Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Теплопередача основные определения

    Основная задача теплового расчета теплообменника заключается в установлении величины общего коэффициента теплопередачи /С, определяемого уравнением (6.2). Поскольку при определении /С термические сопротивления загрязнений г 1 оцениваются ориентировочно (см. табл. 7 приложения), частные коэффициенты теплоотдачи а допустимо рассчитывать по упрощенным формулам. Такой подход значительно упрощает методику инженерных расчетов теплообменной аппаратуры и облегчает программирование задач в случае их решения с использованием ЭВМ. [c.149]


    Задачей теплового расчета теплообменника является определение поверхности теплообмена совместным решением уравнений теплопередачи и теплового баланса при заданных расходах теплоносителей и температурных условиях. Вначале необходимо выбрать конструкцию аппарата и иметь сведения об основных размерах типовой аппаратуры, применяемых на практике скоростях теплоносителей и т. п. Тепловой расчет обычно включает  [c.145]

    Теплопередача внутри пористого зерна катализатора определяется некоторым эффективным коэффициентом теплопроводности так же, как диффузия — эффективным коэффициентом диффузии данного вещества. Конечно, неренос тепла идет в основном через твердую фазу, в то время как перенос вещества — только через норы. Вопрос о том, как связана эффективная теплопроводность со структурой пор и свойствами твердой фазы, обсуждается в главе 5 книги Петерсена (см. библиографию, стр. 147) здесь мы только отметим, что коэффициент теплопроводности может быть определен таким образом, что тепловой поток через единичную площадку внутри частицы будет пропорционален градиенту температуры по направлению нормали к этой площадке с коаффициентом пропорциональности к . [c.142]

    Расчет теплообменного аппарата включает определение необходимой поверхности теплопередачи, выбор типа аппарата и нормализованного варианта конструкции, удовлетворяющих заданным технологическим условиям оптимальным образом. Необходимую поверхность теплопередачи определяют из основного уравнения теплопередачи  [c.20]

    Решение задачи теплообмена между двумя теплоносителями, разделенными теплопередающей стенкой (например, между горячей и холодной водой, между конденсирующимся паром и нагреваемым газом и т. д.), сводится в основном к определению коэффициента теплопередачи к. При этом необходимо во всех случаях отдельно определить три величины, которыми характеризуется ко- [c.165]

    Расчет испарителя в основном заключается в определении поверхности теплообмена в соответствии с определенным коэффициентом теплопередачи и найденной средней разностью температур рассола и хладагента. [c.388]

    Детектор по теплопроводности — катарометр является дифференциальным концентрационным детектором. Принцип его действия основан на том, что нагретое тело теряет теплоту со скоростью, зависящей от теплопроводности окружающего газа. Поэтому скорость теплопередачи может быть использована для определения состава газа. Основными процессами, при которых происходит унос теплоты, является вынужденная конвекция и передача теплоты газовому потоку, которая зависит от теплопроводности газа. Поэтому в качестве газа-носителя при работе с катарометром следует применять [c.41]


    Для расчета теплообменников необходимо, прежде всего, определить требующуюся поверхность нагрева, величина которой зависит от коэффициента теплопередачи, а последний от физических свойств обменивающихся теплом сред. Известно, что основную трудность в нахождении общего коэффициента теплопередачи представляет определение частных коэффициентов теплоотдачи, связанное с замерами температуры поверхностей теплопередающих стенок. Для этой цели в стенку трубы или пластины обычно заделывают большое количество термопар, монтаж которых затруднен особенно в случае, если стенка тонкая ( 1—1,5 мм). [c.78]

    Теплообмен. В сложном явлении теплопередачи основным процессом, зависящим от величин коэффициентов переноса т . К, является конвективный теплообмен. Используются различные подходы при определении конвективных тепловых потоков. [c.79]

    При значительно отличающихся друг от друга значениях коэффициентов теплоотдачи а необходимо возможно точнее установить величину меньшего коэффициента, так как в этом случае от него в основном зависит точность определения коэффициента теплопередачи к. [c.155]

