Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Актиноиды выделение

    В 18-клеточной форме таблицы Менделеева (см. табл. 4) отчетливо виден переходный характер d-металлов, которые служат своеобразным связующим звеном между s- и sp-элементами (ПА— П1А группы). Дефектные / металлы в этой форме таблицы рассматриваются как аналоги лантана и актиния, хотя, строго говоря, в полной мере таковыми не являются. Чтобы отразить специфику /-элементов, целесообразно воспользоваться длиннопериодной таблицей (см. табл. 5), в которой лантаноиды и актиноиды представляют переход между ( -элементами П1В и IVB групп VI и VII периодов. Эта развернутая форма таблицы с выделенными связующими d- и /-рядами подтверждается характером периодичности изменения первого ионизационного потенциала в зависимости от атомного номера элемента (см. рис. 21). Действительно, из рис. 21 следует, что в рядах sp-элементов малых периодов ионизационный потенциал меняется очень резко. В четвертом периоде с появлением первой вставной Зй -декады (от Se до Zn) наблюдается более плавное изменение ионизационного потенциала, что обусловлено заполнением внутреннего энергетического уровня. Аналогичная картина имеется для элементов V периода, включающих Ad-декаду переходных элементов (от Y до d). В VI периоде имеются две области плавного изменения ионизационного потенциала. Первая из них в соответствии с табл. 5 отвечает заполнению 4/-орбиталей у 14 лантаноидов (от Се до Lu), а вторая область — заполнению 5с/-орбиталей у третьей вставной декады (Hf—Hg). Подобное же положение характерно для VII периода, в котором после актиния начинается застройка 5/-орбиталей у элементов семейства актиноидов. [c.367]


    Вода разлагается актиноидами (особенно при нагревании) с выделением водорода или образованием гидридов. [c.450]

    Несмотря на то, что правильность выделения 14 элементов в группу актиноидов не вызывает сомнений, следует сказать, что между ними наблюдается гораздо больше различий, чем между лантаноидами. [c.450]

    Многие соли актиноидов хорошо растворимы в различных органических растворителях, не смешивающихся с водой. На этом основана экстракция соединений актиноидов органическими веществами из водных растворов. Экстракционные процессы нашли широкое применение в технологии выделения и разделения близких по свойствам актиноидов. [c.452]

    Взаимодействие лантаноидов с кислотами идет с выделением водорода, но с плавиковой и фосфорной кислотами реакция почти не идет, так как на поверхности металла образуется пленка нерастворимых солей. Актиноиды также активно реагируют с водой и кислотами, причем могут образоваться одновременно гидриды за счет выделяющегося водорода. [c.336]

    Все актиноиды радиоактивные. Особый род процессов деления ядер различных изотопов урана, плутония, тория и других сопровождается колоссальным выделением энергии, поэтому играет исключительную роль в атомной энергетике. [c.407]

    В свою очередь в рамках областей могут быть выделены и более мелкие семейства элементов. Это особенно важно сделать для металлов, составляющих около трех четвертей всех элементов. Металлы удобно делить на а-металлы (Ма) и Ь-металлы (Мь) и отделять среди первых щелочные и щелочноземельные (М ) от переходных (Md) с выделением из последних лантаноидов и актиноидов (М/), которые удобно рассматривать вместе с металлами II 1-а подгруппы (металлы вообще будем обозначать буквой А или же другими начальными буквами алфавита). [c.278]

    С водой многие металлы реагируют с выделением водорода. Практически не взаимодействуют с водой торий и протактиний, не образующие устойчивых ионов М "(водн), и нептуний, хотя все потенциалы восстановления М(П1) или М(1У) до металла отрицательны и в целом близки к соответствующим потенциалам лантаноидов. Все актиноиды растворяются в кислотах. [c.383]

    Известны короткая и длинная формы периодической системы. Наиболее совершенной является короткая форма. В короткой форме периодической системы из основной таблицы выделены 28 элементов. Они составляют 2 ряда в нижней части системы по 14 элементов в каждом ряду. Первый ряд включает лантаноиды, сходные по свойствам с лантаном. Это элементы шестого периода, расположенные в интервале между лантаном и гафнием. В седьмом периоде непосредственно за актинием следуют 14 элементов, выделенных в последнюю строку периодической системы. Хотя их и называют актиноидами, что означает химически сходные с актинием, но на самом деле такого сходства нет. [c.67]


