Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Родий в платине металлической

    Значительный интерес представляют металлонаполненные полимеры [57] (металлополимеры), где наполнителями служат порошкообразные металлы или металлические волокна (алюминий, никель, сталь, олово, кадмий, бериллий, бор, вольфрам, титан, лакированные железо и медь, магний н т. д.). Такие металлополимеры отличаются высокой прочностью (особенно в случае применения волокон), термостойкостью, тепло- и электропроводностью. Прочность в некоторых случаях обусловлена химическим взаимодействием полимера с металлом (образование комплексов за счет я-электронов двойных связей, реакция карбоксильных групп с окислами на поверхности металла и т. д.) наряду с физическим взаимодействием. Некоторые полимеры этого типа вследствие своей дешевизны и доступности заменяют цветные и драгоценные металлы в производстве вкладышей подшипников, изделий с высокой теплопроводностью и низким коэффициентом термического расширения, другие применяются в радиотехнике, для защиты от радиации (свинцовый наполнитель), при изготовлении магнитных лент, каталитических систем (наполнитель — платина, палладий, родий, иридий) и т. д. [c.475]


    В производстве широко используют химическое нанесение металлических покрытий на изделия. Процесс химического металлирования является каталитическим или автокаталитическим, а катализатором является поверхность изделия. Раствор, используемый для металлизации, содержит соединение наносимого металла и восстановитель. Поскольку катализатором является поверхность изделия, выделение металла и происходит именно на ней, а не в объеме раствора. В автокатали-тических процессах катализатором является металл, наносимый на поверхность. В настоящее время разработаны методы химического покрытия металлических изделий никелем, кобальтом, железом, палладием, платиной, медью, золотом, серебром, родием, рутением и некоторыми сплавами на основе этих металлов. В качестве восстановителей используют гипофосфит и боргидрид натрия, формальдегид, гидразин. Естественно, что химическим никелированием можно наносить защитное покрытие не на любой металл. Чаще всего ему подвергают изделия из меди. [c.144]

    Микрограммовые количества серебра можно отделить от меди и железа, используя в качестве коллектора металлическую ртуть. При электролизе с ртутным катодом вместе с серебром осаждаются также железо и медь. Если же перемешивать разбавленные сернокислые или аммиачные растворы, содержащие серебро, с металлической ртутью, серебро выделяется на ртути в виде амальгамных шариков, в то время как медь и железо остаются в растворе. Ртуть из амальгамы можно затем удалить нагреванием при 350° С в токе азота и в остатке определить серебро фотометрическим методом [977]. Для выделения серебра вместе с другими благородными металлами — золотом, платиной, палладием и родием — из сульфидных медно-никелевых руд концентрируют эти элементы на металлическом свинце пробу руды обжигают для удаления серы и затем растворяют в кислоте, нерастворимый остаток сплавляют с плавнями, содержащими окись свинца. Серебро и другие названные металлы концентрируются на металлическом свинце. Свинцовый королек купелируют до веса 100 мг и охлаждают, после чего определяют благородные металлы спектральным методом [1132]. [c.143]

    К электродам второго рода принадлежат металлические электроды, покрытые труднорастворимой солью этого металла и опущенные в насыщенный раствор этой же соли с добавкой другой хорошо растворимой соли, имеющей общий анион с анионом труднорастворимой соли. Примером такого электрода может служить хлор-серебряный и каломельный электроды. К этой же группе электродов относится и хлорный электрод (платина, насыщенная хлором, погруженная В раствор, содержащий анионы С1"). Потенциал электродов, обратимых [c.293]


    Водородный электрод нельзя считать универсальным при использовании в органических растворителях, так как его воспроизводимость низка в результате отравления поверхности платины. Поэтому наиболее щирокое распространение получили электроды, состоящие из серебра и растворимой соли серебра (например, нитрат серебра) или нерастворимой соли серебра (хлорид или хромат серебра). В апротонных растворителях, устойчивых по отнощению к литию, используется литиевый электрод сравнения, потенциал которого даже при наличии окисной пленки хорошо воспроизводим, так как токи обмена на щелочных металлах имеют высокое значение. Большую группу электродов сравнения составляют амальгамные электроды из щелочных, щелочноземельных и других металлов Ыа, К. Са, 2п, Сё, Ре и другие, которые в основном используются для термодинамических измерений. Использование амальгамных и металлических электродов как электродов второго рода в органических растворителях ограничено, так как покрывающая соль металла часто оказывается растворимой в присутствии одноименного аниона. [c.9]