    Детонационное сгорание сопровождается повышением дымности отработавших газов и увеличением их температуры в цилиндрах двигателя. Главная опасность детонации заключается в повышении передачи теплоты от сгоревших газов к стенкам камеры сгорания и днищу поршня. Повышенная теплопередача приводит к местному перегреву двигателя, может вызвать отдельные разрушения камеры сгорания и днища поршня. Первоначально они выражаются в появлении на поверхности металла небольших щербинок. Часто при этом происходит разрушение кромок прокладки между цилиндром и головкой, завершающееся ее прогоранием. Характерно, что такие разрушения появляются во вполне определенных для данного двигателя местах. Следует отметить, что еще до появления каких-либо видимых разрушений работа двигателя с детонацией приводит к повышенному износу основных деталей. В некоторых случаях долговечность двигателя снижается в 1,5-3 раза. Перегрев двигателя от детонации способствует нарушению его теплового режима и ведет к перерасходу топлива. [c.160]

    Определение поверхности теплообмена Р аппарата обеспечивающей передачу требуемого количества тепла в заданное время. Величина поверхности теплообмена определяется скоростью теплопередачи, зависящей от механизма передачи тепла — теплопроводностью, конвекцией, излучением и их сочетанием друг с другом. Поверхность теплообмена находят из основного уравнения теплопередачи, [c.261]

    В книге в основном рассматривается теплообмен между двумя средами, разделенными твердой непроницаемой стенкой. Для проведения теплового расчета аппарата необходимо прежде всего правильно выбрать метод определения площади теплопередающей поверхности. Рассмотрению этих методов посвящена гл. I. При изложении материала составляющие коэффициента теплопередачи (коэффициенты теплоотдачи) предполагаются известными. Способы их расчета приведены в гл. 3—7. [c.3]

    В лабораторной модели пенного аппарата [234, 235] опыты были выполнены при развитом пенном режиме, скорости газа 1,5—3 м/с и интенсивности потока жидкости 10—30 м /(м-ч). Гидродинамический режим охлаждающей воды в трубках змеевика характеризовался величиной Квд = 2500 7000. Температура воздуха составляла 16—18 °С, охлаждающей воды 8—11 °С. Опыты проводили в условиях, облегчающих получение воспроизводимых результатов, а именно а) полное насыщение воздуха на входе в аппарат парами воды, чтобы элиминировать влияние массообмена при теплопередаче б) малые потери теплоты в окружающую среду в) равенство температур воздуха и воды, образующих пену (кь 0,05 °С), для исключения теплопередачи в слое пены. Прежде всего специальными опытами путем определения коэффициента теплопередачи между воздухом и водой в слое пены было установлено, что размещение теплообменных трубок над решеткой не нарушает пенного режима и не снижает эффективности основного процесса, происходящего в пенном аппарате. [c.112]

    Смесители обычно используются для проведения химических реакций различного вида, включая полимеризацию. Основная особенность проектирования бака и мешалки заключается в необходимости обеспечить возможность управления кинетикой реакции, а не теплопередачей. Тем не менее обычно необходимо отводить или подводить теплоту (иногда и то и другое в различные моменты процесса) с заданной интенсивностью. Большое число конструкций и практических ситуаций создает определенные трудности при разработке универсальных расчетных соот- [c.8]

    Наиболее трудоемкой частью расчета является определение величины теплообменной поверхности. Ее определяют методом последовательных приближений при этом для выбранной конструкции аппарата величину теплообменной поверхности находят из основного уравнения теплопередачи (6.2)  [c.243]


    Процесс теплопередачи в конвекционной секции (камере) складывается из передачи тепла от газового потока к трубам конвекцией и радиацией. Основное влияние на передачу тепла имеет конвекционный теплообмен. Трубы в конвекционной камере принято располагать в шахматном порядке, так как в этом случае коэффициент теплопередачи при прочих равных условиях наибольший. Самая трудоемкая часть расчета поверхности конвекционных труб — определение коэффициента теплопередачи. Коэффициент теплопередачи К в камере конвекции представляет собой сумму коэффициента теплоотдачи конвекцией а и коэффициента теплоотдачи радиацией Яр. Численное значение а,(=11,6—29 Вт/м , а =6,9—21 Вт/м . Порядок расчета поверхности конвекционных труб можно предложить следуюш,ий. [c.101]

