качестве элюирующего агента повышение температуры приводит к увеличению факторов разделения, Обратный эффект наблюдается в случае винной кислоты. В табл. 5.18 показано влияние температуры на факторы разделения пар лантаноидов при их элюировании молочной кислотой. [c.194]

    Отделение щелочноземельных металлов. Кальций отделяют от щелочноземельных металлов на ионитах в присутствии комплексообразующих агентов. Используют катиониты КУ-2, Дауэкс-50, Вофатиты в (Н+- или NH4-фopмe). Путем применения элю-ентов различных концентраций или растворов комплексообразующих агентов с различным pH достигается последовательное элюирование отдельных компонентов смеси. [c.175]

    Задача разделения решается разными путями 1) применением различных ионитов для сорбции определенных ионов 2) примене нием хроматографических методов при сорбции и элюированю для вытеснения менее прочно удерживаемых ионов 3) примене нием комплексообразующих реагентов для усиления различий прр сорбции и элюации отдельных ионов 4) применением различны) элюирующих реагентов для удаления отдельных ионов после коллективной сорбции. [c.116]

    Скогсайд [115] описал полистирольное производное, обладающее повышенным сродством к ионам калия. Многие исследователи пытались синтезировать иониты с хелатными свойствами. Среди ионитов этого типа, исследованных Грегором с сотрудниками [48], наиболее перспективным является ионит на основе ж-фениленди-глицина, формальдегида и вещества, образующего поперечные связи. Этот ионит обладает повышенной селективностью по отношению к ионам некоторых переходных элементов. Аналогичные иониты были получены Пеппером с сотрудниками [90] из хлорметилирован-ного сополимера стирола и дивинилбензола. Блазиус и Олбрих [6] получили смолу с хелатными свойствами поликонденсацией л-фени-лендиаминтетрауксусной кислоты с резорцином и формальдегидом. Емкость этого ионита около 0,5 мг-экв/г. Такие иониты использовались для аналитического отделения переходных металлов от щелочноземельных металлов. Сообщалось также об успешном разделении кобальта и никеля методом хроматографического элюирования. С помощью диаллилфосфатного комплексообразующего ионита, описанного Кеннеди с сотрудниками [66], удалось отделить бериллий от многовалентных катионов (гл. 15). [c.35]

    Разделение группы редкоземельных элементов удобнее всего производить методом комплексообразующей хррматографии. На рис. 7 показана хрол1атограмма разделения фракции редкоземельных элементов на ионите дауэкс-50 путем элюирования (при pH = 3,5) раствором лактата аммония [58]. [c.35]

    При разделении кислот с помощью элюирующих агентов, содержащих катионы, способные в определенной степени образовывать комплексы с разделяемыми кислотами, стремятся к увеличению скорости эксперимента. Самуэльсон [42] получил теоретические уравнения, в которых отражена зависимость поведения кислот при элюировании от величины комплексообразующих констант. В такой хроматографии центральный ион присутствует в значительной концентрации, в то время как лиганды встречаются только в следовых количествах, и, следовательно, использование выведенных уравнений совершенно не обосновано поэтому можно сделать лишь грубые количественные оценки. Вещества, которые образуют несорбирующиеся комплексы, например альдоновые кислоты, в элюате появляются быстро. Эти кислоты могут быть затем легко отделены от других кислот, например уроновых кислот, которые не образуют комплексы. Для различных кислот существуют значительные отличия в условиях элюирования. [c.171]

    Для элюирования альдоновых и уроновых кислот первоначально использовали 0,05 М раствор уксуснокислой меди (II) (см. также гл. 22). Альдоновые кислоты образовывали прочные комплексы, которые не сорбировались и, следовательно, легко элюировались. Уроновые кислоты элюировались значительно позднее. Следовательно, условия для группового разделения альдоновых и уроновых кислот и последующего выделения некоторых уроновых кислот являются благоприятными. Однако удовлетворительного разделения достигнуто не было, так как уроновые кислоты окислялись с одновременным образованием закиси меди [42, 43]. По этой причине Ларссон и сотр. [44] в качестве комплексообразующего агента использовали 0,05 М раствор ацетата цинка. Было достигнуто разделение галактоно-вой, молочной, галактуроновой, глюкуроновой, муравьиной и пировиноградной кислот на дауэксе-1 с диаметром частиц 40— 60 мкм, а смесь галактоновой, арабоновой, гликолевой, леву-линовой, глюкуроновой, глиоксиловой и муравьиной кислот хорошо разделялась на анионообменнике даже с более мелкими частицами (13—18 мк). Так как большинство кислот образуют несорбируемые комплексы с ионами Zn , то коэффициенты распределения были значительно ниже, чем в растворах ацетата натрия. Порядок элюирования дан при постоянстве констант комплексных соединений и селективности коэффициентов анионов, не образующих комплексные соединения. Коэффициенты разделения некоторых кислот отличались до некоторой степени на обеих колонках с разными размерами частиц ионообменников [c.171]

