Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Перемешивание гидродинамика

    Точный расчет представляет значительные трудности и требует детального экспериментального изучения гидродинамики потоков. В настоящее время проведение такого рода расчетов не представляется возможным. В связи с этим в последние годы успешно развивались приближенные методы расчета массопередачи с учетом продольного перемешивания. Наибольшее развитие и применение получили методы расчета на основе диффузионной и ячеечной моделей. [c.231]


    Гидродинамика и перемешивание — это области динамики реакторов, требующие экспериментального исследования, (Все перечисленное относится также к реакторам с кипящим слоем.) [c.182]

    Если гидродинамика подвижных фаз отличается от режима идеального вытеснения и в системе необходимо учитывать продольное перемешивание, то математическая модель (5.10) преобразуется к виду [29, 30] [c.235]

    Современный уровень разработки статистического способа описания турбулентной диффузии не является, к сожалению, еще достаточным для количественного анализа большинства реальных ситуаций турбулентного перемешивания. Фактически почти во всех таких ситуациях приходится довольствоваться описаниями, основанными на полуэмпирических методах. Поскольку эти методы подробно изложены во многих доступных монографиях по гидродинамике [11—161, здесь ограничимся рассмотрением лишь трех наиболее типичных случаев. [c.109]

    Следует отметить, что несмотря на большое число исследований, теоретический расчет влияния каждого из этих эффектов на гидродинамику реального многокомпонентного потока через слой зерен вызывает затруднения. Поэтому в последние годы большое внимание уделяется методу оценки условий перемешивания путем определения общего коэффициента продольного перемешивания. [c.101]

    Таким образом, для успешного решения задачи определения функции распределения времени пребывания в реакторе необходимо огрубление истинной гидродинамики процесса, позволяющее оценить суммарное влияние всех многообразных действующих факторов на перемешивание потока. Здесь приходит на помощь основное свойство распределений случайных величин, выражаемое центральной предельной теоремой теории вероятности. Согласно этой теореме, распределение случайной величины, подверженной влиянию многочисленных слабых факторов, должно быть близко к нормальному закону. Установления распределения, близкого к нормальному, следует ожидать в достаточно протяженных системах, где элемент [c.207]

    Перемешивание. Смешение илн аналогичные ему процессы могу г представлять собой самостоятельную стадию, но могут и сопутствовать химическому превращению. В основе определения продолжительности операции, необходимой для достижения желаемого эффекта, лежат законы гидродинамики и массопере-дачи, так как по физико-химической природе эти процессы являются диффузионными. [c.107]


    Детерминированное описание (и соответственно модель) стро- ится на основе фундаментальных теоретических законов и закономерностей. Оно составляется исходя из законов термодинамики, химической кинетики, законов сохранения массы, энергии и учитывает такие явления, как диффузия, тепло- и массопередача, гидродинамика, перемешивание и т. д. [c.17]

    Следует заметить, что этапу проектирования (выбора) технологической схемы предшествует этап конструирования высокоэффективного массообменного аппарата, который, в свою очередь, включает этап конструирования отдельного контактного устройства. Составными элементами этого этапа являются определение параметров математической модели гидродинамики всех типов контактных устройств, а также кинетики процесса массопередачи в зависимости от характера движения жидкости на тарелках колонны (прямоток, противоток и т. д.) и степени перемешивания парового (газового) потока - от идеального вытеснения до полного перемешивания. [c.13]

    Следует отметить, что увеличение вязкости и плотности среды также влияет на скорость диффузии. Диаметр аппарата высота слоя катализатора Н и другие геометрические параметры аппарата и особенно газораспределительной решетки определяют степень неремешивания, поэтому влияют на константу скорости процесса (а, следовательно, и на в процессе) через гидродинамику процесса (см. главу I). При расчете и конструировании реакторов кипящего слоя определяются или выбираются геометрические параметры, соответствующие наибольшей однородности взвешенного слоя при возможно меньшем осевом перемешивании газа (см. главу УП1). [c.89]