    Катализаторы, нерастворимые в реакционной среде гетерогенные катализаторы). Это традиционно используемый тип катализаторов. Среди них наиболее эффективны никель Ренея [190], палладий на угле (ио-видимому, это наиболее широко распространенный катализатор), боргидрид натрия — восстановленный никель (называемый также боридом никеля), металлическая платина или ее оксид, родий, рутений, NaH— —RONa—Ni (ОАс)г [192] и оксид цинка 193]. [c.176]

    В качестве коррозионно-стойких металлических покрытий используются даже такие дорогостоящие и экзотические, как покрытия сплавами платина-иридий, золото-платина, а также золотом, платиной, родием. Однако и такие покрытия не всегда проявляют достаточную коррозионную стойкость при высоких температурах и давлениях. Отмечаются, в частности, коррозия платиновых покрытий в 0,1 М растворе хлористо-водородной кислоты при 150 С и коррозия платины и сплава золото-платина в воде при 315 °С и в паре [c.151]

    Азотная кислота получается преимущественно окислением аммиака в присутствии катализатора из сплава 90% платины и 10% родия в виде 20 слоев сеток (с размером отверстий 0,175 мм), изготовленных из проволоки толщиной 0,076 мм. Эта сетка имеет металлическую поверхность 1,5 м /м . В качестве катализатора используют также гранулированную смесь окиси железа и окиси висмута. В платиновый конвертор, работающий при давлении 7 кгс/см , при суточной производительности 55 т 100%-ной HNOз загружают 2977 г сплава. После зажигания реакция протекает автотермично путем соответствующего предварительного подогрева газовой смеси поддерживается температура 882—910 °С. При этих условиях время реакции составляет примерно 0,0001 сек, тогда как при атмосферном давлении требуется от 0,01 до 0,02 сек. Кислород адсорбируется на поверхности катализатора и реагирует с аммиаком, который диффундирует к поверхности. Скоростью диффузии аммиака определяется общая скорость процесса . [c.326]

    Применяют для ФО родия в металлическом палладии и его сплаве с платиной [186]. [c.120]

    Для большинства высокотемпературных реакций используются металлические катализаторы. Они могут быть в виде металла, нанесенного на тугоплавкий носитель, такой, как плавленый оксид алюминия, смешанный оксид алюминия и магния, алюмосиликат, например муллит, алюминат магния (шпинель) и смешанный тугоплавкий оксид алюминия и хрома. Оксид хрома может обладать собственной каталитической активностью, и поэтому его следует тщательно исследовать, прежде чем использовать в качестве носителя. Наоборот, если возможно получить бифункциональный катализатор, в котором действие металла дополняется действием носителя, то хром в этом случае может принести существенную пользу. К числу металлов, используемых как катализаторы дегидрирования, принадлежат медь, серебро и иногда золото. Такие благородные металлы, как платина, палладий, родий и рутений, можно использовать при очень высоких температурах, а серебро недостаточно устойчиво при температурах выше 700 °С. [c.142]

    В качестве чувствительных элементов катарометра применяются металлические нити из платины, вольфрама, сплава платины с родием или полупроводниковые сопротивления—термисторы. Чувствительность катарометра в значительной степени зависит от сопротивления чувствительного элемента — чем больше сопротивление, тем выше чувствительность. Однако с ростом сопротивления увеличиваются также шумы — кратковременная нестабильность нулевой линии, ограничивающая надежность слабых сигналов. Практические размеры металлической нити определяются прочностью нити и легкостью монтажа. По форме чувствительные элементы изготовляются в виде натянутой нити, спирали и биспирали. Иногда ИМ придают и-образную форму. Для прямых или спиральных элементов обычно применяют проволоку от 0,025 до 0,12 5 мм. [c.125]


    Каталитический риформинг протекает на активных центрах двоякого рода металлических и кислотных. Металлические центры (платина или ш. 1тина, промотированная добавками хЛора и металлов, например рения, иридия, олова, редкоземельных элементов), ускоря ют реакции дегидрирования парафинов в олефины, нафтенов в арома тические, диссоциацию молекулярного водорода, подаваемого извне гидрирование и содействуют дегидроциклизации и изомеризации Кислотные центры, расположенные на носителе - хлорированном оксиде алюминия, способствуют реакциям изомеризации олефинов циклизации и гидрокрекинга по карбоний-ионному механизму. [c.139]