    Для контактных сушилок необходимо определить также поверхность нагрева, являющуюся исходной величиной для определения размеров сушилки. Для этой цели служит основное уравнение теплопередачи  [c.357]

    Такой метод аналогичен методу расчета противоточных диффузионных процессов. Аналогичен также и метод определения интеграла Л гг (графический). Основное сопротивление массопередаче возникает на стороне воздуха. Однако, зная коэффициент авл со стороны воды, можно определить по уравнению теплопередачи количество тепла с1д, отданное водой и полученное воздухом (ОсИ)  [c.611]

    После предварительного выбора конструкции и основных размеров аппарата, определения направления движения материальных потоков рассчитывают коэффициенты теплоотдачи и теплопередачи и значение последнего сравнивают с принятым для ориентировочного расчета. При значительном различии их принимают новое значение площади поверхности теплообмена и по новым размерам теплообменника заново выполняют вычисления. [c.81]

    Хотя плавление в процессах переработки осуществляется в сложных по геометрической конфигурации машинах, основные результаты по определению скорости плавления можно получить, используя описание процессов плавления в телах простейшей формы, таких как полубесконечные тела, бесконечные плоскости пластины или тонкие пленки. Для описания большинства этих случаев применимы аналитические методы. Однако часто сложная конфигурация конечного изделия, получаемого после затвердевания, не совпадает с геометрическими границами в задачах теплопередачи, поэтому приходится применять также и численные методы. [c.256]

    Достоинства Р—У-диаграмм состояния вещества — наглядность и возможность графического определения работы процесса. Но в технологи ческой практике основное внимание уделяется определению теплоты процесса, особенно при расчетах теплопередачи, а Р—У-диаграмма не позволяет сделать это непосредственно. [c.108]

    Основным расчетным уравнением для определения требуемой юверхности теплопередачи Р в рекуперативных теплообменниках [вляется уравнение теплопередачи [c.33]

    Определение коэффициента теплопередачи можно значительно упростить, так как основным термическим сопротивлением при испарении сжиженных углеводородных газов является их сопротивление теплоотдаче (см. раздел И1-1) = 1/а2-Тогда [c.179]

    Порядок (схема) расчета многокорпусной вьтарной установки. Задача расчета многокорпусной выпарной установки сводится к выбору оптимального числа корпусов, проводимому описанным выше методом. Расчет же произвольного числа корпусов предполагает определение основных геометрических характеристик, включая конструкцию аппарата и его поверхность теплопередачи, а также технологических параметров работы (давления, температуры, расхода потоков и т.п.). [c.371]

    Показанная на рис. 2 горелка пульсирующего типа повышенной производительности состоит из двух основных частей собственно камеры горения 6 и резонансной трубы 2. Для определения локальных значений коэффициента теплопередачи от газов к стенке контур водяного охлаждения камеры горения разделен на три секции крышку 3, корпус 20 и дно 9. Камера горения ошипована по всей внутренней поверхности шипами диаметром 10 и длиной 15 мм. На концах шипов сделаны наплавки высотой 3— [c.267]

    Уже на данной стадии развития метода приведенных характеристик топлива целесообразно широкое внедрение его в практику инженерных И учебных расчетов. Для этой цели уместно в новых изданиях нормативных методов теплового и аэродинамического расчетов парогенераторов построить определения всех балансовых соотношений и величия, связанных с топливом, на основе приведенных характеристик. Это изменение явится серьезным шагом на пути обобщения громоздких расчетов теплообмена в современных парогенераторах. При этом для каждого определенного элемента однотипных парогенераторов при широком разнообразии сжигаемых топлив сравнительно мало будут различаться не только скорости газов, коэффициенты теплопередачи и температуры газов, как это имеет место при обычных методах расчета, но и все другие основные параметры и величины теплового расчета объемы воздуха и продуктов сгорания, энтальпии газов и тепловосприятия поверхностей нагрева. Как известно, эти параметры и величины лри обычных методах расчета и разнообразных топливах так же сильно различаются, как и величины СРд. При расчетах по приведенным характеристикам все эти параметры и величины мало изменяются. Важно, что эти небольшие изменения приведенных объемов и энтальпий в зависимости от вида и качества топлива наглядно характеризуют топливо. Так, например, более влажные топлива (или более зольные при неизменной рабочей влажности) будут иметь большие значения приведен- [c.6]