    Возможные причины перемешивания [99, 116] в промышленных аппаратах следующие неравномерность профиля скоростей потока возникновение противоположного основному потоку турбулентного переноса вещества перенос вещества в противоположном движению потока направления за счет молекулярной диффузии образование застойных зон байпасные и перекрестные токи в системе температурные градиенты и др. Теоретический расчет влияния каждого из этих эффектов на гидродинамику реального пОтока вызывает затруднения. Поэтому в последние годы большое внимание уделяется определению общего коэффициента перемешивания [77, 99, 258]. Основным экспериментальным методом исследования перемешивания является метод искусственного нарушения состава входного потока и исследование реакции системы на возмущение. Эти методы подробно описаны в ряде учебников и монографий [116, 118, 153]. [c.158]

    Константа к(Км) представляет собой сложный параметр, значение которого зависит от химической природы, и физических характеристик реагентов, их агрегатного состояния, гидродинамики процессов, конструкции реактора. Она может быть увеличена за счет повышения температуры, использования катализатора, усиления турбулизации системы путем перемешивания и усиления конвекции. [c.97]

    Под названием внешняя гидродинамика кипящего слоя мы объединяем все явления взаимодействия потока газа (жидкости) со слоем в целом — критические скорости начала псевдоожижения и уноса, закон расширения слоя. К внутренней гидродинамике кипящего слоя относятся явления, обусловленные нестационарными движениями твердой фазы и ее перемешиванием внутри слоя, дисперсия скоростей и перемешивание в газовом потоке, механизм переноса импульса, теплоты и массы. Перенос теплоты от кипящего слоя к стенкам аппарата или погруженным в него поверхностям принято называть внешним теплообменом , в отличие от межфаз-ного теплообмена между зернами и проходящим потоком газа [c.7]

    Проблемы гидродинамики играют важную роль в конструкции теплообменника. Потери давления, распределение гидродинамических параметров и перемешивание часто являются определяющими факторами при выборе основных геометрических характеристик теплообменника. Основной помехой для осуществления теплообмена в большинстве теплообменных установок являются жидкие пленки на металлических поверхностях. Структура этих пленок зависит от режима течения жидкости и от его природы, особенно от протяженности и интенсивности турбулентности. [c.44]

    Взаимодействие комбинации параметров системы, приводящее к желаемой степени перемешивания, затруднительно описать на основе методов гидродинамики. Возможно, однако, аналитически связать мощность, потребляемую при перемешивании, с различивши параметрами системы. Для этого используют метод анализа размерностей, что позволяет, в свою очередь, проанализировать поведение физической системы. [c.18]

    Этот эффект носит название электромагнитного перемешивания и является сопутствующим явлением индукционного нагрева или применяется специально при других методах нагрева ванны. Теоретические основы данного вида перемешивания относятся к области электромагнитной гидродинамики. [c.219]


    Различают внутреннюю и внешнюю задачи гидродинамики. Внутренняя задача связана с анализом движения жидкостей внутри труб и каналов. Внешней задачей гидродинамики является изучение закономерностей обтекания жидкостями различных тел (при механическом перемешивании, осаждении твердых частиц в жидкости и т. п.). [c.36]

    Вращающийся дисковый электрод широко используют при изучении кинетики электрохимических реакций, для исследования процессов электроосаждения и коррозии металлов, в аналитических целях. Так как все участки поверхности вращающегося диска одинаково доступны для диффузионных процессов, такое устройство выгодно отличается от других гидродинамических систем с принудительной конвекцией. Кроме того, существенно упрощается рассмотрение процессов массопереноса к поверхности испытуемого электрода. При быстром вращении дискового электрода вокруг оси жидкость, соприкасающаяся с центральными частями диска, отбрасывается центробежной силой к его краям. Вследствие этого около центра диска создается разрежение, и струя жидкости направляется из объема раствора к центру диска. Таким образом, точкой набегания струи жидкости становится центр диска. По мере удаления от центра диска возрастает линейная скорость движения жидкости. В соответствии с гидродинамикой при ламинарном режиме перемешивания у поверхности вращающегося диска образуется граничный слой постоянной толщины бгр с монотонным изменением скорости движения жидкости. Чем ближе к поверхности диска, тем меньше скорость потока и тем большее значение приобретает диффузия в подводе либо отводе продуктов реакции. В конечном итоге распределение концентрации реагирующих веществ у поверхности вращающегося диска обусловлено диффузией в потоке жидкости. Эта особенность становится понятной, если иметь в виду, что в случае непо- [c.74]