    Иридий можно осадить в виде гидратированной двуокиси, если довести pH раствора до 6, добавляя бикарбонат натрия к кипящему раствору, содержащему бромат При этом также осаждаются палладий и родий, платина (IV) не осаждается осмий и рутений должны быть удалены из раствора (путем отгонки четырехокисей) до проведения гидролитического осаждения. Затем выделяют палладий, осаждая его диметилглиоксимом, после чего из фильтрата осаждают родий с помощью хлорида титана (П1). При этом часть иридия соосаждается с металлическим родием, поэтому осадок нужно растворить в горячей серной кислоте и переосадить. Иридий таким образом остается в растворе вместе с титаном, который осаждают купферроном (необходимо переосаждение). Органические вещества в фильтрате разрушают с помощью серной и азотной кислот. Описанный в общих чертах ход анализа применяли лишь для выделения макроколичеств иридия не установлено, в какой степени он пригоден для выделения иридия, присутствующего в очень низких концентрациях. Добавленное в качестве коллектора небольшое количество железа (П1) должно способствовать осаждению гидратированной окиси иридия. Ионные радиусы железа (П1) и иридия (IV) очень близки (стр. 37) [c.466]

    Только недавно была выяснена еще одна важная для катализа особенность цеолитов — возможность их взаимодействия с металлом. Установлено, что небольшие металлические кластеры в цеолитных клетках имеют электронную недостаточность. Впервые это наблюдалось при введении платины в цеолитах типа Y [22], а затем было подтверждено для родия и [c.118]

    Металлический родий применяют для покрытия поверхпоетей рефлекторов, поскольку такая поверхность обладает большой отражательной способностью. В радиотехнике применяют контакты, изготовленные из металлического родия или сплавов родий — платина. Металлический родий применяют в ювелирной промышленности, так как электролитически осажденный родий дает блестящие покрытия. [c.639]

    Термопары по способу действия основаны на изменении электродвижущей силы, возникающей в спае разных металлов. Термопара (фиг. 116) состоит из двух спаянных металлических проводников, присоединяемых проводами к чувствительному гальванометру — милливольтметру. По отклонению стрелки милливольтметра определяют температуру среды, в которую помещен спай. Термопары платит родий — платина имеют пределы измерений от — 20 до 1300° С (тип ТПП и ТППП),  [c.167]

    Обмен метана с дейтерием протекает на никелевых пленках [12], на кобальт-окисноториевом катализаторе процесса Фишера— Тропша [13] и на пленках родия, платины, палладия и вольфрама [30]. В результате исследования установлены следующие важные особенности обмена на металлических пленках. [c.265]

    Родий извлекают из самородной платины и концентратов платины. Так, под действием царской водки на самородную платину в раствор переходят РЬ, Р1, Р(1, Ре и Си. Затем удаляют элементы неплатиновой группы и после соответствующей обработки последовательно переводят в осадки платину в виде (КН4)2[Р1С1е1, родий — [рЬ(NHз)й l] l2, палладий — [Рс1 (ЫНз)гС12]. Металлический порошок родия получают восстановлением его солей водородом, формальдегидом, щавелевой кислотой и другими восстановителями. [c.402]

    Антвейлер [57] подробно изучил и описал движение раствора у ртутного капельного электрода. Изменение концентрации электролита в диффузион ном слое вблизи электрода и течение раствора он наблюдал методом шлиров Ему удалось однозначно доказать, что полярографические максимумы перво го рода возникают в результате тангенциального движения электролита когда к электроду доставляется значительно больше деполяризатора, чем путем лишь диффузии. В случае положительных максимумов раствор дви жется всегда в направлении от верха (шейки) капли к низу капли [т. е от конца капилляра вдоль поверхности капли внутрь раствора (рис. 213 слева)]. В случае отрицательных максимумов движение раствора происхо дит изнутри раствора к низу капли и далее вдоль ее поверхности к шейке а перед концом капилляра поток расходится в разные стороны (рис. 213 справа). Наклон капилляра и взаимное расположение катода и анода не оказывают влияния на направление этого движения. В случае максимумов первого рода движение электролита не связано с вытеканием ртути из капилляра эти максимумы образуются при работе с растущими, неподвижными и даже уменьшающимися каплями. Подобные же движения электролита Антвейлер наблюдал также при работе с электродом из жидкого галлия. В случае твердых электродов движений электролита, а следовательно, и максимумов не наблюдается исключение составляет восстановление ионов одновалентной ртути на платиновом электроде, когда в процессе электролиза на поверхности платины образуется слой металлической ртути [58]. [c.413]

