Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сорбционный IV группы

    Методы очистки газов от сероводорода можно разделить на две основные группы сорбционные и каталитического окисления. [c.51]

    В технологии нефтепереработки известно много методов очистки бензиновых дистиллятов. Конечная цель всех их — удаление из бензина веществ, понижающих химическую стабильность и антидетонационные свойства бензинов и повышающих коррозионность. Эти методы основаны ка некоторых физико-химических или химических процессах. К группе физико-химических процессов относятся сорбционные, в частности адсорбционные (например, очистка отбеливающими землями), или связанные с различной растворимостью отдельных компонентов бензина в растворителях (экстракционные и др.). [c.72]


    По данным работы [655], диэлектрическая изотерма сорбции воды на торфе также является ломаной линией. На основе калориметрических сорбционных опытов было высказано предположение, что первым двум участкам изотермы отвечает различная энергия связи молекул с центрами сорбции, а третьему, с наибольшей производной е7 а, — образование в процессе сорбции водородных связей между сорбированными молекулами. Существенно, что при критической величине сорбции ао обнаруживается резкое увеличение коэффициента диэлектрических потерь е", обусловленное, по-видимому, значительным возрастанием электропроводности материала вследствие образования цепочек из сорбированных молекул и функциональных групп сорбента — карбоксильных (СООН), гидроксильных (ОН) и других полярных групп. При этом предполагалась возможность эстафетного механизма переноса протона вдоль цепочек, что обусловливает значительное возрастание е и е". Наличие протонной проводимости и протонной поляризации позволяет объяснить не только большие величины с1г /<1а, но и частотную зависимость критической гидратации Со, обнаруженную для ряда сорбентов [646, 648]. Здесь необходимо отметить, что при измерении диэлектрических характеристик применяются слабые электрические поля, которые не могут повлиять на про- [c.245]

    Термодинамические и кинетические представления о процессе проницания газов через мембраны опираются прежде всего на понятия о формах энергетического взаимодействия проникающих газов с матрицей и о механизме массопереноса. Оба критерия позволяют провести довольно детальную классификацию газоразделительных мембран, однако целесообразно ограничиться главными признаками. Все мембраны в зависимости от возможности фазового массопереноса можно разделить на две группы —с пористой и сплошной матрицей. По энергетическому критерию можно выделить четыре типа мембранных систем пористые газодиффузионные и сорбционно-диффузионные, непористые сорбционно-диффузионные и реакционно-диффузионные. [c.13]

    Сорбционная способность катализатора по отношению к различным веществам или функциональным группам является важным показателем, учет которого при выборе контакта служит [c.470]

    При этом предполагается, что процесс проникновения влаги в полимер не осложнен сильным взаимодействием между молекулами воды и функциональными группами в полимере, а сорбционное равновесие устанавливается достаточно быстро. [c.26]

    Полимер Функциональная группа Т°С, разл. ИК-спектр. см 1 Сорбционные характеристики Литература [c.29]


    Изучение процессов получения сорбентов и катализаторов. Существует большое внутреннее сходство процесса выщелачивания минералов, стекол или сплавов с внешне непохожим на него процессом активирования угля. Как в том, так и в другом процессе из состава сложного вещества путем удаления менее прочно связанных атомов или атомных групп выделяется более простое вещество, обладающее повышенной сорбционной, а также каталитической активностью. Данное вещество является не чем иным, как освобожденным остовом структуры исходного твердого вещества, претерпевающим при выделении лишь некоторую перестройку, обычно направленную на соединение цепей в ленты, лент — в сетки и, сеток — в каркасы, т. е. на повышение мерности остова. Выщелачивание, обжиг, вообще извлечение Остова из структуры исходного вещества, как нетрудно было заметить, является далеко не единственным путем получения активных твердых тел, обладающих каркасным строением. [c.64]

    А. В. Киселев показал, что специфические сорбционные свойства силикагеля определяются гидроксильным покровом его поверхности. По своему химическому строению активный кремнезем — это поликремниевая кислота, т. е. высокомолекулярное соединение, имеющее кремнекислородный остов, функциональными группами которого служат гидроксильные группы. [c.65]

