Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Поликонденсация и обратимость

    Обычно карбамидоформальдегидные смолы синтезируют поликонденсацией в водных и щелочных средах. В зависимости от конечного применения продукта используют 1,5—2-кратный избыток формальдегида. В качестве катализаторов можно применять все соединения основного характера при условии их достаточной растворимости в воде. Наиболее широко используются щелочи. Однако pH реакционной смеси не должен превышать 8—9 во избежание протекания реакции Канниццаро для формальдегида. Так как pH раствора уменьшается в процессе реакции, его необходимо поддерживать неизменным, либо используя буферный раствор, либо добавляя щелочь. При этих условиях продолжительность реакции составляет 10—20 мин при 50—60 °С. После завершения реакции необходимо оттитровать непрореагировавший формальдегид с гидросульфитом натрия [21] или гидрохлоридом гидроксил-амина. Титрование необходимо проводить очень быстро и при низких температурах (10—15 °С), так как иначе расщепление метилольных соединений с образованием формальдегида приводит к ошибке в анализе. Из-за этой обратимости реакции выделение растворимых продуктов конденсации оказывается возможным лишь при осторожном выпаривании воды в слабощелочной среде в вакууме при температуре ниже 60 °С. Дальнейшую поликонденсацию с целью получения сшитых продуктов обычно проводят в исходном водном растворе либо нагреванием нейтрального раствора до 120— 140 С (10—60 мин), либо проводя кислотный катализ при низких [c.212]


    В зависимости от строения исходных мономеров и условий проведения реакции поликонденсации процесс может быть равновесным (обратимым) или неравновесным (практически необратимым) [4, с. 127]. [c.156]

    Поликонденсация может быть равновесной и неравновесной. Равновесная поликонденсация ха рактеризуется сравнительно небольшой константой равновесия, а для неравновесной поликонденсации характерны высокие скорости реакции. Приведенные выше реакции являются примерами равновесной поликонденсации. Примером неравновесной поликонденсации служит реакция образования полиамидов при межфазной поликонденсации хлорангидридов дикарбоновых кислот с диаминами (см. ниже). Равновесная поликонденсация обратима. Течение процесса и характер образующихся продуктов реакции зависят от функциональности исходных соединений, а также скорости и [c.218]

    По реакции поликонденсации получают фенолоальдегидные смолы, простые и сложные полиэфиры, полиамиды и многие другие полимеры. Реакция поликонденсации обратима, т. е. одновременно протекают два процесса образование более высокомолекулярных соединений и их деструкция. Последняя происходит под влиянием низкомолекулярных продуктов, выделяющихся в ходе реакций или под влиянием исходных мономеров (см. стр. 48). - [c.42]

    Как следует из уравнений (1.13), (I. 14) и из рис. 1.5, для получения полимера С большой молекулярной массой при обратимой ноликонденсации необходимо тщательно удалять из системы образовавщийся низкомолекулярный продукт реакции. Так, для получения сложных полиэфиров с Р > 100 (/С = 4,9 при 280 °С) содержание воды в реакционной системе в конце реакции не должно превышать тысячных долей процента. Однако на практике при проведении равновесной поликонденсации степень полимеризации обычно не достигает предельных значений, определяемых константами поликонденсационного равновесия, из-за протекания побочных процессов, приводящих к дезактивации функциональных групп. В большинстве случаев молекулярная масса поликонденсационных полимеров определяется не термодинамическими, а кинетическими факторами. Как равновесная, так и неравновесная поликонденсация приводят к получению полимерных продуктов, неоднородных по молекулярным массам. [c.36]

    Реакция поликонденсации обратима. Это означает, что одновременно протекают два процесса образование продуктов конденсации и их деструкция. [c.52]

    Поликонденсация — обратимая реакция. Низкомолекулярные вещества, образующиеся в системе, могут реагировать с макромолекулами, приводя их к расщеплению. Поэтому для получения полимеров большого молекулярного веса необходимо в ходе реакции удалять из реакционной среды низкомолекулярный продукт. [c.160]


