Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Иониты слабокислотные

    Для аналитических работ полную обменную емкость ионита можно не использовать, так как количественный обмен На+ на Н+ происходит даже тогда, когда в ионите еще находится некоторый избыток ионов Н+. Поэтому вводят понятие полезная обменная емкость . Она составляет 60—75% общей обменной емкости, и ее можно определить как количество ионов, поглощаемых ионитом при постоянной скорости потока жидкости до проскока ионов. Из всего сказанного ясно, что слабокислотные катиониты обладают наибольшей полезной обменной емкостью в щелочных средах, а слабоосновные аниониты — в кислых. Полезная обменная емкость сильнокислотных или соответственно сильноосновных ионитов не зависит от pH в широкой области значений. [c.248]


    ОН. В это(М случае ири Рис. 61. Влияние концентрации кислоты иа НИЗКИХ значениях pH дис-ионную атмосферу социация слабокислотных [c.196]

    Сопоставим силу ионитов на примере титрования ряда ионитов в воде растворами гидроокиси лития и растворами метилата, этилата и бутилата лития в безводных спиртах. Результаты титрования показали, что снижение основности при этом не оказывает заметного влияния на силу сульфо-катионитов и значительно уменьшает силу катионитов, содержащих ОН" и СООН-группы. В соответствии с этим и изменение основности в ряду растворителей одной природы должно оказывать заметное влияние на положение ионообменного равновесия лишь при обмене на слабокислотных иони- [c.368]

    Такое явление наблюдается при замене ионов водорода на ионы металла на слабокислотных карбоксильных ионитах или на поверхности стекла. [c.373]

    Слабокислотные катиониты, содержащие слабодиссоциирующие кислотные группы (—СООН, —ОН и др.), способны обменивать ионы при pH >7 (КБ-2, КБ-4 и др.). [c.285]

    Соли, образованные катионами слабых оснований (кроме катиона МНд ) и анионами слабых кислот, например сульфиды и ортофосфаты, малорастворимы в воде и обсуждать их гидролиз не имеет смысла. Наоборот, некоторые фториды и ацетаты этих катионов хорошо растворимы в воде, они гидролизуются (в разной степени) по катиону и аниону среда раствора определяется тем ионом соли, у которого степень гидролиза выше (в большинстве случаев выше степень гидролиза катионов и среда раствора слабокислотная). [c.71]

    Если перманганат-ион МпО используется как окислитель в слабокислотной или в слабощелочной среде, то уравнениями полуреакций восстановления будут  [c.82]

    Для любого типа кислотной и основной ионогенной группы характерна определенная энергия связи между фиксированным ионом и различными противоионами. Поэтому для каждого ионита можно установить определенную последовательность ионов (противоионов) по возрастанию энергии связи, в которой последующий ион, в условиях равной концентрации, может вытеснять предыдущий. Для большинства ионитов установлены подобные ряды, характеризующие относительную сорбируемость той или другой пары ионов. Ионитовые смолы, обладающие слабокислотными или слабоосновными группами, отличаются большей избирательностью в ионообменных процессах. [c.59]

    В ионообменных процессах слабокислотные катиониты применяются в солевой форме, когда они практически полностью ионизированы. При этом замещение однозарядного противоиона на многозарядный происходит в нейтральной и даже в слабокислой среде с достаточно большой скоростью (в течение нескольких минут). Применение карбоксильных и других слабокислотных катионитов в водородной форме нецелесообразно, так как исключается возможность ионного обмена в слабокислой среде, а в нейтральной среде ионообменное равновесие устанавливается крайне медленно [c.65]


    Выбор метода определения обменной емкости в статических или в динамических условиях зависит от природы ионита, условий опыта (pH, состав раствора и др.). Наиболее полную качественную характеристику ионогенных групп, присутствующих в ионите, дает метод потенциометрического титрования в статических условиях определения обменной емкости [44]. Для сильнокислотных и сильноосновных ионитов рабочая емкость практически всегда совпадает с полной обменной емкостью, равной количеству функциональных групп в единице массы или объема смолы. Величина же рабочей емкости слабокислотных или слабоосновных ионитов в очень.значительной степени определяется концентрацией ионов водорода и других ионов (противоионов) в растворз[37]. [c.75]