    Анализ турбулентных течений в основном ограничивался расчетом течений в областях, имеющих простую конфигурацию, в частности около вертикальной поверхности. Соответствующие данные уже приводились выше. Анализ течений около наклонной поверхности, рассмотренный в гл. 5, остается пока сложным и ненадежным. Поэтому приходится полагаться на результаты экспериментов, чтобы иметь необходимые данные о теплопередаче. За многие годы исследований удалось получить определенные сведения о характеристиках теплопередачи в полях течения различной конфигурации. Часть такой информации помещена в разных разделах, посвященных соответствующим вопросам. Ниже приводятся другие различные результаты исследования течений для ряда важных конфигураций. [c.82]

    Связь между параметрами представляется в виде системы уравнений или графических зависимостей и частных соотношений. Обычно кинетические характеристики процесса тесно связаны с условиями теплообмена в данном аппарате, поэтому полное моделирование аппарата включает и моделирование теплопроводности и теплопередачи. При моделировании целого производства или какой-либо операции с определением оптимальных параметров основной характеристикой является себестоимость продукта или стоимость переработки в данном аппарате. Количество определяющих параметров сильно увеличивается решающее значение приобретают расходные коэффициенты по сырью, топливу, электроэнергии и другие экономические показатели. [c.30]

    Поскольку расчет тепловых потоков, как правило, проводят по уравнениям теплового баланса, то основное уравнение теплопередачи обычно используют для определения поверхности теплопередачи  [c.266]

    При определении поверхности теплоотдачи предварительного геплоо бменника использована среднелогарифмическая разность, техмператур, учитывая, что температура сжатого воздуха понижается до 5° С и не происходит существенного изменения теплоемкости воздуха. При определении поверхности теплопередачи основного теплообменника использована средняя интегральная разность температур. [c.223]

    Определение коэффициента теплопередачи, знание которого позволяет затем определить поверхность -нагреп,а в соответстзии с основной расчетной формулой (1-9), является важнейшим элементом теплового расчета любого теплообменного апча-рата. [c.14]

    Первоначальные исследования теплопередачи при пенном режиме были осуществлены в Ленинградском технологическом институте имени Ленсовета [179, 195, 234]. Опыты проводили при низкой температуре охлаждаемого воздуха (ip 28 °С) и при полном насыщении его водяными парами на входе и выходе из аппарата. Этот прием использован с целью элиминировать влияние переноса теплоты при испарении воды или конденсации паров, поскольку основная задача работы — изучение пенных аппаратов и в первую очередь влияния гидродинамических парад1етров пенного режима на показатели теплопередачи в слое пепы — ш г . При определении величин А т и р по опытным данным движущую силу тепло- и массопередачи при теплообмене определяли по формулам для перекрестного тока жидкости и газа (П.8) и (11.12). [c.96]

    Подобным же образом записаны основные уравнения, являющиеся математическим описанием процессов в остальных звеньях объекта. При этом учтено, что для остальных звеньев теплопередача в основном определяется процессом переноса тепла от нитрозного газа к стенке и термическим сопротивлением стенки (коэффициент теплоотдачи от стенки к воде или паро-жидкостной эмульсии на порядок выше) кроме того, переносом тепла лучеиспусканием для экономай-зерной части можно пренебречь ввиду сравнительно низкой температуры нитроз-ного газа. С учетом этих условий и получены уравнения (11.31), (11.34), 01-43) для определения коэффициентов теплопередачи в этих звеньях. Граница между испарительным и экономайзерным звеньями изменяется в зависимости от режима работы котла. При этом могут быть следующие состояния  [c.52]