    Причиной такого выделения является горизонтальная аналогия. Физической основой построения П. С. является заряд ядра и последовательность заполнения электронных оболочек. В пределах малых периодов, а также в нечетных рядах больших периодов с увеличением заряда ядер происходит заполнение наружного (внешнего) электронного слоя 1—8 электронами. В четных же рядах больших периодов с увеличением 2 заполнение электронных слоев происходит несколько иначе. Так, в четвертом и пятом периодах у элементов четных рядов заполняется а-подуровень предвнешнего уровня 1—10 электронами (Зс1 — Зс1 ° и 4(1 — 4Ь °). В шестом периоде после лантана у элементов с 2 = 58-5-71 (лантаноиды) заполняется -подуровень четвертого уровня от 4 у церия до 4 у лютеция. После лютеция завершается заполнение 5Ь-подуровня от гафния до ртути. В седьмом периоде (он не завершен) заполнение электронных слоев аналогично шестому периоду. Здесь после двух в-элементов — Рг и Ра — и одного сУ-элемен-та — Ас — следуют 14 элементов, относящиеся к актиноидам, у которых происходит заполнение 5/-подуровня. [c.225]

    Экстракционная хроматография оказалась удобным методом не только для разделения следовых количеств актиноидов (а именно для аналитических целей) она все шире используется для выделения и (или) очистки макроколичеств трансплутониевых элементов (америция, кюрия). Метод нашел применение в таких различных областях, как переработка сбросных растворов, содержащих актиноиды, и поиск сверхтяжелых элементов. Однако возможности промышленного применения экстракционной хроматографии ограничены из-за низкой емкости колонок и вымывания экстрагента с твердого носителя, связанного с его растворимостью в водных растворах. [c.254]

    Аналитическая схема для выделения микрограммовых количеств некоторых продуктов деления и актиноидов из сильно выгоревшего ядерного топлива в отсутствие носителя. [c.535]

    Р(1 — выделение из отбросных растворов после удаления урана Актиноиды, лантаноиды (сопо.ста вление литературных дан- [c.592]

    Однако в настоящее время наиболее распространенное изображение—это в виде таблицы, с выделением внизу двух рядов клеток, составляющих внутренние ряды лантаноидов и актиноидов. [c.82]

    По мнению Шенка, его вариант системы имеет преимущества перед всеми ранее принятыми формами во-первых, он охватывает все без исключения элементы во-вторых, устраняет искажение короткой формы таблицы, вызванное включением лантаноидов и актиноидов в одну клетку в-третьих, учитывает внутреннюю периодичность в семействе редкоземельных элементов в-четвертых, в расположении актиноидов отражает актиноидную гипотезу и т. д. Но при более глубоком ознакомлении становится ясно, что попытка Шенка все же не менее искусственна, чем многие другие. Выделение с-подгрупп по сути дела ничем не обосновано, кроме желания расформировать редкоземельное семейство, дать каждому элементу свое место. То же можно сказать и об актиноидах. Фактически Шенк предложил лишь новую модификацию старой идеи о распределении редкоземельных элементов по группам. [c.198]

    Редкоземельные металлы и актиноиды непосредственно реагируют с водородом с выделением тепла (на единицу валентности) примерно того же порядка, как и в случае щелочноземельных металлов (стр. 162, табл. 12). Однако абсорбция водорода у них связана со значительным расширением кристаллической решетки (стр. 163, табл. 13). Этим они отличаются от солеобразных гидридов металлов первой и второй групп и приближаются к металлическим гидридам переходных металлов более высоких групп. С последними их роднит также п склонность к образованию фаз переменного состава значительного протяжения. Состав соединений лантаноидов и актиноидов с водородом, полученных непосредственным гидрированием, показывает значительное отклонение от простых стехиометрических отношений. [c.29]

    Существенный вклад внесла аналитическая химия в решение такой важной проблемы современной науки, как синтез и изучение свойств трансурановых элементов. Предсказание химических свойств трансурановых элементов оказалось более сложным, чем для элементов, входящих в периодическую систему в ее старых границах, так как не было ясности в распределении новых элементов по группам. Трудности усугублялись и тем, что до синтеза трансурановых элементов торий, протактиний и уран относились соответственно к IV, V и VI группам периодической системы в качестве аналогов гафния, тантала и вольфрама. Неправильное вначале отнесение первого трансуранового элемента № 93 к аналогам рения привело к ошибочным результатам. Химические свойства нептуния (№ 93) и плутония (№ 94) показали их близость не с рением и осмием, а с ураном. Было установлено, что трансурановые элементы являются аналогами лантаноидов, так как у них происходит заполнение электронного 5/- слоя, и, следовательно, строение седьмого и шестого периодов системы Д. И. Менделеева аналогично. Актиноиды с порядковыми номерами 90—103 занимают места под соответствующими лантаноидами с номерами 58—71. Аналогия актиноидов и лантаноидов очень ярко проявилась в ионообменных свойствах. Хроматограммы элюирования трехвалентных актиноидов и лантаноидов были совершенно аналогичны. С помощью ионообменной методики и установленной закономерности были открыты все транс-кюриевые актиноиды. Рекордным считается установление на этой основе химической природы элемента 101 — менделевия, синтезированного в начале в количестве всего 17 атомов. Аналогия в свойствах актиноидов и лантаноидов проявляется также в процессах экстракции, соосаждения и некоторых других. Экстракционные методики, разработанные для выделения лантаноидов, оказались пригодными и для выделения актиноидов. [c.16]