    Для восстановления карбонильных соединений в спирты пригодны все металлические катализаторы. Наиболее эффективны платина и активные сорта скелетного никеля. На этих катализаторах, а также на родии и рутении большинство альдегидов и кетонов гидрируется при температуре 25 °С и давлении 1-4 атм. С менее активными разновидностями никеля Ренея достаточная скорость восстановления достигается при температурах до 100-125 °С и давлениях до 100 атм  [c.59]

    При дегидрировании метилциклогексана в присутств.ии различных металлических катализаторов оказалось, что наиболее активны платина и палладий на окисях алюминия и кремния. В присутствии родия а силикагеле мтеноивио протекали также реакции деалкилирования алкилзамещенных ароматических углеводородов [32]. [c.21]

    Окись лития разрушает большинство даже коррозионноустойчивых материалов, многие металлы и окислы. Ниже 1000° С устойчивыми против действия LI2O являются только Ni, Au и Pt выше 1000° С LI2O разрушает даже платину, и устойчивым оказывается только сплав платины с 40 /о родия [12, 42]. Она не восстанавливается водородом, углеродом или окисью углерода. Получение из LI2O металлического лития возможно лишь при действии алюминия, магния или кремния при температурах выше 1000° С [12, 39]. [c.24]

    Активность катализаторов, применяемых в реакциях гидрирования нитросоединений, зависит от их химического состава и физического состояния. Чаще всего применяются металлические катализаторы, особенно металлы VIII группы периодической системы — платина, палладий, родий, никель, кобальт, а также сплавы никеля и хрома, никеля и меди и другие. Доказано, что активность катализатора увеличивает находящиеся в них примеси некоторых веществ — загрязнения или же специальные добавки — так называемые активаторы. Большое значение имеет также степень измельчения катализатора. Максимальное раздробление достигается осаждением каталитически активного вещества на так называемый носитель. [c.120]

    Элмл-роды, потенциал котор1.1х зависит от активности ионов водорода. Примером может служит1> хингидронный электрод, коюрый представляет собой металлическую платину (обычно — платиновую проволоку), погруженную в кислый насыщенный водный раствор хингидрона  [c.148]

    Размер частиц некоторых типичных катализаторов, содержащих родий, иридий, осмий, рутений и золото, приведен в табл. 4. Общая тепде щия влияния концентрации металла и температуры прокаливания такая л<е, как и для платины. Иридиевые катализаторы с 5—36% 1г, полученные соосаждением гелей гидроокисей алюминия и иридия, имеют несколько больший размер частиц металла после дегидратации и восстановления водородом, чем образцы, полученные при сопоставимых условиях методом пропитки [79]. По данным [80], при получении рутения на у-окпси алюминия пропиткой носителя раствором хлористого рутения дисперсность металлического рутения после восстановления значительно выше (средний размер частиц - 2нм), если хлорнд рутения разлагают в водороде если разложение проводить на воздухе с последующим восстановлением водородом, [c.209]

    Фасетированию под действием реактантов подвержены и напыленные серебряные пленки при нагревании в кислороде при 500 К или в условиях каталитического окисления этилена [60] при этом величина поверхности увеличивается примерно на 30%, а небольшие кристаллиты серебра (<50 нм) исчезают. При 1120—1290 К в водороде подвижность атомов на поверхности платины сильно увеличивается [61], что значительно ускоряет спекание порошкообразной платины. Подробно описано [62] значительное изменение морфологии платиновой проволоки или сетки — катализатора окисления аммиака (1020—1220 К), состоящее в заметном ее фа( етировании. Эти изменения, происходящие с платиновым катализатором гораздо сильнее в условиях реакции, чем под действием любого из реактантов (при сравнимых температурах), объясняются, по-видимому, выделением тепла реакции на поверхности катализатора и локальными перегревами выше температуры реакции. Не все каталитические реакции, вероятно, приводят к значительным изменениям морфологии поверхности катализаторов такого рода изменения не наблюдаются, в частности, в реакциях с участием только углеводородов и водорода, по крайней мере для массивных металлических катализаторов. Тем не менее вполне понятно, что поверхность металла даже при отсутствии значительных изменений Б ее морфологии, способна к реконструкции, ограниченной од-ним-двумя поверхностными атомными слоями, в результате процессов адсорбции или внедрения в решетку молекул реактантов. В этом смысле даже адсорбция углеводородов может иногда вызывать перестройку поверхности, как, например, хемосорбция этилена или бензола на грани (111) никеля, приводящая к образованию внешнего слоя металла [63]. [c.135]

