Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полимеризация основные факторы, влияющие

    На выход и качество продуктов крекинга влияют следующие факторы вид сырья, состав и активность катализатора, температура и давление процесса, а также объемная скорость подачи сырья в реактор и продолжительность непрерывного крекинга без регенерации катализатора. При осуществлении каталитического крекинга применяют различные по составу и способу приготовления катализаторы. От качества применяемого катализатора, так же как и от технологического режима процесса крекинга, зависит направление химического превращения топлива. Например, при применении катализатора, состоящего в основном из А Оз и 5102, происходит расщепление и полимеризация нафтеновых углеводородов. Мелкопористые катализаторы дают большие выходы газа, так как их поверхность менее доступна для молекул исходного сырья. К тому же крупнопористые катализаторы регенерируются легче, чем мелкопористые, при минимальной потере активности. Поэтому в промышленности предпочитают применять крупнопористые катализаторы, особенно для тяжелого сырья. [c.126]


    На течение реакции полимеризации влияют следующие основные факторы  [c.105]

    На величину адгезии полимерного покрытия к подложке влияют различные факторы , в том числе молекулярный вес полимера, строение молекул, их полярность и силы молекулярного взаимодействия. При большом молекулярном весе ориентация полярных групп полимера затруднена вследствие малой подвижности макромолекул, что в особенности сказывается при получении покрытий из растворов или суспензий. А. Я. Дринберг считает, что большой молекулярный вес полимеров является основной причиной плохой адгезии некоторых полимеров к металлическим поверхностям. При нанесении же полимеров, имеющих относительно низкий молекулярный вес, макромолекулы легко ориентируются на защищаемой поверхности. Последующее оплавление и полимеризация при термообработке или действии отвердителей способствуют прилипанию пленки полимера к поверхности . Степень прилипания полимерных покрытий к твердым телам, особенно металлам, определяется интенсивностью молекулярного и химического воздействия на поверхность соприкосновения двух фаз. [c.149]

    При конечной температуре полимеризации 180 °С бромное число фракции уменьшилось всего лишь на 1,34. Содержание основных компонентов группы непредельных соединений (стирола и индена) соответственно также уменьшилось очень незначительно. Помимо того, что приведенные данные подтверждают недостаточную эффективность процесса термической полимеризации, они свидетельствуют о том, что продолжительность процесса не является тем фактором, которым можно влиять на процесс. В самом [c.126]

    Несколько факторов определяют реакционную способность контактных ионных пар компактность ионной пары, степень диссоциации и степень сольватации в переходном состоянии. При анализе результатов следует учитывать вклад реакционноспособных сольватно разделенных ионных пар, присутствующих в растворителе. Так как противоион различным образом влияет на эти факторы, может наблюдаться сложная зависимость активности от характера противоиона. В табл. УП.8 приведены аррениусовские параметры для полимеризации стирола и а-метилстирола в тетрагидрофуране [27, 31]. и данные хорошо иллюстрируют сложное влияние противоположно действующих факторов например, очень низкие значения предэкспоненциального множителя А указывают на существенный вклад сольватно разделенных ионных пар в реакцию роста. Однако выводы могут измениться эксперименты в этой области чрезвычайно трудны и данные таблицы нельзя считать абсолютно точными. Опыт многих исследователей показывает, что различные неучтенные факторы могут существенно влиять на наблюдаемые результаты, причем основной причиной недоразумений часто служат примеси, появляющиеся при разложении живущих макромолекул. [c.426]


    Заместители у одного и того же углеродного атома приводят к значительному напряжению в полимерной цепи и, следовательно, к снижению прочности С—С-связей и теплового эффекта полимеризации. Например, при переходе от метилакрилата к метилмет-акрилату (см. табл. 1.1) тепловой эффект полимернзации падает на 20Д мДж/кмоль, что увеличивает константу скорости деполимеризации при 250—260 °С на два порядка [49]. Поэтому выход мономеров при деполимеризации макромолекул с четвертичным углеродным атомом в цепи максимален [полиметакрилат, поли (а-метилстирол), полиметакрилонитрил]. При деструкции политетрафторэтилена из-за низкой подвижности атомов фтора в цепи передача цепи не происходит, поэтому распад идет преимущественно до мономера [49] . Следовательно, основными факторами, влия-ющ1им(и на механизм термодеструкции н выход мономера при пиролизе, являются теплота полимеризации мономера, наличие чет- [c.14]