    Слабокислотные карбоксильные катиониты и слабоосновные аниониты сжимаются при замене ионов Н" " или 0Н другими ионами, поэтому скорость обмена на таких [c.178]

    Поляризация молекул воды положительным ионом Э выражается в их ориентации и затем деформации. Если основное значение имеет первый фактор, число поляризованных ионов Э молекул воды должно быть тем больше, чем выше его заряд. По аналогии с гидроксидами металлов в этом случае можно ожидать, что пяти-, шести- и семивалентные Э дадут гидраты состава соответственно Э(ОН)5, Э(ОН)б, Э(0Н)7 и притом лишь со слабокислотными свойствами. Напротив, при преобладающем значении второго фактора число притянутых молекул воды должно быть минимальным, деформация же их, а следовательно, и кислотность ЭОН —сильно выраженной. [c.431]

    Емкость сильнокислотных и сильноосновных ионитов не зависит от pH среды, в которой проходит ионный обмен. Для слабокислотных и слабоосновных ионитов емкость сильно зависит от pH раствора, [c.606]

    К слабокислотным катионитам относятся структурированные полиакрилаты с карбоксильной группой. С помощью катионитов из воды извлекают ионы железа, меди, магния, никеля, NH4 и т. д. [c.125]

    Определение содержания сульфат-иона (5042 ) проводится по различным методикам. В промысловой практике наиболее часто используют массовый метод, суть которого заключается в том, что при реакции сульфат-ионов с хлористым барием в слабокислотной среде образуется нерастворимый осадок сульфата бария  [c.92]

    Для разделения катионов используют катиониты, для разделения анионов - аниониты (см. Иониты). Элюентом в первом случае служит р-р кислоты, во втором-р-р щелочи. Разделение ионов регулируют подбором оптим. значений pH элюента. Сильнокислотные сульфокатиониты н высокоосновные аниониты могут использоваться при любых значениях pH, слабокислотные карбоксильные катиониты - только при pH > 6 слабоосновные аниониты находятся в ионизованном состоянии при pH < 8. Варьируя pH элюента, можно резко изменять степень ионизации компонентов разделяемой смеси (сорбатов) и, следовательно, время их удерживания, добиваясь необходимой селективности разделения. [c.263]

    Окисление азотной кислотой полисульфостирольного ионита КУ-2 не приводит к появлению слабокислотных групп [26]. Интересно отметить, что, помимо карбоксильных групп, в ионитах рассматриваемого типа в заметных количествах присутствуют и более слабокислотные группы с рК 9.5, природа которых пока еще не установлена [26]. По своим свойствам эти группы близки к фенольным, хотя скорее всего это другие группы. Возможно, что при низких температурах сульфирования или иных мерах предосторожности можно свести до минимума процессы окисления сополимеров и таким путем избежать появления в ионите слабокислотных групп. Однако это не кажется необходимым, поскольку с присутствием с.лабокислотных групп в молекулах ионитов, по-видимому, связаны их избирательные свойства. По всей вероятности, указанные группы возникают в бутадиеновых звеньях. В ионите КУ-2, где мостикообразующим компонен- [c.23]

    Полагая, что причиной разложения дифенилолпропана является присутствие в нем ничтожных примесей щелочных или кислотных агентов, а также иона железа, фирма Farbenfabriken Bayer предложила для повышения теплостойкости дифенилолпропана вводить нейтральные, амфотерные или слабокислотные добавки или вещества, способные образовывать комплексы с ионами железа и других металлов. В числе таких добавок названы вторичные или третичные [c.130]

    С повышением степени декатионирования сначала образуются слабокислотн ле центры, а затем интенсивно возрастает число сильнокислотных центров. Слабая кислотность составляет 30% (отн.) от общего количества и обусловлена ионами алюминия, легко выводимыми из структуры при деалюминировании. [c.105]