    ЛОУРЕНСИЙ (Lowrensium) Lr — искусственно полученный радиоактивны химнчес шй элемент семейства актиноидов, п. н. 103, массовое число самого устойчивого изотопа 256, Выделен Л, А. Гиорсо с группой сотрудников радиационной лаборатор и им, Э. Лоу-peii a в Беркли (штат Калифорния, США) [c.149]

    ЭЙНШТЕЙНИЙ (Einsteinium, назван в честь А. Эйнштейна) Es — радиоактивный химический элемент, п. н. 99, массовое число самого стойкого изотопа 254, относится к актиноидам. Первый изотоп выделен из продуктов тер- [c.289]

    Кюрий и кюриды — элементы второй семерки актиноидов. Получение новых тяжелых элементов представляет собой сложную задачу, причем сложности возрастают по мере увеличения атомного номера элемента. Это объясняется тремя основными причинами. Во-первых, концентрация исходных элементов, ядра которых необходимо подвергать бомбардировке, очень невелика и, соответственно, вероятность попадания частицы-снаряда в ядро-мишень также мала. Во-вторых, все тяжелые элементы склонны к реакции деления под воздействием нейтронов, что уменьшает выход ожидаемого элемента. В-третьих, для получения тяжелых трансурановых элементов возникает необходимость использования в качестве бомбардирующ,их частиц не только нейтронов и ядер гелия, но и более массивных ядер (углерода, азота и т. д.), а их разгон до необходимых энергий, в свою очередь, требует создания все более мощных ускорителей. К тому же период полураспада новых элементов становится все меньше, что также осложняет их выделение, идентификацию и изучение свойств. Все это и привело к тому, что за первые 24 года (1940—1964) были синтезированы 12 тяжелых элементов, а за последнее время — только 4. [c.446]

    Несмотря на то что уран известен с кон. 18 в., химия актиноидов приобрела самостоят. значение только в 40-х гг. 20 в., когда стали проводиться работы по созданию ядерного оружия. Начиная с 60-х гг. первенство в прикладных исследованиях принадлежит проблемам ядерного топлива. Большая часть актиноидов получена искусств, путем (Г. Сиборг, Г. Н. Флеров и др.). Особенность химии актиноидов заключается в трудности выделения многих из них в больших кол-вах из-за их радиоактивности. Для получения актиноидов разработаны спец. методы синтеза и очистки, созданы микромегоды Н.х. и методы дистаНц. управления процессами. Появилось Понятие ядерной чистоты материалов. Способы контроля чистоты продуктов. [c.211]

    Химия РЗЭ (см. Редкоземельные элементы) близка к химии нек-рых редких металлов и химии актиноидов, что связаио с определенными аналогиями в электронном строении и хим. св-вах всех этих элементов и определяет их совместное присутствие в нек-рых прир. источниках. Уникальные св-ва РЗЭ были изучены и реализованы лишь начиная с 60-70-х гг. Особенностью этих элементов является близость их хим. и многих физ. св-в, что привело к необходимости преодоления трудностей при выделении, глубокой очистке и определении индивидуальных элементов. Интерес к этой области Н.х. возрастает в связи с открытием высокотемпературных оксидных сверхпроводников. [c.211]