    Остовная гипотеза. Обобщая данные синтеза, химического и рентгеноструктурного анализов, сорбционного исследования и данные исследований химических превращений активных твердых тел в свете теории поверхностных химических соединений, можно заключить, что строению поглотителей и катализаторов свойственны определенные характерные черты, общие для этих активных твердых тел. Независимо от того, получено ли данное активное твердое тело путем соединения или химического извлечения (см. выше), в его строении-всегда можно различить остов и облекающие остов атомы и группы атомов. Наличие остова и сообщает строению катализаторов ту устойчивость подвижного атомного равновесия , которому придавал большое значение Д. И. Менделеев. [c.71]

    Многие виды диэлектриков, особенно пластмассы, в большей или меньшей степени гидрофобны, т. е. не смачиваются водой. Поэтому гидрофилизация поверхности большинства диэлектриков является основной задачей, решаемой на стадии первичной обработки поверхности. Наиболее эффективными способами придания поверхности диэлектрика гидрофильных свойств считаются травление в органических растворителях и обработка в растворе окислителей. Органический растворитель разрыхляет поверхностный слой диэлектрика, вызывая его набухание, что ослабляет связи между полимерными цепями в приповерхностном слое. Окислительная обработка, проводимая после стадии набухания, резко повышает сорбционную способность поверхности диэлектрика. Это происходит главным образом за счет увеличения хемосорбционной поверхностной активности, которая обусловлена, с одной стороны, увеличением гидрофильности поверхности ( прививка активных групп), с другой стороны, разрывом связей типа С=С и С=-0 в результате воздействия на молекулы мономеров сильного окислителя. Так, обработка стеклотекстолита в растворе, содержащем перманганат калия и фосфорную кислоту, приводит к повышению адсорбции палладия на его поверхности в четыре раза, а обработка в растворе, содержащем хромовый ангидрид и серную кислоту, увеличивает сорбционную способность поверхности стеклотекстолита более чем в 10 раз. [c.97]

    Способы получения ТПС можно разделить на две основные группы образование ТПС в результате реакции химического осаждения из раствора, содержащего ионы осаждаемого металла и сульфидирующий агент сорбционные способы, основанные на сорбции поверхностным слоем диэлектрика малорастворимых веществ, например гидрооксидов электроотрицательных металлов, и преобразовании их в сульфиды металлов на поверхности диэлектрика. [c.99]

    Образованию весьма прочных многоточечных (хелатных) комплексов способствует то, что полипептидные цепи белка и особенно боковые группы аминокислотных остатков, находящихся в поверхностном слое, не зафиксированы слишком жестко и обладают определенной подвижностью (гибкостью). В результате обеспечивается возможность пространственной настройки отдельных сорбционных участков глобулы на соответствующие (связываемые ими) фрагменты сорбируемой молекулы. Иными словами, сорбционный участок глобулы в принципе способен принять конфигурацию, несколько отличную от равновесной [c.23]

    Практически неограниченная возможность синтеза и модификации полимерных молекул позволяет сочетать в пределах одной макромолекулы различные функциональные группы, необходимые для создания как сорбционного, так и каталитического участков активного центра,. Такую задачу, однако, можно решить лишь в том случае, если удастся синтезировать полимер с определенной третичной структурой, одинаковой для всех макромолекул и стабильной во времени. Вопрос о принципиальной возможности построения таких систем рассмотрен В. А. Кабановым [62]. [c.104]


    Характерная особенность структуры мицелл — это гидрофобное ядро, образованное углеводородными цепями молекул ПАВ, окруженное гидрофильным слоем их головных групп. Этим создается некоторое подобие мицеллярной структуры со структурой глобулярных белков (см. гл. I). Однако если белковая глобула — это относительно жесткое и весьма неоднородное образование, то мицелла ПАВ, напротив, носит псевдожидкий характер [1001 и образована совершенно идентичными молекулами ПАВ. Хотя эти различия и накладывают существенные ограничения на использование мицелл как моделей ферментов [1011, с другой стороны, именно благодаря простоте в построении мицелл в мицеллярных системах наиболее четко и достоверно могут быть прослежены такие эффекты, как стабилизация переходного состояния химической реакции за счет дополнительных сорбционных взаимодействий (или же сближение реагентов при их концентрировании), далее сдвиг р/Са реагирующих групп и влияние микросреды на скорость реакции. [c.115]

    Сорбционная область в данном случае представляет собой фрагмент поверхностного слоя белка, напоминающий мицеллу ПАВ (где гидрофобные цепи экранированы от воды полярными группами, см. 6 гл. III). [c.145]