    Первые две модели являются в некотором смысле идеальными для промышленных объектов. Однако можно указать области, в которых эта идеализация вполне приемлема. Так, при исследовании потоков жидкости или пара, движущихся с большой скоростью по трубе с значительным отношением длины к диаметру, допустимо применение модели полного вытеснения. Для реактора с мешалкой часто справедлива гидродинамическая модель полного перемешивания. Для изучения явления перемешивания и обобщения экспериментальных данных предложен ряд моделей гидродинамического потока диффузионная, ячеечная, с байпасированием потока [16]. Достаточно убедительных соотношений, точно определяющих характер режима перемешивания, в технической литературе нет. Рекомендуемые расчетные соотношения приведены в работах [16, 17]. Трудности решения задач гидродинамики потоков резко возрастают при переходе от однофазной системы к двухфазной. Вопросы гидродинамики двухфазных систем рассмотрены в работах [ 8, 19]. [c.27]

    Полному смешению соответствует случай, когда каждый из элементарных объемов, или, по принятой в работе [8] терминологии, агрегатов молекул , настолько мал, что реакция происходит практически на его поверхности (с уменьшением объема отношение поверхности к объему возрастает). В этом случае скорость изменения концентрации в элементарном объеме определяется средней концентрацией в реакторе, которая у реактора идеального перемешивания совпадает с концентрацией на выходе. Полной же сегрегации соответствует случай, когда каждый из элементарных объемов автономен и скорость реакции в этом объеме определяется концентрацией в нем самом, т. е. такой объем ведет себя как периодический реактор, находящийся в основном реакторе случайное время т. Плотность распределения времени пребывания зависит от гидродинамики реактора. [c.274]

    Чтобы обеспечить одинаковые условия по гидродинамике и распределению температурного поля как для модели, так и для промышленного реактора, рекомендуется перед изучением кинетики на модели снять характеристику процесса перемешивания для принятой модели и убедиться в достаточно хорошем перемешивании. Затем промышленный реактор следует оборудовать соответствующим устройством, перемешивающим реакционную массу с интенсивностью, при которой проводились экспериментальные работы по -изучению кинетики. [c.166]

    В данном разделе рассмотрены режимы барботажа, структура барботажного слоя, гидравлическое сопротивление тарелок и приведены данные по гидродинамике отдельных типов тарелок. Далее рассмотрены гидравлика течения жидкости по тарелкам, перемешивание в барботажных абсорберах, унос жидкости и поверхность контакта фаз. [c.511]

    Другим аспектом теоретической модели, которая рассматривается, является гидродинамическое поведение расплава в камере. Этот аспект связан главным образом с интенсивным перемешиванием. Гидродинамика потока в камере была рассмотрена Добозским [39] и Виманом [35]. [c.357]

    Критерий Рейнольдса характеризует вид течения и учитывает явление перемешивания частиц жидкости, вызываемого движением молекул. Течение может быть ламинарным и турбулентным. Ламинарное течение является устойчивым только до значения критерия Рейнольдса, равного Ке . =2300, которое называется критическим. Более высокие значения данного критерия наблюдаются при турбулентном течении, которое является стабильным, начиная с Не = 10". Ввиду того, что оба вида течени5кподчиняются различным законам теплопередачи и гидродинамики, которые сильно отличаются между собой, весьма важным при решении каждой задачи является первоочередное определение критерия Рейнольдса. [c.32]

    Автору, очевидно, остались неизвестными многочисленные работы по гидродинамике и массообменной способности аппаратов с турбулентным трехфазным псевдоожиженным слоем, опубликованные на протяжении последних 6—8 лет советскими и зар жными исследователями. Это, естественно, значительно сузило объем информации по рассматриваемому вопросу, изложенной в данной главе. С целью восполнения этого пробела мы приводим список наиболее важных опубликованных работ [8-22]. В последних содержится достаточно обширная информация по ряду аспектов рассматриваемого процесса режимы трехфазного псевдоожижения начало полного ожижения и его зависимость от скоростей потоков ожижающих агентов, их физических свойств, а также от размеров и эффективной плотности элементов насадки динамическая высота слоя и газосодержание перепад давления в слое пределы существования трехфазного псевдоожиженного слоя интенсивность циркуляции элементов насадки в слое величина межфазной поверхности продольное перемешивание массообменная способность аппаратов с трехфазным псевдоожиженным слоем в процессах физн- -ческой абсорбции, хемосорбции и ректификации бинарных Жидких смесей. [c.675]