    Ионообменные смолы в органической среде ведут себя как адсорбенты кислотного или основного характера. Как известно, на них происходит как физическая, так и химическая адсорбция. Например, на ацетатной форме амберлита А-29 происходит физическая адсорб-шя полярных соединений типа пиррола и фенола из растворов углеводородов. Эти растворенные вешества могут быть вымыты со смолы полярными растворителями, такими, как пиридин или метанол. Кислоты на этой смоле хемосорбируются, и для их элюирования требуются кислотные растворители. Б свою очередь сильнокислотный катионит амберлит А-15 хемосорбирует азотистые основания из растворов в углеводородах, а десорбировать их можно, только используя растворители основного характера. Селективность смолы можно значительно повысить, если использовать форму, в которой она будет образовывать комплекс (лиганд) с растворенным веществом /36/. Например, катиониты в Ag+., Си или формах используют для разделения аминов и карбоксильных кислот, Ag форму используют также для отделения соединений с двойными олефиновыми связями. Элюирование проводят агентом, комплексообразующие свойства которого слабее, чем у веществ, которые надо разделить. Вытесняющее проявление выполняется с помощью реагента с более сильными комплек-сообразуюшими свойствами. [c.87]

    Среди органических реагентов имеется широкий выбор комплексообразующих агентов, пригодных для онообменных способов разделения. Обычно в разных аналитических методах применяются маскирующие агенты. Например, окоалат может быть использован для селективного элюирования из катионита ТН, ЫЬ и Та, а тартрат —для элюирования ионов редкоземельных и щелочноземельных металлов вместе с железом и алюминием с др угой стороны, цирконий в этой среде может сорбироваться на анионо-обменнике. Сурьма и олово элюируются из катионита тартратом,. а щелочные и щелочноземельные металлы — а- ок сиизомасля ной. кислотой [52, 53], Ре, Т1 и Л1 — тироном [54]. Некоторые из этих реагентов позволяют добиться высокоселективного разделения. Например, титан можно в присутствии аскорбиновой кислоты сорбировать яа анионите и отделить от Ре, Сг и N1 [55]. Для селективного элюирования кобальта яз смеси Со, Мп и Ре, сорбированной на катионите, пригодна нитрозо-К-соль [56]. [c.257]

    Условием применения комплексообразовательного элюирования является более или менее значительная растворимость соответствующего реагента наоборот, условием применения адсорбционно-комплексообрази вательных колонок является малая растворимость реагента и, для большинства целей, хорошая сорбируемость его на носителе, благодаря чему реагент остается в колонке, не загрязняя раствор. Если комплексообразовательное элюирование является вторичной операцией, следующей за получением первичной хроматограммы, то адсорбционно-комплексообразовательное хроматографическое разделение осуществляется в результате применения охшого лишь приема — фильтрации раствора разделяемых веществ через колонку. Эти особенности описываемого метода делают его весьма удобным, в частности, для отделения больших количеств солей от металлов, находящихся в растворе в небольших концентрациях. [c.360]

    Использование катионного обмена затрудняется тем, что даже с применением комплексообразующих элюентов не удается полностью отделить актиноиды от лантаноидов. Поэтому оказалось целесообразным сначала разделить группы лантаноидов и актиноидов элюированием с катионита 13,5 М НС1, которая раньше вымывает актиноиды, образующие с НС1 более устойчивые комплексы. Затем можно применить хроматографирование на катионите, элюируя актиноиды одним из комплексообразователей, которые могут быть расположены в следующий ряд по селективности разделения а-оксиизобутират > ЭДТА > лактат = гликолят > малонат > цитрат. Ионообменные методы применимы, главным образом, для отделения индикаторных количеств америция. [c.403]

    При выборе соответствующей формы комплексных соединений с помощью ионообменников возможно провести также групповое отделение нескольких элементов. Кроме уже упомянутых хлорид-ных комплексов, устойчивость которых хорошо коррелирует с концентрацией хлористоводородной кислоты и которые подходят для селективного разделения, процессы ионного обмена могут контролироваться с помощью различных органических комплексообразующих реагентов (лимонная и винная кислоты, ЭДТА и т. д.). Сильноосновные анионообменные колонки, насыщенные комплексными анионами этого типа, пригодны для одновременного выделения различных групп катионов. Колонки с анионами, образующими осадок (хлориды, сульфиды, карбонаты и т. д.), также использовались для разделения некоторых групп катионов. Как следует из приведенных примеров, селективное элюирование пригодно для разделения отдельных ионов. В общем случае на определение примесей спектральными методами не оказывает влияние неполнота отделения мешающего элемента, которая возможна из-за недостаточно благоприятных условий взаимодействия раствора со смолой. Для большинства спектральных методик нет необходимости использовать ионный обмен для полного отделения ионов одного типа, т. е. селективную хроматографию при ионном обмене. Вполне достаточно воспроизводимо концентрировать определенную группу следов примесей или удалять основную часть мешающего элемента. [c.70]


Смотреть страницы где упоминается термин Элюирование комплексообразующе: [c.1160]    [c.324]    [c.201]    [c.105]    [c.971]    [c.12]    [c.43]    [c.495]    [c.224]    [c.568]    [c.190]   
Радиохимия (1972) -- [ c.216 ]




ПОИСК





Смотрите так же термины и статьи:

Элюирование



© 2025 chem21.info Реклама на сайте