    Пространственное взаимоотношение сорбционной гидрофобной области в активном центре и каталитически активных групп  [c.147]

    Практически это может означать, что ионогенные группы, контролирующие ферментативную реакцию, входят в состав каталитического, а не сорбционного участка активного центра. [c.220]

    Зависимость скорости ферментативной реакции от pH типа (10.8) может соответствовать случаю, когда ионогенные группы активного центра входят в состав сорбционного участка фермента, и не принимают участие в последующей каталитической стадии. [c.221]

    Бентонит — осадочная порода, состояш,ая в основном из глинистых минералов группы монтмориллонита кроме них в бентонитах содержатся также гидрослюды, каолинит, сепиолит, палыгорскит и др. Отличается высокой дисперсностью, пластичностью, способностью к катионному обмену, сорбционными свойствами. Синонимы — бентонитовая глина, отбеливающая глина, местные названия — кил, асканит, гумбрин и т. д. [c.178]

    До сих пор мы говорили о физических эффектах. Но в изобретательстве важное значение имеют и химические эффекты и приемы. Один из них решает задачу 9.6 множество мелких частиц гидроокиси надо закрепить на большой полимерной молекуле- (а. с. 412150). Противоречие преодолено Частицы гидроокиси остаются мелкими и сохраняют большую суммарную поверхность, необходимую для сорбции. А группа частиц, закрепленная на полимерной молекуле, становится достаточно большой и потому удобной для отлавливания после очистки воды. Знакомые, в общем, механизмы переход к полисистеме, разделение противоречивых свойств между системой и ее элементами. Но все происходит на химическом (молекулярном) уровне и с участием чисто химического фактора — способности полимерной молекулы удерживать мономолекулы гидроокиси, не снижая их сорбционных свойств. [c.166]

    Сорбционную очистку сточных вод от ПАВ с помощью ионообменных смол широко применяют для очистки промышленных сточных вод. Р1онообменные материалы — твердые, не растворимые в воде вещества, в структуру которых входят группы атомов, песуииш электрический заряд, скомпенсированный подвижными ионами иротивополож1юго знака. Эти противоионы способны замещаться поиамп того же знака, находящимися в растворе. Ионообменные процессы с участием ПАВ отличаются рядом специфических свойств, не характерных для ионного обмена неорганических веществ  [c.219]

    Состав элюата непрерывно контролируют детектором. Детекторы в жидкостных хроматографах можно объединить в следующие группы 1) оптические детекторы, составляющие около 92% всех применяемых детекторов (абсорбционные, люминесцентные, рефрактометры) 2) электрохимические детекторы (потенциометрические, по электропроводности, амперометрические и др.) 3) другие детекторы (транспортные, газовые, микроад-сорбционные). [c.204]

    Конструкция плавающего механизированного нефтесборщика сорбционного типа защищена патентом Российской Федерации по большой группе отличительных признаков. В частностп, рекомендуется снабжать нефтесборщик комплектом съемных нефтепоглощающих оболочек для оптимизации процесса сбора с поверхности воды слоев нефти различной толщины, толщина нефтепоглощающей оболочки лишь в 2-3 раза должна превышать толщину слоя нефти. Желательна установка на нефтесборщике многоскоростного редуктора для обеспечения оптимального числа оборотов барабанов п. При полном погружении нижней части нефтемо1 лощающей оболочки толщиной h в слой нефти на поверхности воды при отсутствии соприкосновения оболочки с поверхностью воды [c.159]

    Бентонитовые глины также показали способность эффективно поглощать из воды органические красители основного типа. Сорбционная активность глинистых минералов, как было сказано выше, определяется наличием у сорбентов пор разных типов, и соответствующей принадлежностью шне рала к определенному структурному типу. Разная сорбционная активность бентонитов и глауконита в одашх и тех же процессах соответствует произведенному распределеншо их в разные структурные группы. Более жесткая структура решетки глауконита ограничивает его сорбционные способности по сравнению с бентонитами, особенно клслотноактивированными. Кислотная же активация глауконита не эффективна. [c.106]