    Полиэфирную глифталевую смолу получают поликонденсацией в расплаве (в отсутствие растворителя или разбавителя). Так как эта реакция поликонденсации обратимая (равновесная), то низкомолекулярный продукт реакции (воду) удаляют путем отгонки из сферы реакции, что сдвигает равновесие реакции вправо и способствует получению более высокомолекулярной смолы. Ускорению процесса поли конденсации способствует повышение температуры, допустимое в пределах, определяемых термической стабильностью мономеров и образующегося полимера. [c.134]

    Поликонденсация — обратимый процесс. Низкомолекулярные вещества, образующиеся в системе, могут реагировать с макромолекулами, вызывая их расщепление  [c.366]

    Поликонденсация обратима. Как и при любой обратимой реакции, одновременно протекают две реакции — прямая реакция образования продукта поликонденсации и обратная реакция его разложения (деструкции) под действием низкомолекулярного побочного продукта, например гидролиз под действием воды. При определенных условиях устанавливается равновесие, которому соответствует образование продукта с определенной молекулярной массой. Вследствие этого продукты поликонденсации обычно имеют меньшую молекулярную массу, чем продукты полимеризации. Для получения продуктов с более высокой молекулярной массой необходимо удалять из сферы реакции выделяющуюся воду. [c.23]

    Не случайно, что влияние глубины проведения процесса рассматривается ранее кинетики поликонденсации и не связывается (в первом приближении) с ней. Дело в том, что глубина проведения процесса для некоторых случаев поликонденсации (обратимые процессы) может определяться не кинетикой процесса, а равновесием. Вот почему можно рассматривать связь глубины проведения процесса с молекулярным весом полимера, не учитывая, на первых порах, кинетику процесса. [c.60]

    Равновесная поликонденсация — обратимый процесс, поэтому скорость и полнота удаления воды или другого низкомолекулярного продукта реакции определяет скорость всего процесса и предельную величину [c.114]

    В процессе поликонденсации на каждой стадии реакции образуется полимерное соединение, молекулярный вес которого больше, чем полимерного соединения, полученного на предыдущей стадии. При этом выделяется эквимолекулярное количество низкомолекулярного продукта реакции. Реакция поликонденсации обратима это значит, что выделяющиеся в результате конденсации низкомолекулярные соединения, например вода, способны [c.89]

    Каким образом можно увеличить молекулярную массу продукта линейной обратимой поликонденсации при данной степени превращения  [c.204]

    Следует также упомянуть, что реакция поликонденсации обратима на всех стадиях это значит, что взаимодействие всех. .молекул мономера друг с другом не может протекать одновременно, что привело бы к образованию только димеров. Вследствие обратимости [c.26]

    Константа равновесия обратимых процессов К=к к2. Следовательно, фактическая скорость образования высокомолекулярного соединения в результате поликонденсации может быть выражена уравнением [c.198]

    Реакция поликонденсации обратима. Чтобы сдвинуть ее вправо — в сторону образования полимера, необходимо удалять из сферы реакции выделяющиеся низкомолекулярные вещества. Для этого повышают температуру и снижают давление в реакторе. [c.32]

    Отличительная особенность равновесной поликонденсации — обратимый характер всех протекающих реакций. На первом этапе происходит взаимодействие двух реакционноспособных центров  [c.238]

    В зависимости от способа проведения и строения исходных мономеров реакция поликонденсации может идти как равновесная и как необратимая. Необратимая поликонденсация обычно протекает с большой скоростью. Обратимая поликонденсация осуществляется, как правило, с малой скоростью. Так, из диаминов и дикарбоновых кислот образуются полиамиды. Процесс обратимой поликонденсации, как и обычная конденсация, характеризуется константой равновесия К и константами скорости прямой и обратной реакций. В момент равновесия скорость образования высокомолекулярного соединения равна скорости его деструкции. Если обе реакции второго порядка и если условно принять, что функциональные группы участвуют только в реакциях поликонденсации и не участвуют в побочных процессах, то фактическая скорость и образования продукта поликонденсации за промежуток временит будет равна [c.197]

    Реакции поликонденсации обратимы [c.180]

    Реакция поликонденсации обратима, поэтому удаление выделяющейся воды важно для получения высокомолекулярного полиэфира. Наличие воды и гликоля в полиэфире приводит к завышению величины его истинного гидроксильного числа, а, следовательно, нарушаются условия проведения последующей стадии — взаимодействия полиэфира с диизоцианатом, количество которого рассчитывается по концевым гидроксильным группам полиэфира. Кроме того, наличие воды в полиэфире приводит к получению невоспроизводимых результатов при проведении этой второй стадии синтеза, так как изоцианаты взаимодействуют с водой с выделением углекислого газа и образованием мочевинных связей. [c.189]