    Из водных растворов лантаноиды и актиноиды катодно либо не осаждаются совсем, что используется для их отделения от примесей либо осаждаются в форме преимущественно аморфных гидроксидов [702, 414, 641, 387, 385]. Многочисленные попытки осадить РЗЭ и актиноиды из неводных растворов в элементарном виде также пока безуспешны. В лучщем случае катодные осадки состоят приблизительно из 50 % металла и 50 % органических продуктов. Утверждения о катодном выделении данных металлов в отдельных работах недостаточно обоснованы. Например, в работе [1077] предположение об электроосаждении металлического лантана основывается лишь на факте взаимодействия термически обработанного катодного осадка с водой и кислотами. Дифракционные линии Х-лучей, соответствующие лантану, в этом осадке не обнаружены. Необоснованы сведения также о выделении металлического урана [800]. Электролизом спиртовых растворов солей РЗЭ с ртутным катодом удается получить амальгамы редких земель [702, 414, 464]. Максимальная концентрация РЗЭ в этих амальгамах составляет 3 %, их разложением получают металл. [c.155]

    Изготовление слоев оксидов редкоземельных элементов, тория, урана, протактиния, нептуния и транснептуниевых элементов электроосаждением из неводных сред имеет неоспоримые преимуш,ест-ва по сравнению с водными растворами. Образуюш,иеся на катоде при электролизе в водной среде гидроксиды лантаноидов и актиноидов аморфны. При дальнейшей термической обработке они образуют оксидные слои с большим количеством структурных дефектов. При электролизе из органических растворов на катоде образуются кристаллические структуры, которые при прокаливании легко переходят, теряя органическую составляюш,ую, в кристаллические структуры оксидов РЗЭ и актиноидов. Кроме того, метод электроосаждення из неводных растворов характеризует большая скорость проведения процесса, полнота выделения металла, прочность сцепления о подложкой слоев толщиной 1—5 мг/см , равномерность распределения покрытия на больших площадях. Наилуч-шие результаты получены из спиртовых растворов нитратов и ацетатов РЗЭ и актиноидов. Растворимость солей данных металлов в органических растворителях низка, поэтому в основном применяют насыщенные растворы. Из-за низкой проводимости растворов и окисной пленки на электроде используются высокие напряжения (порядка сотен вольт), плотности тока низкие. Большое значение при подборе оптимальных условий осаждения имеют площадь электродов, расстояние между ними, объем электролита, предварительная обработка электродов. Катодный процесс сопровождается газовыделением, вызывающим образование неравномерной пленки. Для уменьшения газовыделения добавляют специальные добавки, в частности этиловый спирт [221]. Катодный продукт наряду с металлом и кислородом содержит обычно азот, водород и углерод. Результаты количественного анализа показывают загрязнение катодного осадка растворителем или продуктами его разложения, но не образование соединений определенной стехиометрии [1077]. При термической обработке катодного осадка происходит уменьшение объема и перестройка кристаллической решетки, в результате чего слои растрескиваются и осыпаются, и лишь в случае тонких слоев оказывается достаточно поверхностных молекулярных сил сцепления для сохранения прочной связи с подложкой. Для получения покрытий толщиной порядка 1—5 мг/см необходимо многослойное нанесение продукта [1060]. [c.156]

    Если в электролизе при постоянном наложенном напряжении или при постоянной силе тока использовать ртутный катод, то можно выполнить несколько успешных определений. Такой же прием можно использовать в качестве метода разделения, предшествующего какому-либо другому виду физического или химического измерения. В связи с необычайно высоким активационным, сверхпотенциалом для выделения газообразного водорода на ртути (см. табл. 12-1) восстановление иона водорода в 1 F хлористоводородной или хлорной кислоте не начинается до тех пор, пока потенциал ртутного катода не достигнет приблизительно —1,0 В относительно НВЭ. Поэтому в 1 кислом растворе все ионы металлов, за исключением алюминия(П1), урана(III), титана(III), ванадия (II), молибдена(III), вольфрама(III), трехзарядных катионов лантаноидов и актиноидов и ионов щелочноземельных и щелочных металлов, восстанавливаются до элементного состояния и растворяются в ртути. Марганец(П), который даже при —1,0 В заметно не восстанавливается, при соответствующих условиях может отлагаться в виде металла на ртути. [c.417]

    Экстракция с помощью Д2ЭГФК была с успехом использована для выделения и разделения актиноидов. В табл. 2 приведены [c.259]

    Подобные методы можно применять для выделения следовых количеств актиноидов например для выделения 234 гь(иХ4) из урановой руды [46] или для отделения изотопа (период полураспада 27 сут) от облученного нейтронами 2327 [47]. Смесь тория-234 и урана (234Th и = 1,5 10 ) сорбировали из 6 М HNOs на колонке с ТБФ, нанесенным на тефлон [47]. Торий количест- [c.268]