    Исследование роли носителей прн использовании катализатора с Ti U [95, 98] показали, что, хотя пористая Структура влияет на активность катализатора, основным фактором, повышающим эффективность катализатора в полимеризации этилена, является химическая природа носителя. Так, активность титана в катализаторе Ti U на носителе MgO в 40 раз выше по сравнению с чистым Ti U, а на алюмосиликатном носителе — [c.89]

    В соответствии с программой, намеченной во введепип и гл. 1, мы должны теперь приступить к систематическому рассмотрению конкретных механизмов полимеризации. При этом нас будут интересовать в первую очередь внешние физические факторы, влия-юш,пе на процесс полимеризации. Напомним в связи с этим еш,е раз, что статистический анализ, в основу которого положено исследование влияния этих факторов на отношение Г(/Гр, никоим образом не отрицает возможности одновременного учета чисто кинетических факторов. Ниже мы постараемся показать, что именно в сочетании с некоторыми, правда, ограниченными (и в этом-то и заключается основное удобство статистического подхода) кинетическими измерениями можно получить наиболее полную информацию о механизме реакции. [c.113]

    Основные факторы, которые, по-видимому, могут влиять на величину теплоты полимеризации, это, во-первых, стерические затруднения в полимере и, во-вто-рых, эффекты сопряжения и сверхсопряжения в мономере и полимере. Аналогичные стерические затруднения могут оказывать влияние в любой реакции, в которой раскрывается двойная связь. Поэтому можно сравнивать величины АН для сополимеризации с тепловыми эффектами процессов гидрирования и самополимеризации. За исключением вычисленных величин теплот самополимеризации, все тепловые эффекты, приведенные в табл. 23, получены экспериментальным путем. [c.123]

    Полимеризацию пропилена в тихих разрядах исследовали также С. С. Хайн и В. Ф. Зайцева [ ]. Ими было показано, что при увеличении длительности пребывания газа в зоне разряда процент пропилена, превраш,енного в жидкие полимеры, возрастал, но содержание в конденсате легких про-дЗ ктов (выкипаюш,их до 150°) понижалось (с 68 до 50%). Эти фракции (с температурой кипения до 150°), в основном, состояли из олефинов с примесью небольших количеств парафиновых углеводородов. Изучение влияния электрического режима разряда и скорости пропускания газа привело их к выводу, что основным фактором, определяюш,им скорость и степень полимеризации пропилена, является плотность тока и что изменение электрических параметров, не приводящее к изменению плотности тока разряда, не влияет заметно на выход жидких продуктов полимеризации, их химический состав и расход энергии. [c.135]

    Важной характеристикой твердой фазы является, такнм образом, величина поверхности. Этот фактор играет действительно большую роль в стереоспедифическом катализе, в значительной сте тени влияя на основные параметры полимеризации. С другой стороны, Натта с сотрудниками показали, что а-, у- и й-формы треххлористого титана в сочетании с одним и тем же металлорганическим соединением дают практически одинаковый выход изотактического полимера (80—90%), тогда как в присутствии (3-формы образуется полимер с содержанием изотактической фракции лишь - 40% [28]. Скорость реакции и стереоизомерный состав зависят также от типа металлорганическог о ко.мпонента. Данные, полученные Натта, приведены в табл. 3.2.  [c.40]