    С другой стороны, эти ферменты сильно различаются по специфичности их действия. Так, сериновые протеазы а-химотрипсин и эластаза осуществляют гидролиз пептидной связи, образованной аминокислотой, содержащей в положении гидрофобную боковую группу R при этом специфичность а-химотрипсина определяется объемным гидрофобным радикалом в молекуле субстрата (типа боковой группы фенилаланина, триптофана), а для эластазы — метильной группой аланина. Механизм наблюдаемой специфичности обусловлен весьма незначительными различиями в строении активных центров этих двух ферментов. По данным рентгеноструктурного анализа, в активном центре а-химотрипсина имеется довольно вместительный гидрофобный карман , где связывается ароматическая боковая группа гидролизуемого пептида (рис. И, а ср. с рис. 9). В активном центре эластазы размеры сорбционной области, где происходит связывание метильной группы субстрата (рис. 11, б), намного меньше, чем в случае а-химотрипсина. Это вызвано тем, что вместо Gly-216 и Ser-217 см. рис. 9) в соответствующих положениях эластазной пептидной цепи расположены более объемные остатки треонина и валина [3]. [c.35]

    В общем случае значение а — это характеристика сорбционной способности активного центра данного фермента. Если а <С 1 (как, например, в рассмотренном катализе (3-галактозидазой), то субстратная группа К, по-видимому, либо погружаетгя (переносится из воды) в органическую среду белка не полностью, либо связывание ее требует термодинамически невыгодных затрат на конформационное изменение структуры того или другого реагента. Гидрофобное ферментсубстрат-ное взаимодействие может быть термодинамически более выгодным, чем это предполагает простая экстракционная модель (где а= 1). В этом случае активный центр должен содержать локальный участок с относительно невыгодной поверхностной энергией пограничного слоя белок — растворитель например, с гидрофобными боковыми группами [c.44]

    Нерешен также и вопрос о ковалентном катализе. В ряде ферментативных реакций образуются промежуточные соединения с ковалентной связью между ферментом и субстратом [29, 48, 49]. В качестве примера можно указать на протеазы, где в ходе ферментативной реакции образуется ацилфермент (см. гл. IV). Трудно сказать, почему реакция не протекает прямо, а идет через образование промежуточного соединения с ферментом (или коферментом). В этом отношении Дженкс [29] указал, что именно здесь могут быть заложены важные химические закономерности ферментативного катализа, которые в настоящее время почти или вообще не поняты . Не исключено, однако, что причина простая, а именно, что в ковалентно-связанном промежуточном соединении легче, чем в сорбционном фермент-субстратном комплексе, реализуются различного рода механизмы напряжения, которые позволяют использовать свободную энергию сорбции химически инертных субстратных фрагментов на ферменте на понижение активационного барьера скоростьлимитирующей химической стадии (см. 4 этой главы). Возможно, наличие промежуточных соединений в ферментативных механизмах отражает лишь сложную картину участия в реакции большого числа функциональных групп, многие из которых вообще склонны образовывать ме-тастабильные продукты (как, например, имидазольная группа [29]). Иными словами, образование промежуточных соединений хотя и сопровождает ферментативный катализ, но, возможно, не имеет прямого отношения к наблюдаемым ускорениям. [c.66]

    Доминантную роль в нековалентном связывании субстрата на ферменте играет сорбционное взаимодействие с белком боковой группы К (табл. 28). Из таблицы видно, что введение углеводородной группы СбНзСНг— как в молекулу метилацетата (при переходе к метилгидро-циннамату), так и в молекулу метилацетурата (при переходе к М-аце-тил-L-фeнилaлaнинaтy) обуславливает увеличение константы сорбции К7, М ) примерно на 2 порядка. С другой стороны, наличие в молекуле субстрата достаточно объемной углеводородной группы К приводит также и к ускорению на несколько порядков химических стадий ферментативной реакции. [c.134]

    В итоге сорбционных взаимодействий между боковыми химически инертными группами субстрата и комплементарными участками активного центра происходит связывание субстратной молекулы на ферменте в положении, стереоспецифически ориентированном по отношению к нуклеофилу активного центра (как это показано на рис. 33). Силы сорбции стабилизируют тем самым переходное состояние реакции и приводят поэтому к ее ускорению (см. гл. II, схема 2.10). [c.135]

