Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Монокристаллы выращивание из пара

    Более простой способ получения монокристаллов — выращивание из-под слоя [130] расплавленного борного ангидрида толщиной 10 мм. Флюс прозрачен и позволяет вести наблюдение за процессом роста. Чтобы не прорвались пары мышьяка через слой флюса, в камере поддерживается давление инертного газа 1,5 атм. В этом случае можно использовать обычные установки для вытягивания, применяемые для получения монокристаллов германия (см. И том). [c.273]


    ВЫРАЩИВАНИЕ МОНОКРИСТАЛЛОВ ИЗ ПАРА [c.450]

    А. Выращивание монокристаллов из пара вещества основного состава. Тип 01 [c.450]

Рис. VI.50. Схемы для выращивания монокристаллов из пара Рис. VI.50. Схемы для <a href="/info/471611">выращивания монокристаллов</a> из пара
    Выращивание монокристаллов из пара [c.618]

    А. ВЫРАЩИВАНИЕ МОНОКРИСТАЛЛОВ ИЗ ПАРА ВЕЩЕСТВА ОСНОВНОГО СОСТАВА. ТИП GI [c.619]

    Если тщательно контролировать условия роста, то можно получить монокристаллические слои весьма высокого качества. В этом отношении методы выращивания кристаллов из пара имеют ряд преимуществ перед методами выращивания из расплава. Здесь нет необходимости соблюдать столь строгий температурный режим. Механическое движение частей аппаратуры, вследствие чего часто получаются монокристаллы с искаженной решеткой, при выращивании из пара вообще ненужно. Уменьшить же количество дефектов, наследуемых из подложки, можно тщательной обработкой ее поверхности. В связи с этим особое значение приобретают методы очистки, шлифовки и полирования поверхности подложки. [c.140]

    На рис. 86 изображена схема установки для выращивания монокристаллов халькогенидов кадмия. Аргон впускают через отверстие Он увлекает пары кадмия, нагреваемого до Та в лодочке Л, в зону Д, где температура достигает / -1000°С и где пары кадмия вступают во [c.266]

    Зонную плавку этих соединений, как и выращивание их монокристаллов вытягиванием по Чохральскому, чтобы они не диссоциировали, следует проводить под давлением паров летучего компонента. Давление создают так же, как описано выше либо регулированием температуры печи, либо количеством загружаемого летучего компонента. Схема зонной плавки по двухзонному и трехзонному методам показана на рис. 56, б. В обоих случаях температура второй зоны должна быть выше температуры конденсации паров летучего компонента. [c.271]

    Монокристаллы, обладающие заданной кристаллографической ориентацией, получают по методу вытягивания. На рис. 57 приведена схема одного из типов применяемых для этой цели установок. В ней весь процесс вытягивания происходит в запаянной кварцевой ампуле. Шток с затравкой перемещается магнитным приводом 1127]. В таких установках получаются наиболее высококачественные кристаллы. Но удобнее в работе и более производительны разборные установки. В приборах с шприцевым уплотнением шток с затравкой соединен с кварцевым поршнем, хорошо пришлифованным к внутренним стенкам камеры, в которой происходит выращивание. В другом типе разборных установок для противодействия диффузии паров мышьяка через затвор создается внешнее давление инертного газа (аргона), что сводит потери мышьяка к минимуму (2—4 г за процесс). Нужное давление паров мышьяка в этих установках поддерживается двух- или трехзонным методом. [c.273]


    Для выращивания монокристаллов П.м. также широко используют методы направленной и зонной кристаллизации расплава в контейнере. В случае разлагающихся соед. для получения монокристаллов требуемого стехиометрич. состава процесс проводят в запаянных кварцевых ампулах, поддерживая равновесное давление паров летучего компонента над расплавом часто для этого требуются камеры высокого давления, в к-рых поддерживается противодавление инертного газа. При получении монокристаллов необходимой кристаллографич. ориентации используют ориентированные соответствующим образом монокристаллич. затравки. [c.60]

    Кристаллизацией называют процесс образования твердой фазы в виде кристаллов из раствора и расплавов, а также из газов и паров. Кристаллизация широко применяется в химической, нефтехимической, металлургической, медицинской, пищевой и других отраслях промышленности для решения следующих задач выделения кристаллической фазы из растворов и расплавов, разделения смесей при однократной или многократной частичной кристаллизации, глубокой очистки веществ от примесей, выращивания монокристаллов. Получение большого количества кристаллов в промышленном масштабе называют массовой кристаллизацией. В результате проведения массовой кристаллизации получают сыпучий продукт-кристаллы различного размера. [c.290]