    Вследствие равновесного характера эти реакции будут влиять друг на друга в соответствии со значениями констант равновесия. При очень высоком значении константы комплексообразования к мономера с кислотой полимеризация может вообще не идти. Для комплекса ИБ-А1Вгз константа к =620 см моль и полимеризация имеет место [194]. Связывание кислоты Льюиса в комплексный анион уменьшает концентрацию ее и замедляет инициирование. При достаточно высокой основности мономер может замещать кислоту Льюиса из сопряженного аниона. Вполне очевидно, что простое изменение концентрации мономера (исходной или в ходе реакции) также влияет на равновесие. Подобные взаимодействия свидетельствуют о важности самых различных факторов в инициировании полимеризации, в частности состава и порядка формирования каталитических систем, природы растворителя, температуры и т.д. [c.71]


    Технологические средства решения перечисленных задач непрерывно развиваются, но в основном они давно определились. Это известный набор процессов висбрекинг, каталитический крекинг, каталитический риформинг, гидрокрекинг, алкилирование, полимеризация, изомеризация, гидроочистка, коксование, газификация остатков. Ввод этих процессов усложняет технологическую структуру НПЗ, делает ее более гибкой н адан гируе] к рыночным условиям. Степень ее совершенства становится показателем технической подготовленности НПЗ к выпуску продукции, удовлетворяющей требованиям рынка. Вместе с тем она существенно влияет на экономическую эффективность производства нефтепродуктов. Поэтому перспективная стратегия должна разрабатываться в единстве двух аспектов технологического и экономического. Если в первом из них налицо полная определенность, то второй изучен недостаточно. Иногда наблюдается тенденция к снижению уровня рентабельности продукции и капитала по мере углубления переработки нефти, в других случаях дело обстоит наоборот. Действует сложная система взаимосвязей технологических и экономических факторов, которая может приводить к неоднозначным результатам при различных стратегиях развития технологической схемы НПЗ. Поэтому при формировании концепции структурной модернизации отрасли необходима опора на систему показателей, позволяющих оценить фактически сложившуюся технологическую структуру в сравнении с образцовым нефтеперерабатывающим комплексом, который соответствует выявленной общемировой тенденции. Они могут найти применение для выбора рациональной последовательности ввода прогрессивных процессов в схему конкретного НПЗ. Методически важно упорядочить анализ взаимосвязи структурно-технологических усовершенствований и их экономических последствий с помощью специального показателя. Желательно, чтобы он компактно, информативно, в то же время теоретически обоснованно и реалистически характеризовал экономическое преимущество той или иной технологической структуры предприятия. Очень известный емкий показатель глубины переработки нефти на эту роль не вполне подходит, поскольку различные процессы, направленные на его увеличение, неравнозначны в экономическом отношении они дают разные приросты прибыли или чистой продукции (ЧП) на каждый процент их мощности, исчисленный относительно мощности первичной переработки нефти. К тому же показатель глубины переработки нефти не отражает многих прогрессивных изменений в структуре технологических процессов. Это видно из способа его расчета  [c.446]

    В связи с этим следует подчеркнуть, что строение мономера совершенно различным образом влияет на скорость роста цепи при полимеризации в присутствии радикальных инициаторов комплексных металлоорганических и катионных катализаторов. По-видимому, наиболее чувствительны к воздействию стерических факторов комплексные металлоорганические катализаторы. Роль пространственных факторов в катионной полимеризации окончательно еще не выяснена [599]. По мнению Овер-бергера [600], катионная полимеризация отличается от свободнорадикальной тем, что реакционная способность мономеров определяется в основном электронной плотностью на двойной связи, тогда как пространственные затруднения играют второстепенную роль. Отчасти это может быть связано с различной геометрией актов роста цепи (схема (I) на стр. 119) [601]. [c.118]