    Таким образом, можно нарисовать следующуну картину внутренней гидродинамики зернистого слоя. Поровое пространство слоя состоит из каверн-ячеек, соединенных узкими каналаш Е Крупномасштабные вихри, запертые в кавернах, осуществляют интенсивное перемешивание во сем их объеме, кроме застойныгх зон. В узких каналах размеры вихрей малы, поэтому вещество не переносится из одной каверны в другую против хода потока. [c.217]

    Основой для составления математического описания реакторного процесса являются уравнения, описывающие гидродинамику потоков перерабатываемых и получаемых продуктов. В зависимости от этого и классифицируются реакторы по типам. По двум основным моделям потоков различают два типа реакторовг реактор идеального перемешивания и реактор идеального вытеснения. При выборе модели потока учитываются следующие факторы [5] модель должна отражать физическую сущность реального потока при относительной простоте математической формулировки должен существовать метод либо экспериментального определения параметров модели, либо аналитического их расчета структура потоков должна быть удобна для расчета конкретного процесса. [c.21]

    Как следует из материала рассмотренной главы, применение указанной методики позволило решить ряд важных практических задач в области расчета процессов, протекающих в химико-технологической аппаратуре. Так, развит прямой метод исследования гидродинамической структуры потоков в аппаратах на основе специфических свойств неустаповивпшхся течений жидкостей и газов в насадке и пористой среде установлен характерный для насадочных колонн гидродинамический эффект, проявляющийся в наличии экстремальной зависимости статической удерживающей способности от нагрузок по фазам на аппарат созданы методики и получены расчетные формулы для определения важнейпшх гидродинамических параметров структур потоков — коэффициентов продольного перемешивания, относительных объемов проточных и застойных зон, коэффициентов обмена между проточными и застойными зонами. Результаты исследования гидродинамической структуры потоков в насадке положены в основу анализа динамики процесса абсорбции в насадочных колоннах, оценки управляемости по каналам гидродинамики и массообмена и синтеза оптимального управления этими аппаратами. [c.433]

    По существу, задача выбора оборудования решается с самого начала разработки технологической схемы уже при выборе способа реализации процесса. Задав конструкцию аппарата, тем самым выбирают семейство аппаратов, отличающихся лишь геометрическими размерами. Гидродинамика потоков внутри аппарата, его эффективность определяются конструкционными особенностями. Поэтому этап выбора оборудования не может рассматриваться обособленно, без оценки гидродинамической обстановки, условий тепломассопереноса, гидравлических расчетов. Всякий раз при изменении геометрических размеров аппарата возникает необходимость повторения указанных расчетов, поскольку меняются параметры, определяющие его эффективность (например, скорость движения фаз, продольное перемешивание и т. п.). Основой для выбора оборудования обычно являются ГОСТы, ОСТы или ведомственные нормали, определяющие стандартные ряды типового оборудования. В последнее Е ремя проводятся работы и по стандартизации гидродинами-ч[еской структуры потоков в отдельных аппаратах (например, в реакторах с мешалками), что существенно сокращает время вы-б>ора необходимого оборудования. Выбор оптимальной кон-с трукции аппарата и его типоразмеров является итерационной задачей и поэтому любая информация об эффективности в конкретных условиях эксплуатации лишь упростит процедуру расчета. [c.63]

    Руководствуясь комбинированной моделью по жидкости, соответствующей прямотоку и противотоку, и полагая, что осуществляется полное перемешивание пара в межтарельчатом просфанстве, определяли зависимости эффективности тарелок от гидродинамики и кинетики массопередачи. [c.187]

    Движущая сила тепло- и массообмена (А< и АС) в уравнениях (II.1)—(И.З) по аналогии с массопередачей (абсорбция, десорбция) определяется в зависимости от взалмного направления потоков жидкости и газа, а также от принятой гидродинамической модели перемешивания. Для пенных аппаратов, как и для других реакторов со взвешенным ( кипяш,им ) слоем, общепринятой служит схема движения потоков в виде перекрестного тока. Для перекрестного тока выведены многие теоретические зависимости, характеризующие гидродинамику пенного слоя, а также массо-и теплообмен в слое пены [178, 234, 235]. Для пенных аппаратов с переливами, т. е. при перекрестном направлении потоков на одной тарелке, движущую силу сухой теплопередачи можно определять по формуле Позина [222, 232—235]  [c.92]