    Выращивание кристаллов из пара обычно включает в себя транспортировку пара из зоны, содержащей твердое питающее вещество при температуре 1, ко второй зоне — зоне роста кристалла, имеющей температуру 2, причем последняя несколько ниже, чем tl, разность температур создает такое пересыщение, которое при соответствующем контроле может привести к образованию хороших зародышей кристаллов и обеспечить их дальнейший рост. Выращивание из паровой фазы для приготовления больших монокристаллов применяется гораздо реже, чем выращивание из расплавов и растворов. Поэтому экспериментальная методика выращивания кристаллов из пара не так хорошо разработана и, пожалуй, не так хорошо изучена, как методика выращивания из расплава или из раствора. Однако это не должно обескураживать экспериментатора, особенно потому, что именно из паровой фазы были получены почти совершенные органические кристаллы, практически свободные от дефектов [78]. Более того, благодаря возможности выращивания в вакууме или в атмосфере инертного газа при отсутствии жидких растворителей можно приготовить кристаллы, свободные от нелетучих примесей. [c.218]

    Возможны два способа выращивания монокристаллов из газовой фазы. Во-первых, это выращивание кристаллов из пересыщенных паров того же химического состава, что и кристалл, и, во-вторых, получение кристалла в результате химической реакции. Процесс можно проводить как в замкнутой системе, так и в потоке. [c.204]

    Выращивание кристаллов путем конденсации паров предполагает наличие температурного градиента между источником пара, имеющего обычно более высокую температуру, и пространством, где происходит рост кристаллов. Температуры источника паров и кристалла являются важнейшими параметрами процесса роста, и скорость роста, которая определяется степенью пересыщения, можно легко контролировать путем подбора этих температур. Рост кристаллов происходит с заметной скоростью при степени пересыщения порядка 0,1% в то время как, согласно теории образования ядер, степень пересыщения должна была бы составлять несколько десятков процентов. Как уже говорилось, такое несоответствие объясняется наличием винтовых дислокаций или других дефектов на поверхности кристалла. Этим методом можно просто и эффективно выращивать монокристаллы многих металлов, неорганических и органических соединений. [c.204]

    МОНОКРИСТАЛЛОВ ВЫРАЩИВАНИЕ, проводят разл. методами, обеспечивающими получение индивидуальных кристаллов заданного размера, формы и дефектности. При М. в. заранее полученные мелкие кристаллы (затравку) помещают в пересыщ. среду (пар, р-р, расплав, твердое в-во) и выдерживают там до укрупнения затравки. Пересыщение и т-ру среды поддерживают такими, чтобы затравка росла со скоростью 10" -10 мм/с без спонтанного образования центров кристаллизации с сохранением морфологич. устойчивости (см. Кристаллизация). Монокристалличность вы  [c.131]

    Важными этапами в развитии X. т. т. явилось создание совр. методов выращивания монокристаллов больших размеров (см. Монокристаллов выращивание) из расплава, из перегретых водных р-ров (см. Гидротермальные процессы), разработка процесса выращивания по механизму пар - жидкость -кристалл, методов зонной плавки кристаллов, методов управления св-вами кристалла путем наложения при его выращивании магнитных и электрич. полей. Значительное месго в Х.т.т. занимает получение и исследование св-в пленок и покрьттий. [c.262]

    МОНОКРИСТАЛЛОВ ВЫРАЩИВАНИЕ, производят из пара, р-ра, расплава или тв. фазы. Пр И М. в. из пара кристаллизующееся в-во возгоняется, его пары переносятся газом-носителем или диффундируют в зону роста, где конденсируются на затравочном кристалле, охлажденном относительно источника паров. Возможен также перенос в зону роста не паров кристаллизующегося в-ва, а газообразных продуктов р-ции этого в-ва с к.-л. другим, с послед, разложением продуктов на нагретой затравке и выделением исходного в-ва (метод хим. транспорта). Иногда в источник паров вводят в-во, пары к-рого разлг1гаются на затравке с образованием кристаллизующегося в-ва, или реагенты, образующие на затравке кристаллизующееся в-во (метод хим. кристаллизации). [c.352]


    При М. в. из р-ра для поддержания пересыщения среды испаряют р-ритель, охлаждают р-р или подпитывают его. Если кристаллизующееся в-во имеет модификации с повыш. растворимостью, их используют для подпитки р-ра напр., прй выращивании алмаза р-р подпитывают графитом. В методе зонного растворения затравка и поликристаллич. в-во, подпитывающее р-р, разделены тонким слоем р-ра, к-рый поддерживаю - при более высокой т-ре этот слой р-ра пере-мещдется из-за растворения поликристаллич. в-ва и роста монокристалла. Выращивание кристаллич. нитей проводят т, н. ПЖТ-методом, при к-ром затравку вводят в пересыщенный пар и наносят на ее пов-сть капли р-ра, из к-рого кристаллизация идет быстрее, чем из пара в результате капли (Ж) захватывают кристаллизующееся в-во из пара (П) и передают его затравке (Т), [c.352]