    Образование макромолекулы путем полимеризации мономерного соединения является наиболее важной реакцией для всех мономеров вообще. Начиная с двадцатых годов нашего столетия в специальной литературе публикуются в неизменно возрастающем количестве как оригинальные работы, так и патентные заявки, касающиеся этой реакции. Правила, которым подчиняется реакция полимеризации, многие другие данные, вытекающие из этих работ и касающиеся механизма полимеризации, и особенно факторы, которые влияют па ее скорость, течение и результат, равно как и описания различных способов полимеризации в промьшшенности пластических масс, были обобщены в ряде обстоятельных монографий отечественных и ипострапиых авторов. Из них мы цитируем лишь самые новейшие работы [614—616]. Поэтому в дальнейшем изложении читатель нахщет лишь отдельные и краткие соображения о механизме иолимеризации и о других наиболее важных связанных с ней обстоятельствах. Чаще мы ссылаемся на цитируемые работы и ограничиваемся, скорее, перечислением некоторых основных понятий. [c.137]

    Сопоставим теперь некоторые данные табл. П-4 и П-5. Легко увидеть несоответствие между относительной активностью различных ЭД как комплексообразующих агентов и вызываемыми ими кинетическими эффектами значения к возрастают в сопоставляемых системах несравненно сильнее, чем доля соответствующего связанного ЭД. Следовательно, наблюдаемые различия обусловлены главным образом зависимостью характера изменения исходного металлоргани-ческого агента при комплексообразовании от природы ЭД. По-видимому, каталитические количества относительно слабых оснований Льюиса (КаО, ТГФ), воздействуя на состояние активной связи С—М1, лишь в ограниченной степени влияют на диссоциацию ассоциированных форм металлорганичееких соединений. Для ЭД высокой основности (тетраметилэтилендиамин и др.) необходимо учитывать возможность более существенного возмущения указанной активной связи, резкого понижения акцепторных свойств противоиона и, вследствие этого, значительного — вплоть до полного — превращения исходного соединения (КМ1) в мономерную форму КМ1-В. С этой точки зрения основной причиной, обусловливающей особенно сильное влияние определенных ЭД на кинетику полимеризации, может оказаться существенное возрастание числа действующих активных центров. Точное определение относительного вклада каждого из отмеченных факторов в суммарный результат пока не представляется возможным. [c.60]

    Присутствие стехиометрических по отношению к инициатору количеств комплексообразующих агентов часто вызывает заметное увеличение скорости полимеризации, обусловленное прежде всего образованием комплексов RMt-D и M Mt-D. Это явление, рассмотренное уже на примерах полимеризации неполярных мономеров, имеет в данном случае ту особенность, что полярные мономеры способны успешно конкурировать с независимыми электронодоно-рами, если основность последних недостаточно велика. Роль относительной основности мономера и агента D как фактора, определяющего конечный результат, усугубляется частым для таких систем условием [М] > [D]. Поэтому неудивительно, что ТГФ, который уже при отношении к бутиллитию 1 1 заметно влияет на полимеризацию бутадиена (см. стр. 58), не оказывает подобного действия на полимеризацию акрилонитрила при том же отношении реагентов. Для этого мономера существенное активирование процесса достигается при использовании в качестве агентов D таких сильных оснований Льюиса, как диметилформамид и диметилсульфоксид, что установлено на примере магнийорганических инициаторов [48]. [c.82]