    Переход от внеш.недиффузионной области во внутридиффузион-ную или кинетическую связан с линейной скоростью подаваемых реагентов на. На рис. 23 можно видеть, как влияет эта скорость на величину и в каждой области протекания процесса. В области внешней диффузии (участок I) увеличение ш ускоряет процесс участок СО параллелен оси абсцисс и соответствует внутридиффузионной или кинетической области. Далее по мере роста линейной скорости увеличивается перемешивание, снижается ДС и понижается и. Наконец, после точки Е наступает полное перемешивание, и гидродинамика процесса перестает быть связанной с его кинетикой. [c.73]

    Первая группа — гидромеханические процессы, скорость которых определяется только законами гидродинамики. К ним относятся осаждение взвешенных в н идкой или газообразной среде частиц под действием силы тяжести, центробежной силы или сил электрического поля, фильтрование жидкостей или газов через слой зернистого материала, происходящее под действием разности давлений, перемешивание в жидкой среде и др. [c.10]

    С этой точки зрения нам представлялось целесообразным написание данной монографии, обобщающей наши исследования по влиянию грайитационных сил на структурные особенности и важнейшие характеристики кипящего слоя и на пути масштабного перехода от лабораторных исследований к промышленному осуществлению процесса. Как нам представляется, отталкиваясь от этой модели, удалось внести ясность в причины и характер изменения внутренней гидродинамики кипящего слоя при масштабном переходе и получить ряд новых эмпирических корреляций для влияния масштаба на перемешивание, теплообмен, движение тел и кинетику каталитических процессов. [c.285]

    Гидромеханические процессы, скорость которых определяется законами гидродинамики — науки о движении жидкостей и газов. К этим процессам относятся перемещение жидкостей, сжатие и перемещение газов, разделение жидких и газовых неоднородных систем в поле сил тяжести (отстаивание), в поле центробежных сил (центрифугирование), а также под действием разности давлений при движении через пористелй слой (фильтрование) и перемешивание жидкостей. [c.13]

    Сопротивление движению тел в жидкостях. Проведение ряда процессов химической технологии связано с движением твердых тел в капельных жидкостях или газах. К таким процессам относятся, например, осаждение твердых частиц из суспензий и пылей под действием сил тяжести и инерционных (например, центробежных) сил, механическое перемешивание в жидких средах и др. Как отмечалось, изучение закономерностей этих процессов составляет внешнюю задачу гидродинамики. [c.95]

    Соответственно обобщенное уравненяе гидродинамики для процессов перемешивания принимает вид [c.249]

    В работе [1] была получена математическая модель, учитывающая предшествующие исследования ряда авторов школы В.В.Шестопалова. Комбинированная математическая модель [1] парожидкостных поюков, учитывает реальную гидродинамику потока жидкости на тарелках любой конструкции (ситчатые, клапанные, колпачковые и т.д.) при полном перемешивании пара в межтарельчагом пространстве. [c.169]

    Рассмотрим задачу определения коэффициента нестационарности кинетики по результатам экспериментов в реакторе непрерывного действия, гидродинамика которого описывается моделью полного перемешивания. Если математическое описание процесса, протекаюшего в этом реакторе, соответствует уравнению (X. 30), то прирашение концентрации вешества С за бесконечно малый промежуток времени йх равно [c.276]


Смотреть страницы где упоминается термин Перемешивание гидродинамика: [c.266]    [c.124]    [c.117]    [c.24]    [c.240]    [c.242]    [c.109]    [c.304]    [c.16]   
Инженерные методы расчета процессов получения и переработки эластомеров (1982) -- [ c.6 ]




ПОИСК





Смотрите так же термины и статьи:

ГИДРОМЕХАНИЧЕСКИЕ МЕТОДЫ РАЗДЕЛЕНИЯ. ГИДРОДИНАМИКА ВЗВЕШЕННОГО СЛОЯ. ПЕРЕМЕШИВАНИЕ В ЖИДКОЙ СРЕДЕ

Гидродинамика

Гидродинамика ламинарного перемешивания

Гидродинамика перемешивания в аппаратах с тихоходными мешалками

Гидродинамика перемешивания механическими мешалками



© 2024 chem21.info Реклама на сайте