    Прочность межфазной пленки на границе раздела нефть — вода зависит не только от состава и свойств содержащихся в нефти эмульгаторов, но и от pH водной фазы. Обычно в водной фазе нефтяной эмульсии содержатся ионы соединений, которые оказьшают влияние на свойства адсорбированной пленки. Для каждой системы сырая нефть - вода существует оптимальный интервал pH, в пределах которого адсорбционный слой проявляет минимальные стабилизирующие свойства. Влияние pH водной фазы на прочность межфазной пленки объясняется тем, что полярные фракции нефти содержат кислотные и основные группы, а следовательно, pH водной фазы влияет как иа количество, так и на тип веществ, образующих межфазную пленку. Исследования позволили установить, что жесткие межфазные пленки, образованные асфалыенами, более прочны в кислой среде, менее в нейтральной и становятся очень слабыми или превращаются в подвижные пленки в щелочной среде. Асфальтены обладают как кислотными, так и основными свойствами в кислой среде они проявляют основные свойства, в щелочной - слабокислотные. Эмульгирующие свойства асфальтенов выше в кислой среде, а смол — в щелочной среде, поэтому прочность эмульсий, стаоилизированных одновременно смолами и асфальтенами изменяется в зависимости от pH водной фазы. [c.25]


    По степени ионизации ионогенных групп катионообменники подразделяют на сильно- и слабокислотные, анионообменники— на сильно- и слабоосновные. Высокоионизированные сильнокислотные катионообменники, содержащие, например, группу —50зН, обладают способностью к обмену ионов водорода на ион металла в интервале изменения pH от О до 14. Слабокислотные катионообменники с ионогенными группами —Р0(0Н)2, —СООН депротонируются, а следовательно, способны к обмену ионов водорода в нейтральной и щелочной средах. Сильноосновные анионообменники, содержащие четвертичные аммониевые группы =Ы+ОН, обменивают ион гидроксида на ионы того же знака в интервале pH от О до 14. Слабоионизированные смолы, низкая основность которых обусловлена различными аминными группами (—ЫНз, =НН, =N), применяют в нейтральных и кислых растворах. [c.224]

    Если ионы имеют разные по величине заряды, то действует правило электроселектианости, в соответствии с которым из разбавленных растворов ионит предпочтительнее поглощает противоионы с большим зарядом. Например, для ионов одинакового размера сорбируемость увеличивается в ряду Na+< a +ионную пару образует фиксированный ион (на матрице) с проти-воионом (чем больше химическое сродство), тем выше селективность ионита к данному противоиону. Например, слабокислотные катиониты имеют специфическое сродство к Н+-ионам и поэтому сорбируют их сильнее, чем щелочные ионы (в противоположность сильнокислотным катионитам). Иониты специфического действия получают путем введения в них соответствующих активных групп. Например, иониты, содержащие группы SH, селективно сорбируют ноны, образующие нерастворимые сульфиды. С введением группы [c.171]

    Сильнокислотные катиониты вступают в реакцию ионного обмена с растворенными в воде солями в нейтральной и кислой средах (сульфо- и фосфорнокислые катиониты). Слабокислотные катиониты, содержащие карбоксильные или оксифенольные группы, обменивают свой протон в нейтральных растворах лишь на катиониты солей слабых кислот, причем полнота обмена возрастает с повышением pH среды. [c.192]

    В зависимости от величины константы диссоциации катионита в водородной форме различают сильнокислотные и слабокислотные образцы. То же относится и к анионитам смолы с ионогенной группой =N—ОН, практически полностью диссоциированные при всех условиях, относятся к сильноосновным. Слабоосновные аниониты с первичной (R—NH2), вторичной (R=NH) и третичной (=N) аминогруппой применяются в кислой и нейтральной средах только в солевой форме, например R—NH3 I (см. табл. 2), так как в щелочной среде они не диссоциируют на ионы  [c.54]

    Набухание зависит также от природы противоиона и фиксированного иона. Сильногидратирующиеся противоионы вызывают большее набухание, чем слабогидратирующиеся. Слабокислотные (слабоосновные) иониты в Н- (ОН-) форме почти не набухают по сравнению с сильнокислотными (сильноосновными) ионитами, но при переводе в хорошо диссоциированную солевую форму их объем увеличивается (иногда в 3—4 раза) пропорционально степени нейтрализации и в соответствии с содержанием сшивающего агента. [c.669]