    Зосс (50] нашел, что менее активные мономеры, такие, как винилметиловый эфир, не вступают в полифазную полимеризацию, однако способные к кристаллизации полимеры можно получить, если в систему добавлять активаторы , такие, как хлороформ или хлористый метилен. Окамура и сотр. [51 ] изучали полимеризацию винилметилового эфира под действием эфирата фтористого бора при —74° в смешанных растворителях н-гексан — толуол и н-гексан — хлороформ, которые по существу являются смесями осадитель — растворитель для поливинилметилового эфира, получающегося в реакции, причем н-гексан является осадителем. Было найдено, что полимеризация начинается, когда к гексану добавлено 15% хлороформа или 30% толуола, и протекает гетерогенно, причем основной функцией активатора является растворение полимера с поверхности катализатора. Важным наблюдением явилось то, что при высоких отношениях растворителя к оса-дителю полимеризация протекает гомогенно с образованием все того же изотактического полимера, имеющего рентгенограмму волокна, аналогичную рентгенограмме изотактического поливинилизобутилового эфира. В ходе исследований [51, 53] оказалось возможным так подобрать условия, чтобы полимеризация винилизопропилового и винилизобутилового эфиров в чистом н-гексане протекала гомогенно при —78°. Например, капельное прибавление эфирата фтористого бора к раствору мономера в н-гексане приводит к гетерогенной системе, тогда как если мономер добавляют к раствору фтористого бора в н-гексане, происходит гомогенная полимеризация, приводящая к образованию также изотактического полимера. По сравнению с метил- и изобутилвиниловыми эфирами н-бутил-, изопропил- и этилвини-ловые эфиры дают полимеры с более низкой степенью кристалличности [54]. Не ясно, в какой степени этот эффект обусловлен упаковкой боковых групп и в какой степени он отражает различие в стереорегулярности полимерных цепей. Повышение температуры и увеличение диэлектрической проницаемости растворителя приводят к уменьшению молекулярного веса и изотактичности поливинилизобутилового эфира [53]. Прибавление передатчиков цепи уменьшает молекулярные веса, не влияя на изотактический характер полимера. Стереоспецифическая природа полимера зависит от применяемого катализатора. Хигасимура и сотр. [55] рассмотрели стереоспецифи-ческую полимеризацию, исходя из электростатических факторов и перекрывания орбит, связанных со стабилизацией переходного состояния полимерный карбониевый ион — противоион — мономер. Фактор перекрывания орбит при этом является направляющим, определяя стереоспеци-фический характер присоединения мономера. Эти рассмотрения находятся в согласии с общим стремлением приписывать стереорегулирующую функцию молекулярным свойствам, а не наличию поверхности, разделяющей фазы [c.338]

    Чистота дивинила является одним из наиболее существенных факторов, обусловливающих ход и результаты полимеризации. Вообще надо сказать, что существует обширная группа веществ, сравнительно мало влияющих на полимеризацию дивинила натрием, если концентрация их не очень велика. Таковы, например,, бутилены или эфир. При высоких концентрациях (больше Юо/о) эти вещества, в основном, влияют на реакцию, как разбавители. Наряду с ними имеются вещества, активное действие которых проявляется даже в ничтожных концентрациях. Имеется [16] сводка результатов (табл. 48) многочисленных исследовательских работ, посвященных действию разных примесей к дивинилу при полимеризации металлическим натрием. Работы были выполнены группой исследователей в составе Якубчик, Симховича, Калачевой, Кру-пышева. Данные о влиянии ацетилена, окиси углерода и двуокиси углерода получены Коблянским, Лившицем, Христиансеном и Ро-китянским [211. [c.300]

    Чистота дивинила является Ъдним из наиболее существенных факторов, обусловливающих ход и результаты полимеризации. Вообще надо сказать, что существует обширная группа веществ, сравнительно мало влияющих на полимеризацию дивинила натрием, если концентрация их не очень велика, например, бутилены или Эфир. При высоких концентрациях (больще 10%) эти вещества, в основном, влияют на реакцию как разбавители. Наряду с ними имеются вещества, активное действие которых проявляется даже в ничтожных концентрациях. Имеется [30] сводка результатов (табл. 36) многочисленных исследовательских работ, посвященных действию разных примесей к дивинилу при полимеризации металлическим натрием. Работы были выполнены [c.352]

    Но прежде чем осваивать способы перевода кристаллической целлюлозы в аморфную, следует выяснить, как влияет кристалличность целлюлозы на эффективность ее ферментативного гидролиза Эта задача была также рещена и к тому же в более комплексном виде. Вопрос был поставлен следующим образом как воздействуют основные структурные факторы целлюлозы — ее удельная поверхность (т. е. поверхность, приходящаяся на 1 г материала), размеры частиц, степень полимеризации и степень кристалличности — на скорость ферментативного гидролиза  [c.37]


Смотреть страницы где упоминается термин Полимеризация основные факторы, влияющие: [c.30]    [c.41]    [c.170]   
Химия и технология искусственных смол (1949) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

влияющие фактор



© 2025 chem21.info Реклама на сайте