    Все реакции поликонденсации обратимы, однако, константа равновесия этой реакции может изменяться в широких пределах. Например, из наиболее практически важных реакций переэтерификации, полиэтерификации и поли-амидирования  [c.257]

    Поскольку реакция поликонденсации является обратимым процессом, в момент равновесия скорость образования полимера на каждой ступени равна скорости его деструкции. Чтобы сдви путь реакцию в сторону образования более высокомолекулярны продуктов, необходимо удалять низкомолекулярные вещества, выделяющиеся при реакции. [c.163]

    Основными факторами ограничения молекулярной массы при линейной равновесной поликонденсации являются обратимость основной реакции, а также деструкция образовавшихся макромолекул в результате их побочных реакций с низкомолекулярными веществами. [c.35]

    В зависимости от абсолютного значения константы равновесия К различают равновесную (обратимую) и неравновесную (необратимую) поликонденсацию. Если в условиях реакции степень превращения и молекулярная масса получаемых полимеров определяется равновесными концентрациями реагентов и продуктов реакции, то такая поликонденсация называется равновесной или обратимой. Для обратимых реакций величины К лежат в интервале от нескольких единиц до нескольких десятков. Например, при полиэтерификации пентаметнленгликоля и адипиновой кислоты К = 6,0, а при полиамидировании СО-аминоундекановой кислоты К — 8,9. Прн /С > 10 степень превращения функциональных групп и молекулярная масса получаемого полимера лимитируется не термодинамическими, а кинетическими факторами. Такую поликонденсацию называют неравновесной или необратимой. Так, при поликонденсации диаминов с дихлорангидридами ароматических дикарбоновых кислот К Ю . [c.32]

    Реакция поликонденсации, в отличие от реакции полимеризацуи, сопровождается выделением простейших низкомолекулярных веществ. При этом исходные мономеры (одинакового или различного строения) должны содержать в молекуле не менее двух функциональных групп типа ОН, СООН, ЫН2 и т. д. Обратимость реакций поликонденсации — одна из причин ограниченности молекулярной массы (20000—50000) получаемых продуктов. [c.106]

    Характерной особенностью реакции поликонденсации является ее обратимый характер. Этот процесс протекает ступенчато. [c.162]

    Рассмотрим очень длинную и очень широкую форму с малой глубиной, заполняемую при постоянной температуре смесью молекул состава АА и ВВ. Оба типа молекул бифункциональны, и их молекулярная масса равна Мо. Реакция полимеризации обратима, протекает по типу голова к хвосту в соответствии с идеализированной ступенчатой полимеризацией (поликонденсацией) без образования малых молекул [451  [c.542]

    Приняв молекулярную массу полимера (АА—ВВ)д. равной, можно записать уравнение обратимой реакции поликонденсации в общем виде  [c.543]

    Основные закономерности поликонденсации как ступенчатой реакции определяются наличием термодинамического равновесия между начальными и конечными продуктами реакции. По этому признаку различают равновесную (обратимую) и неравновесную (необратимую) поликонденсацию. Отличительным признаком обратимых процессов от необратимых является возможность протекания в определенных условиях обратных реакций полимера, например, с низкомолекулярным продуктом реакции, приводящих к распаду полимерных цепей. Поликонденсация называется равновесной, если в условиях процесса степень завершенности поликонденсации и средняя длина макромолекул лимитируются равновесными концентрациями реагентов и продуктов реакции. Это обычно характеризуется небольшой константой скорости (К = 10... 10 ). Если же константа скорости достаточно велика (К > 10 ), то степень завершенности поликонденсации и средняя молекулярная масса полимера лимитируются не термодинамическими, а кинетическими факторами, и такую поликонденсацию называют неравновесной. При необратимых процессах взаимодействия низкомолекулярных продуктов реакции с полимером не происходит. Примерами обратимой поликонденсации могут служить реакции гликолей или диаминов с дикарбоновыми кислотами, а необратимых - соответственно с дихлорангидридами кислот [c.43]