    Лабораторные приборы по выращиванию монокристаллов из пара частично рассмотрены в разд. 7.6 и 7.7. Простой прибор Бреннера, предложенный им в 1956 г. для выращивания нитевидных монокристаллов ( усов , или вискерсов) восстановлением галогенидов металлов, приведен на рис. 222, в. В лодочку 4 загружают галогенид металла и помещают в кварцевую трубку 5, предварительно нагретую до необходимой температуры (наблюдаемой по показаниям термопары /) при помощи трубчатой электропечи 3 достаточной мощности, позволяющей быстро нагреть вещество до температуры, при которой начинается рост усов (400 - 900 °С). В трубку 5 пропускают увлажненный водород или другой газообразный восстановитель. Усы зарюждают-ся и растут на частицах восстановленного металла или его оксида прямо в лодочке, иногда на прутке вольфрама б, которым передвигают лодочку. Скорость газа контролируют при помощи реометра 7 и склянки Тищенко 2. [c.411]

    Особенности и границы применимости метода. Многие полупроводниковые материалы разлагаются до достижения температуры плавления, и поэтому монокристаллы тадих веществ не удается вырастить из стехиометрического расплава. Также трудно осуществимы процессы выращивания монокристаллов из расплава для полупроводниковых соединений, обладающих высоким-давлением пара при температуре плавления. Применение Метода выращивания монокристаллов из раствора снижает температуру в реакторе, а иногда и давление пара в системе. Поэтому выращивание из раствора позволяет в благоприятных условиях получать монокристаллы веществ, претерпевающих фазовый переход в твердом состоянии или обладающих значительной упругостью пара. [c.88]

    Очень интересен метод выращивания монокристаллов полупроводниковых соединений из газов в условиях транспортных реакций, о которых писалось в гл. I, 23 и гл. IX, 3. Так получают Si взаимодействием толуола с Si li и с водородом в качестве транспортирующего газа, фосфид бора из B I3 и фосфора с НС1 в качестве газа-носителя, оксид цинка из паров цинка в токе воздуха, сульфиды цинка и кадмия из паров этих металлов в токе водорода и сероводорода и т. д. [c.266]

    Зонная плавка и выращивание монокристаллов фосфида из стехиометрических расплавов связаны с теми же трудностями, что и при синтезе, которые определяются высоким давлением диссоциации. Горизонтальная зонная плавка осуществляется только в установках высокого давления. Бестигельную зонную плавку из-за малого диаметра слитка (8 мм) можно проводить на таких же установках, как и в случае арсенида галлия. Малый внутренний диаметр ампулы ( 12 мм) позволяет ей выдерживать давление паров фосфора 25 атм без внешнего противодавления. После 3—4 проходов зоны со скоростью 1—3 см/ч на такой установке могут быть получены прозрачные монокристалли-ческие слитки фосфида галлия высокой чистоты. Особенно уменьшается содержание углерода, который удаляется в виде летучих соединений с фосфором и оседает на более холодных участках ампулы [127]. [c.275]

    Для получения монокристаллов ряда тугоплавких разлагающихся полупроводниковьгх соед. (напр., dS, ZnS, Si , AIN и др.) используют кристаллизацию из газовой фазы (методы сублимации и хим. траиспортньк р-ций). В случае если при выращивании монокристаллов не удается получить соед. требуемого стехиометрич. состава, кристаллы разрезают на пластины, к-рые подвергают дополнит, отжигу в парах недостающего компонента. Наиб, часто этот прием используют в технологии получения монокристаллов узкозонных соед. типа А В и А" В , где собств. точечные дефекты сильно влияют на концентрацию и подвижность носителей тока, т.е. проявляют высокую электрич. активность (РЬТе, PbjSnj e, d gj e и др.). При этом удается снизить концентрацию носителей заряда в кристаллах на иеск. порядков. Для вьфащивания профилированных монокристалов П.м. (ленты, прутки, трубы,и т.д.) используют метод Степанова. [c.60]

    Теллурид кадмия обладает заметным давлением диссоциации при температуре плавления (давление паров кадмия около 9 атм). Поэтому обычно ведут синтез и последующую направленную кристаллизацию в запаянной кварцевой ампуле по трехзонному методу под давлением паров кадмия. Сплавляют в кварцевых графитизированных или стеклографитовых лодочках при1150°. Синтезированный теллурид кадмия подвергают зонной плавке на горизонтальных или вертикальных установках опять-таки под давлением паров кадмия. Коэффициенты распределения примесей при кристаллизации теллурида кадмия приведены в табл. 29. Для выращивания монокристаллов теллурида [c.154]