    Устройство, фиксирующее тепловые эффекты в исследуемом веществе, состоит из горизонтальной электрической печи 3, в которую помещается металлический блок с гнездами 1, 2 для проб эталонного и исследуемого веществ. Разность температур в пробах измеряют дифференциально соединенными платина-илатинородиевыми термопарами и зеркальным гальванометром ДТг. Луч от зеркального гальванометра попадает на фоточувстви-тельную бумагу, фиксируя кривую изменения разности температур. Система переключателей термографа ДТВ-5 позволяет изменять при помощи сопротивлений чувствительность прибора и род его работы. [c.44]

    Сопоставление каталитической активности материалов пе имеет смысла без измерения удельных поверхностей. Это совершенно отчетливо показано Ванпайсом [43] при проверке метанирую-щей активности переходных металлов. Ранее полученные данные соответствовали следующему ряду по мере снижения активности рутений>иридий>родий>никель>кобальт>осмий > >платина>железо>палладий [44]. В противоположность этому Ваннайс, основываясь на данных об элементарной металлической поверхности, обнаружил другой ряд рутений>железо> >никель>кобальт>родий>палладий > платина > иридий. Наиболее существенная разница найдена для железа, которое предшествующие исследователи считали плохим катализатором метанирования. Таким образом, реальная трудность состоит в создании и стабилизации высокоразвитой поверхности железных катализаторов [45], и существует необходимость разработки соответствующих методов. [c.46]

    Окисление аммиака Спираль из проволоки хромовой стали, металлической платины или платино-родия Целитовые палочки (температура 1000—1500 ) ьт [c.456]

    Реакторы с катализатором в тонком слое в виде металлических сит 1 (рис. 209, в) используются для проведения реакцрш, протекающих с большой скоростью. Лимитирующей стадией процесса является в этпх случаях диффузия взаимодействующих газов. В промышленности реакторы с ситчатым слоем катализатора применяют для окисления аммиака, производства азотной кислоты, формальдегида и др. Сита катализаторов для окисления аммиака изготавливаются из платиновой проволоки либо из сплава платины с родием и.1ги па.лладием. [c.252]

    В обзорной работе Эйшенса и Плискина [1] рассмотрена значительная часть исследований, проведенных до настоящего времени. Металлические катализаторы на носителе можно разделить на две группы в соответствии с обнаруженными на них хемосорбированными формами окиси углерода. В случае палладия, платины, родия и никеля были найдены две формы одна представляет собой молекулу СО, атом углерода, которой связан в мостиковой структуре с двумя атомами металла, а другая — молекулу СО, связанную простой связью металл — углерод. В случае меди и железа наблюдают хемосорбированную форму с простой связью. Это первое спектральное доказательство неоднородности в хемосорбцин было получено Эйшенсом и Плискиным [1]. Сравнительно недавно Йетс и Гарланд [66] сообщили о пяти различных формах окиси углерода на никеле, данные о которых суммированы в табл. 4 и на рис. 20. То, что эти полосы поглощения в инфракрасной области спектра отвечают пяти различным поверхностным формам, было установлено [c.47]

    Окисление аммиака Проволочная спираль из хромовой стали или металлической платины или платино-родия Целитовые стержни (1000-1500°) 57 [c.510]


Смотреть страницы где упоминается термин Родий в платине металлической: [c.293]    [c.131]    [c.379]    [c.378]    [c.658]    [c.482]    [c.100]    [c.298]    [c.63]    [c.331]    [c.422]    [c.142]    [c.403]    [c.408]    [c.127]    [c.44]    [c.260]   
Химико-технические методы исследования (0) -- [ c.341 ]




ПОИСК





Смотрите так же термины и статьи:

Платина металлическая

Термоэлектродвижущая сила различных металлических пар в зависимости от температуры в пределах от Термоэлектродвижущая сила термопары платина—платина (90)-родий



© 2024 chem21.info Реклама на сайте