    Прекращение роста и обрыв цепи. Вторая характерная особенность реакции поликонденсации — ее обратимый характер. При достижении состояния равновесия скорость образования полимера на каждой стадии взаимодействия мономеров равна скорости его разрушения (деструкции). Для получения полимеров с большой молекулярной массой необходимо нарушать это равновесие, удаляя выделяющиеся в процессе поликонденсации низкомолекулярные продукты. Для этого или повышают температуру реакционной среды, или процесс ведут при пониженном давлении. Первое необходимо для понижения вязкости реакционной среды, которая возрастает по мере течения реакции поликонденсации, а к снижению давления в реакторе прибегают, чтобы высокая температура не разрушала полимер. Таким образом, молекулярная масса полимера и [c.403]

    Реакцией поликонденсации называют процесс взаимодействия большого числа молекул двух или нескольких разных мономеров с выделением соответствующего количества побочных низкомолекулярных продуктов реакции, например воды, спирта и др. Наличие этих продуктов обусловливает обратимость процесса. Элементарный состав полученного при этом высокомолекулярного соединения отличается от состава исходных мономеров, причем в ходе реакции молекулярная масса вещества постоянно возрастает. В процессе обычно участвуют функциональные группы СООН, ОН, ЫНг и др. Так, из этиленгликоля и терефталевой кислоты получают смолу лавсан  [c.197]

    В случае Обратимой поликонденсации равновесие между продуктами конденсации и выделяющимися низкомолекулярными соединениями достигается уже при сравнительно небольших степенях превращения. Поэтому для получения полимера высокой молекулярной массы из системы необходимо постоянно удалять образующийся низкомолекулярный продукт. Напротив, при необратимой ноликонденсации реакции, обратные росту, практически не существенны. [c.32]

    Поликонденсация. Полнконденсация, в результате которой образуются полиэтилентерефталат и этиленгликоль, — процесс обратимый, равновесный, причем для смещения реакции в сторону максимального образования полимера необходимо быстрое и полное удаление выделяющегося этиленгликоля из сферы реакции. Это достигается проведением процесса в глубоком вакууме. [c.98]

    Поликонденсация — реакция обратимая. Течение процесса и характер образующихся продуктов реакции зависят от числа функциональных групп в исходных мономерах, соотношения ис- [c.177]

    Скорость реакции поликонденсации можно регулировать, изменяя температуру реакционной среды. Чтобы замедлить реакцию, можно охладить реактор, в котором происходит процесс. Это широко используют в технологии получения пластических масс. Поскольку поликонденсация — процесс обратимый, то скорость образования полимера в момент равновесия равна скорости его деструкции. [c.179]

    Поликонденсация — процесс иногда обратимый. В общем виде ее можно представить схемой [c.461]

    Поскольку реакция поликонденсации обратима на всех стадиях, в реакционной среде всегда содержится некоторое количество непрореагировавших исходных веществ (амины, спирты, фенолы и др.). Эти вещества принимают участие в различных побочных процессах, особенно в процессах разрушения макромолекул, вступая в реакцию с возникшими в макромолекуляриой цепи новыми функциональными группами  [c.388]

    Реакция поликонденсации ДЭГТ катализируется оксидами сурьмы (III), кобальта (III) и германия (IV), вводимых в количестве 0,02—0,04 % от массы мономера. Так как она обратима (равновесная конденсация), то для получения полиэфира с достаточно высокой молекулярной массой, выделяющийся низкомолекулярный продукт (этиленгликоль) должен непрерывно отгоняться. Для этого процесс поликонденсации проводится при высокой температуре (280°С) и вакууме не менее 1,33 кПа. В этих условиях процесс поликонденсации завершается через 6—8 часов. [c.421]

    Выделение низкомолекулярных веществ, образующихся за счет функциональных групп мономеров (ОН, NHg, СООН и др.), обусловливает обратимость реакции поликонденсации обратимая поликонденсация характеризуется константами равновесия К и скоростей прямой 1 и обратной реакций, связанными между собой соотношением К = kjkp,. Фактическую скорость реакции поликонденсации (скорость образования высокомолекулярных веществ) можно выразить уравнением [c.311]