    Для хроматографического разделения следовых количеств и(VI) и ТЬ(1У) использовали систему ТОФО — минеральная кислота. ТОФО, нанесенный на стеклянный порошок, использовался для сорбции урана (VI) из раствора мочи, подвергнутой частичному ферментативному разложению [53] ТОФО вместе с ураном элюировался спиртом. Аналогичный метод использован в улучшенной модели полуавтоматического прибора для анализа мочи на содержание урана [54]. Опубликована серия статей [55—57], посвященных методам выделения тория и урана из биологических объектов и их разделению на основе разной способности ТОФО экстрагировать эти актиноиды из сернокислого раствора [55]. После разложения (минерализации) мочи при помощи перекиси водорода и азотной кислоты торий и уран сорбируют из 4 М раствора НЫОз на колонке с ТОФО, нанесенным на микротен (микропористый полиэтилен) с размером зерен 100—170 меш США. Торий(1У) элюируют 0,3 М Н2304, уран(У1) —1 М НР [56, 57]. Извлечение при помощи ТОФО на микротене в статических условиях особенно удобно при серийных анализах мочи, поскольку этот метод очень прост и требует мало времени при выполнении анализа раствор минерализованной мочи перемешивают с твердым экстрагентом, а затем переносят полученную суспензию в хроматографическую колонку для последующего элюирования. Методика подробно описана в гл. 10. [c.270]

    Нитрат трилауриламина (ТЛА-НЫОз) в колонке с кель-Р использован [73] для выделения и определения нептуния (1У) в концентрированных растворах (облученного) урана. Актиноиды (ТЬ, Ра, Ыр и Ри) сорбируются в присутствии избытка урана из раствора состава 2 М НЫОз+ 0,1 М Ре304 в этом растворе плутоний восстанавливается до трехвалентного состояния. Колонку промывают 1 М раствором НЫОз, содержащим железо(II), а затем элюируют нептуний (1У) смесью серной и азотной кислот. Метод позволяет селективно отделять нептуний(1У) и приводит к хорошим результатам при анализе растворов, содержащих уран и нептуний в отношении >10 °, и при получении радиохимически чистого изотопа нептуния-239. [c.275]

    Вслед за выделением лантаноидов тот же принцип был положен и в основу выделения актиноидов, которые сейчас обычно выносятся за рамки таблицы и помещаются отдельной строкой под лантаноидами, хотя первоначально известные актиноиды Th, и [Браунер, 1902 Коновалов, 1928], а затем также Ас, Ра, Np [Спицын, 1963] помещали не в этот ряд, а в отдельные группы Системы — Ас в III, Th — IV, Ра — V, U — VI, Np — VII. При этом ряд актиноидов становился короче, и каждому элементу отводилась клетка произвольного размера, из-за чего симметрия в распределении актиноидов под лантаноидами нарушалась [Спицын, 1963]. Предлагались и другие варианты, например, двойственного по.ложения элементов от Ас до и в таблице — в группах и в скобках в ряду актиноидов, выносимых отдельной строкой под лаптаноидаз>п1 [Лапицкий и др., 1964]. [c.20]

    Наивысшей абсорбцией водорода обладают элементы ПШ группы — лантаноиды и актиноиды. Гидридам элементов IVb группы уже не отвечает предельное содержание водорода, казалось бы соответствующее этой группе — МеН4. Даже при повышенных давлениях достигается лишь состав МеНг. Й по свойствам своим эти гидриды, по сравнению с гидридами лантаноидов, значительно более приближаются к металлическим сплавам, что следует хотя бы из возможности построения диаграмм состояния таких систем, как титан — водород и цирконий водород, на основе применения методов термического анализа и изучения микроструктуры. При дальнейшем движении в сторону возрастания номера вертикальных групп периодической системы абсорбция водорода все уменьшается, и для гидридов элементов семейства железа и подгрупп меди и цинка мы переходим в область эндотермической абсорбции водорода, т. е. растворов водорода в металлах, подчиняющихся закону Сивертса, если не считать палладия, значительное поглощение водорода которым уже близко к стехиометрическому и сопровождается выделением тепла. [c.161]


Смотреть страницы где упоминается термин Актиноиды выделение: [c.428]    [c.373]    [c.117]    [c.217]    [c.117]    [c.346]    [c.373]    [c.86]    [c.103]    [c.362]    [c.679]    [c.253]    [c.276]    [c.342]    [c.358]    [c.459]    [c.467]   
Иониты в химической технологии (1982) -- [ c.357 ]




ПОИСК





Смотрите так же термины и статьи:

Актиноиды

Актиноиды аппаратура для выделения



© 2025 chem21.info Реклама на сайте