    Механизм ускорения удалось вскрыть при исследовании температурной зависимости ферментативной реакции [70, 71]. На рис. 35 приведены активационные параметры стадии гидролиза для двух рядов ацилферментов (уравнение 4.6). Из этих данных видно,, что реакции гидролиза ацилхимотрипсинов, содержащих в субстратном остатке ту же самую группу К, протекают с почти одинаковой энтальпией активации. В то же время наличие в субстратном остатке а-ацетиламидной Труппы приводит к выигрышу в энтропии активации порядка 10—12 кал/моль/град (42—50,4 Дж/моль/град). Этот результат показывает, что активный центр выступает в роли энтропийной ловушки субстрата. Иными словами, энтропийный характер ускорения реакции, наблюдаемого в случае специфических субстратов, подтверждает представление о том, что сорбционное взаимодействие между а-ацил- [c.137]

    Это интересное явление еще не нашло достоверной физико-химической трактовки. Можно лишь полагать, что причины его заложены в том, что сложноорганизованный (микрогетерогенный) и относительно жесткий сорбционный участок активного центра в отличие от жидких экстракционно-адсорбционных моделей представляет собой (если рассматривать это явление в высшей степени формально) как бы щипцы , которые в результате гидрофобных взаимодействий ухватывают в молекуле ингибитора лишь ее гидрофобный остов, центральной группой которого является плоское ароматическое ядро. Эта гипотеза находит отражение в молекулярной модели активного центра, предложенной Блоу с сотр. [66] на основании результатов рентгеноструктурного анализа кристаллического химотрипсина (см. рис. 9). Как уже отмечалось, форма полости делает возможной лишь одну, строго определенную ориентацию плоскости ароматического кольца. [c.141]

    Для получения хирального адсорбента можно воспользоваться не только описанной выше химической, но и сорбционной иммобилизацией соответствующего лиганда. Для усиления сорбции в этом случае надо, с одной стороны, ввести в лиганд достаточно длинную н-алкильную цепь (например, использовать М-алкилзамещенную -аминокислоту), а с другой стороны, использовать силикагель с химически привитыми к его поверхности также длинными н-ал-кильными цепями, например по рассмотренной схеме (5.10) реакции силанольных -групп поверхности кремнезема с монохлордиме-тил-н-октадецилсиланом. В результате конформационной подвижности н-алкильные цепи лиганда проникают в слой н-алкильных же подвижных цепей, привитых к поверхности кремнезема, и достаточно прочно удерживают лиганд. Комплексообразующие ионы меди в этом случае должны находиться в элюенте и образовывать комплексы с одной стороны с иммобилизованными лигандами и, с другой стороны, с лигандами, содержащимися во вводимой смеси. Так, например, силикагель с химически привитыми н-алкильными цепями сорбирует У-гептил-1-гидроксипролин (С7-1.-Нур). На рис. 5.12 приведена схема полученного так хирального лигандообмен- [c.107]

    Набухающие полимеры и пористые полимеры с жестким скелетом. Давно известны многие органические набухающие сорбенты— природные, например крахмал и целлюлоза, и синтетические. Среди последних широкое применение в аналитической практике для препаративного выделения различных ионов и устранения жесткости воды приобрели набухающие в водных растворах полимеры, содержащие функциональные группы, способные к ионному обмену — иониты. В сухом состоянии такие полимеры практически не имеют пор. Если эти полимерные сорбенты содержат полярные функциональные группы, например гидроксильные (целлюлоза, крахмал), амино- (многие аниониты) и сульфогруппы (катиониты), то они сорбируют пары таких полярных веществ, как спирты и особенно вода. Эта сорбция сопровождается набуханием полимера, что проявляется как в увеличении его объема, так и в обширном сорбционном гистерезисе. В отличие от капиллярно-конденсационного гистерезиса в адсорбентах с жестким скелетом, начинающегося при достаточно высоких относительных давлениях пара после обратимой начальной части изотермы адсорбции (см. рис. 3.4, 3.5 и 5.2), сорбционный гистерезис в органических набухающих сорбентах простирается вплоть до относительного давления пара р1ро = 0. [c.112]


Смотреть страницы где упоминается термин Сорбционный IV группы: [c.182]    [c.581]    [c.471]    [c.189]    [c.99]    [c.176]    [c.135]    [c.28]    [c.113]    [c.72]    [c.37]    [c.43]    [c.69]    [c.107]   
Аналитическая химия (1980) -- [ c.191 ]




ПОИСК







© 2025 chem21.info Реклама на сайте