    Таким образом, для того чтобы выполнить основные элем ен-ты расчета, необходимо проводить энергетичеакие расчеты процессов теплопередачи, тепловыделения и движ ения теплоносителей. К вспомогательным расчетам относятся все остальные расчеты и в первую очередь определение геометрических характеристик тех или иных элементов печи. Вспомогательные расчеты должны служить средством для создания такой конструкции, которая была бы наиболее благоприятна с точки зрения использования энергетич еоких возможностей агрегата. [c.18]

    После окончания расчета данного участка переходим к другому участку регенеративных кристаллизаторов, и далее к участкам аммиачных кристаллизаторов. Порядок расчета аммиачных кристаллизаторов в основном тот же, что и регенеративных. Охлаждение раствора сырья в аммиачных кристаллизаторах происходит за счет скрытой теплоты испарения аммиака. В связи с этим температура аммиака на входе и выходе кристаллизатора остается постоянной и отвечает определенному давлению испарения. Аммиачные компрессоры холодильного отделения. могут работать на двух режимах при температуре испарения минус 35°С (Ра = 0,095МПа), при температуре минус 43 С (Ра = 0,0662МПа). Для того, чтобы аммиачные кристаллизаторы (и теплообменники) работали с некоторым запасом по холодопроизводительности (коэффициенту теплопередачи), расчеты необходимо вести при первом режиме испарения. При расчете аммиачных кристаллизаторов и теплообменников определяется расход хладагента, что позволяет сделать выбор марки аммиачного компрессора и их количество. [c.26]

    Технологический расчет аппаратов. Задачей этого раздела проекта является расчет основных размеров анпаратов (диаметра, высоты, поверхности теплопередачи и т. д.). Для проведения технологического расчета необходимо предварительно найти по справочникам физико-химические свойства перерабатываемых веществ (плотность, вязкость и т. п.), составить материальные и тепловые балансы. Затем на основе анализа литературных данных и рекомендаций данного пособия выбирается методика расчета размеров аппаратов. При этом особое внимание следует уделять гидродинамическому режиму работы того или иного аппарата, выбор которого должен быть обоснован с учетом технико-экономических показателей его работы, В этот же раздел входит гидравлический расчет аппаратов, целью которого является определение гидравлического сопротивления. В этом же разделе рассчитывается толщина тепловой изоляции аппаратов. [c.10]

    Для определения коэффициента теплопередачи изолированного ограждения, включающего такого рода металлические элементы, предложено несколько методов. Одним из распространенных способов является метод, разработанный Е. Б. Иоэльсоном и А. Е. Ниточкиным для расчета судовой изоляции. Этот метод представляет собой уточнение первого способа и позволяет в определенной степени учесть концентрацию линий теплового потока, вызванную наличием элементов с высокой теплопроводностью. Как и в первом способе, конструкцию разбивают нетеплопроводными перегородками (мембранами) па зоны, не только однотипные, но и со своим, присущим им характером направления линий теплового потока. В этом методе пренебрегают термическими сопротивлениями теплоотдачи у поверхностей ограждения и термическими сопротивлениями стальных обшивок и стальных элементов конструкции (набора). В связи с этим температуру обшивки и стальных элементов (включений) считают равной температуре наружного воздуха. Основной предпосылкой метода является предположение, что линии теплового потока, идущие от боковых поверхностей стальных элементов конструкции через изоляционный материал, являются дугами окружностей. По этой причине рассматриваемый метод называют методом круговых потоков. [c.77]


Смотреть страницы где упоминается термин Теплопередача основные определения: [c.128]    [c.36]    [c.172]    [c.41]    [c.28]    [c.292]    [c.105]    [c.407]    [c.8]    [c.63]   
Процессы и аппараты химической технологии (1955) -- [ c.268 , c.269 ]




ПОИСК





Смотрите так же термины и статьи:

Основные определения

Теплопередача



© 2025 chem21.info Реклама на сайте