    Равновесной поликонденсацией называется такой процесс синтеза полимера, который характеризуется небольшими значениями констант скоростей и обратимым характером превраше-ний. Поликонденсация - многостадийный процесс, каждая ступень которого является элементарной реакцией взаимодействия функциональных групп. В качестве постулата принято считать, что реакционная способность концевых функциональных групп не изменяется при росте полимерной цепи. Процесс равновесной поликонденсации представляет собой сложную систему реакций обмена, синтеза и деструкции, которую называют по-ликонденсационным равновесием. В общем виде реакции поликонденсации могут быть представлены как реакции функциональных групп, например  [c.267]

    Различают два основных типа реакции поликонденсации обратимая равновесная) и необратимая неравновесная). Большинство поликонденсациоиных полимеров получается по первому варианту реакции. [c.97]

    Как видим, ступенчатые процессы синтеза полимеров существенно отличаются от цепных. Как поликонденсация, так и ступенчатая полимеризация протекает по реакциям концевых функциональных групп молекул мономеров или олигомеров. Растущие цепи являются устойчивыми молекулами на каждом этапе их формирования. В зависимости от числа функциональных групп в исходных молекулах (их должно быть не менее двух) образуются линейные или ра.зветвленные м сетчатые структуры конечных продуктов реакции. Большое значение имеет равновесность и обратимость реакций, что определяет время образования полимера, его молекулярную массу и другие характеристики. Существует не- [c.79]

    Технология и аппаратурное оформление П. в р. зависят от типа поликонденсацин. При равновесной (обратимой) П. в р. процесс проводят при 100-250°С и применяют р-рители, хорошо растворяют образующиеся полимеры, а низкомол. продукты р-ции-плохо. Т-ра кипения таких р-рителей должна быть выше, чем у низкомол. продуктов р-ции. Иногда используют р-рители, образующие с низкомол. продуктом р-ции азеотропную смесь, т-ра кипения к-рой ниже, чем у р-рителя (азеотропная поликонденсация). В пром-сти этот процесс применяют редко. Первая стадия произ-ва ряда сложных полиэфиров, напр, полиэтилентерефталата, представляет собой разновидность равновесной П. в р., когда р-рителем служит один из мономеров (в данном примере-этиленгликоль), взятый в избытке. [c.635]

    Для обратимой гомополнконденсацин уравнение зависимости средней степенн поликонденсации п от константы иолнкон-денсационного расновесня К и содержания выделяющегося низко молекулярного продукта Д имеет вид [c.151]

    Конечно, водород может тормозить образование продуктов уплотнения [19, 92—97], но при очень больших концентрациях его в паровой фазе. В таких условиях, как показано в [24, 46, 92—95], процессы дегидроконденсацин типа (2), (3), (13) и (21) становятся частично обратимыми, что приводит к понижению выхода продуктов уплотнения. Однако концентрация водорода, которая создается в сфере реакции самим процессом поликонденсации при температуре 500—750°С, недостаточна, чтобы заметно проявилось такое его тормозящее действие. Это довольно заметно, если учесть, что рост скоростей образования продуктов уплотнения при повышении температуры до 800—900° С после обсуждаемых задержек сопровождается ростом концентрации водорода, а не уменьшением ее. [c.194]

    Все реакции, протекающие с выделением аммиака, являются обратимыми. Об этом свидетельствует тот факт, что при реакции макрогетероцикла V с аммиаком образуются соединения П-1У, а также диамин и 1,3-диимидоизоиндолин. Соединение I при аминолизе не образуется. Реакции (1) и (2) необратимы, так как установлено, что при выдерживании соединения II в феноле диамин не выделяется. Это дает основания полагать, что в процессе образования полигексазоцикланов поликонденсацией тетранитрилов ароматических тетракарбоновых кислот с диаминами на отдельных стадиях происходят реакции как равновесного, так и неравновесного характера. То обстоятельство, что даже при высоких температурах проведения процесса константы равновесия довольно высоки, позволяет считать, что общий вклад неравновесных стадий значителен. Однако и равновесные стадии, протекающие с выделением аммиака, надо учитывать для оптимизации процесса образования полигексазоцикланов. [c.15]


Смотреть страницы где упоминается термин Поликонденсация и обратимость: [c.149]    [c.719]   
Поликонден (1966) -- [ c.17 ]




ПОИСК





Смотрите так же термины и статьи:

Поликонденсация обратимая



© 2025 chem21.info Реклама на сайте