    В динамических условиях (при непрерывном протоке раствора через определенное количество ионита) определяют динамическую обменную емкость до проскока (ДОЕ), до полной отработки ионита (ПДОЕ) и равновесную динамическую обменную емкость (РДОЕ). Емкость до проскока, т. е. до появления поглощаемого иона в растворе, вытекающем из слоя ионита, определяется не только свойствами ионита, но зависит от состава исходного раствора и скорости его пропускания, от высоты (длины) слоя ионита и степени его регенерации. Обычно ДОЕ превышает 50 % от ПДОЕ для сильнокислотных и сильноосновных ионитов и 80% для слабокислотных и слабоосновных. [c.301]

    Производимые в Советском Союзе (ГОСТ 20298—74, ГОСТ 20301—74) сильнокислотные катиониты КУ-2-8, КУ-2-20, КУ-23 получают сульфированием сополимера стирола с дивинилбензолом. Они содержат ионообменные сульфогруппы и выпускаются в водородной или солевой форме. Слабокислотные катиониты КБ-2, КБ-2-4, КБ-4 и их аналоги получают сополимеризацией метакрилата с дивинилбензолом и последующим омылением эфирных групп. Они содержат карбоксильные ионо-гепные группы в натриевой форме. Сильнокислотный катионит К-1, получаемый конденсацией сульфированного фенола с формальдегидом, содержит два типа функциональных групп — сульфогруппы и фенольные остатки. [c.303]

    Ион Н+ не занимает определенного места в ряду. Для почв, грунтов и многих других объектов он стоит перед А1 +, тогда как для других ионитов он располагается в конце ряда. Эти особые свойства Н+ связаны со степенью диссоциации кислот, образующих фиксированные анионы. В почвах, грунтах (а также в белковых и многих других объектах) обменный комплекс образуется в результате диссоциации слабых кислот (поликремниевых, гуми-новых), характеризующихся прочной связью кислотного остатка с Н+ (водородпсч связью). В то же время соли этих кислот обычна хорощо диссоциированы. Поэтому Н+ вытесняет легко все остальные катионы из внешней обкладки и в почвах (при pH = 6,5) занимает около половины мест в обменном комплексе. Такая же прочная связь присуща и слабокислотным (карбоксильным) высокомолекулярным ионитам, тогда как для ионитов сильнокислотного типа (с фиксированными ионами, образованными сильными кислотами, например, RSO3H) Н+ не обладает высокой энергией связи и расположен в конце ряда среди одновалентных катионов. [c.187]

    Иониты — нерастворимые в воде высокомолекулярные соединения, содержащие в молекулах группы атомов, способные образовывать ионы. Иониты, вступающие в ионообменные реакции с катионами, называются катионитами. Они содержат в своем составе группы —ЗОзН (сильнокислотные) или —СООН (слабокислотные). К первым, например, относятся катиониты КУ-1 и КУ-2. КУ-1 выпускается в виде черного зернистого материала. Получается он поликонденсацией парафенолсульфокис-лоты с формальдегидом. КУ-2 получают сополимериза-циен стирола с дивинилбензолом и последующей обработкой сополимера хлорсульфоновой кислотой ЗОгОНСК Смола КУ-2 имеет вид светло-желтых гранул, механически более прочная и более устойчива к кислотам, щелочам и окислителям, чем КУ-1, поэтому часто применяется в водоочистке. Оба катионита вступают в обмен с катионами солей, находящихся даже в кислых водных растворах и тем более в нейтральных и щелочных. Слабокис- [c.331]