    В связи с высокой упругостью паров СггОз и УгОз (0,1 — 0,001 Па) выращивание кристаллов граната, активированного указанными оксидами, обычно ведется под давлением. Конструкция установок СГВК, Сапфир позволяет вести процесс выращивания в атмосфере инертного газа до 1 кПа. Основные особенности технологии выращивания монокристаллов ИАГ с хромом в аргоноводородной среде, в отличие от вышерассмотренной технологии выращивания розового граната, заключаются в том, что процесс кристаллизации граната ведется в атмосфере аргон + водород (9 1) при давлении около 140 кПа. Камера наполняется указанной газовой смесью следующим образом. При вакууме порядка 0,001 Па рабочая камера заполняется аргоном до —80 кПа. Затем напуском водорода давление поднимается до —90 кПа и далее аргона — до 100 кПа. При подъеме температуры давление газа в камере возрастает. Прн повышении давления до 140 кПа избыток газа удаляется через игольчатый натекатель. [c.180]

    Вакуум используется для химической очистки расплава от растворенных газов, посторонних примесей, обладающих высокой упругостью пара, и продуктов термической диссощшции. Глубина вакуума определяется величиной упругости пара кристаллизуемого вещества в расплавленном состоянии. Наиболее часто используется вакуум порядка 5 10 тор. С целью снижения интенсивности испарения расплава применяется нейтральная атмосфера (гелий, аргон, азот), поскольку для этих газов разработаны достаточно эффективные способы химической очистки. Восстановительная атмосфера используется для предотвращения окислительных реакций. Например, при выращивании монокристаллов флюорита СаРг атмосфера фтористого водорода препятствует развитию реакций гидратации с образованием частиц типа СаНСОз, а выращивание металлических монокристаллов в атмосфере водорода позволяет получать бескислородные монокристаллы. Окислительная атмосфера используется для компенсации потери кислорода при выращивании монокристаллов-оксидов [16]. Применение окислительной атмосферы, однако, ограничено интенсивным окислением материала контейнера и элементов нагревательной системы кристаллизационной установки. Поэтому обычно используется либо вакуум, либо нейтральная атмосфера. Компенсацию кислорода осуществляют путем отжига в кислородсодержащей атмосфере при температуре (1/2 1/3) Год, где Тпл — температура плавления. Эту операцию называют кислородным отжигом. Экспериментальные исследования свидетельствуют о том, что нарушение состава оксидов в сильной степени зависит от интенсивности реакций их термической диссоциации [17]. Эти реакции сопровождают как процессы плавления, так и кристаллизации. [c.15]

    Метод выращивания путем химического превращения вначале был применен для получения монокристаллов вольфрама Корефом [47] и ван Аркелем [3]. Первый автор получал пары вольфрама разложением С1б водородом, тогда как второй — нагреванием паров УС1в до разложения на вольфрам и хлор. В обоих случаях освобождавшийся вольфрам немедленно осаждался на вольфрамовую проволоку, вызывая рост присутствующих в проволоке кристаллических центров. [c.237]

    Наряду со спеканием компактный вольфрам высокой плотности получают также методами осаждения из газовой фазы, электрохимическим и плазменным осаждением, дуговой, в том числе гарннссажной, и электронно-лучевой плавками, выращиванием монокристаллов в специальных кристаллизационных аппаратах с использованием электронного и плазменного нагревов (электронно-лучевая зонная плавка, плазменно-дуговая плавка). Плавка вольфрама в дуговых и электронио-лучевых печах обеспечивает эффективную очистку от примесей и получение крупных заготовок массой до 3000 кг, предназначенных для изготовления листов, профилей, труб и других изделий методами фасонного литья, прессования, прокатки. Для измельчения зерна с целью повышения технологической пластичности применяют модификаторы и раскислителя (например, карбиды циркония, ниобия и т. д.), а также гарниссажную плавку с разливкой металла в изложницу. Для снижения содержания примесей и одновременно создания более мелкозернистой структуры используют дуплекс-процесс электронно-лучевая плавка+электродуговая плавка Наиболее глубокая очистка от примесей реализуется при выращивании монокристаллов вольфрама. При этом у вольфрама появляются особые свойства, присущие только монокристаллическому состоянию, в частности анизотропия свойств, более высокая по сравнению с поликристаллами эрозионная стойкость, высокая устойчивость к расплавам и парам щелочных металлов, к термоциклированию, облучению, лучшая совместимость со многими неорганическими, в том числе металлическими, материалами и т. д. [c.398]


Смотреть страницы где упоминается термин Монокристаллы выращивание из пара: [c.352]    [c.393]    [c.623]    [c.89]    [c.96]    [c.114]    [c.372]    [c.205]    [c.175]   
Кинетика и механизм кристаллизации (1971) -- [ c.260 ]




ПОИСК





Смотрите так же термины и статьи:

Выращивание монокристаллов из пара вещества основного состава. Тип

Монокристалл

Монокристаллы, выращивание



© 2024 chem21.info Реклама на сайте