    Ионогеиные группы сильнокислотных катионитов и сильноосновных анионитов всегда диссоциированы и способны вступать в И. о. при любых значениях pH. Слабокислотные катиониты работают лишь в нейтр. и щел. средах, слабоосновные аниониты — в нейтр. и кислых. В этих условиях их обменная емкость также приближается к полной обменной емкости , определяемой числом ммоль ионогенных групп, содержащихся в 1 г сухого ионита. Кроме диссоциации ионогенных групп, необходимым условием И. о. является достаточная проницаемость фазы ионита. Обменивающиеся ионы транспортируются свободной водой, не входящей в гидратную оболочку фиксированных ионов. Кол-во такой воды в ионите падает с ростом степени сшивки каркаса, уменьшением числа и степени диссоциации ионогенных групп, ростом конц. внеш. р-ра. [c.226]

    Сильнокислотные катиониты позволяют проводить ионный обмен в щелочной, кислой и нейтральной средах, а слабокислотные и смешанного типа — только в щелочных и нейтральных растворах. Это утверждение справедливо для процессов чистого ионообмена, когда же имеют место процессы комплексообразования, то это правило может нарушаться. Так, слабокислотный катионит СГ-1 извлекает ионы урана из слабокислых растворов. К сильнокислотным катионитам относится выпускаемый в Советском Союзе катионит КУ-2, представляющий собой продукт сульфирования сополимеров стирола и дивинил-бензола. Катионит КУ-2 кроме высокой емкости обладает повышенной стойкостью в кислой и щелочной средах даже при температуре около 100° С, поэтому его следует применять на байпасных установках очистки вод I контура ядерных реакторов. Этот катионит выпускается и ядерного класса — КУ-2-8 чс. Кроме того, выпускаются катиониты марок СВС-1, СВС-3, СДВ, СДФ и др. За рубежом выпускаются сильнокислотные катиониты С-50-А, аллассион S (Франция), леватиты PN, KSN (ФРГ), IR-400, амберлит-200, дауэкс-50 (США). [c.141]

    По знаку заряда обменивающихся ионов различают катионообменные смолы, анионообменные смолы и амфотерные ионообменные смолы (содержат одновременно кислотные и основные группы) к специфич. группе относят селективные ионообменные смолы, содержащие комплексообра-зующие группы, и окислительно-восстановительные ионообменные смолы, способные к изменению зарядов ионов. Ионогенные группы в И. с. могут быть одного типа (монофункциональные смолы) или разного (полифуикциональные смолы) известны, напр., катионообменные смолы, содержащие группы СООН и 80 зН. В зависимости от способности ионогенных групп к диссоциации различают сильно-, средне- и слабокислотные (или основные) И. с. Два последних типа И. с. ионизируются только соотв. в щелочных и кислых средах (см. табл.). [c.264]

    Константы ионизации карбоксильных групп слабокислотного катионита КБ-4 находятся в пределах Ю —10 . Следовательно при pH 4—6 лишь половина функциональных групп смолы ионизирована, а практически полная обменная емкость катионита может быть использована лишь при рН>7. Слабокислотные же смолы отличаются высокой избирательностью поглощения мпогозарядных катионов и используются преимущественно для умягчения воды, т. е. для обмена ионов Ыа+ на катионы и Мд2+. [c.205]

    Разделение катионов щелочноземельных и щелочных металлов достигается легко как на сильнокислотных, так и на ела-бокислотных катионитах, однако сильнокислотные катиониты о системе обсссолипаиия воды позволяют в результате обмена иа Н+ Ионы осуществлять глубокое извлечение катионов металлов из воды, содержащей соли сильных и слабых кислот, тогда как слабокислотные смолы пригодны лишь для умягчения воды. Регенерация сильнокислотных сульфокатионитов также проще, чем регенерация слабокислотных карбоксильных катионитов, которые приходится сперва обрабатывать кислотой, а затем щелочью или содой, чтобы перевести в рабочую Ыа+-форму. [c.214]


Смотреть страницы где упоминается термин Иониты слабокислотные: [c.39]    [c.245]    [c.376]    [c.695]    [c.301]    [c.82]    [c.267]    [c.282]    [c.227]    [c.99]    [c.206]    [c.206]   
Равновесие и кинетика ионного обмена (1970) -- [ c.125 ]




ПОИСК





Смотрите так же термины и статьи:

Равновесие ионного обмена на слабокислотных катионитах



© 2025 chem21.info Реклама на сайте