Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ферменты химические катализаторы

    См., например, интересную брошюру И. В. Березин, А. А. К лесов. Ферменты — химические катализаторы , М,, Знач ние , 1971, - [c.134]

    Дыхание так же, как и все другие биохимические реакции в организме, осуществляется при помощи молекул, называемых ферментами. Ферменты — это катализаторы, т. е. вещества, способствующие повышению скорости химических реакций (более подробно они рассматриваются в гл. VII). Ферменты внутри нас действуют как специалисты узкого профиля. Они помогают образованию и разрыву химических связей, при этом каждый фермент подходит только для одной или узкого круга реакций так же, как ключ к одному, строго определенному замку. [c.254]


    В-третьих, по своей природе ферменты значительно более чувствительны к изменению внешних условий, чем химические катализаторы. В частности, ферменты работают в значительно более узком диапазоне температур и проявляют свою активность в строго определенном интервале значений pH среды. [c.86]

    Высокая химическая специфичность. В отличие от химических катализаторов ферменты обладают значительно большей специфичностью каждый и.я них действует лишь на строго определенную реакцию или группу реакций, протекающих в организме. Предполагается, что в организме человека одновременно функционирует около 1000 различных ферментов. При этом они образуют сложные ферментативные системы, которые обеспечивают в живой клетке протекание целого ряда строго последовательных и согласованных между собой реакций. Если бы ферменты не обладали столь высокой специфичностью, это привело бы к быстрому распаду всех веществ в клетках и к гибели всего организма. [c.167]

    Ферменты—биологические катализаторы белковой природы, ускоряющие химические реакции, необходимые для жизнедеятельности организмов. [c.185]

    Химическая концепция брожения, базирующаяся на триумфе препаративного органического синтеза, в тенденции сводила весь биокатализ к обычному химическому катализу. И несмотря на значительные упрощения в познании действительности, ее заслуги в развитии энзимологии бесспорны и велики. Именно она помогла установить многие положения, прочно вошедшие в современную энзимологию, а именно I) аналогию между биокатализом и катализом, между ферментами и катализаторами 2) положение о наличии в ферментах двух неравноценных компонентов — своего рода активных центров и носителей 3) заключение о важной роли ионов переходных металлов в активных центрах многих ферментов  [c.176]

    Катализ играет большую роль не только в химии, но и в биологии, так как практически все биохимические превращения, происходящие в живых организмах, являются каталитическими. В роли катализаторов в этом случае выступают ферменты — вещества биологического происхождения. Теория биохимических катализаторов ферментов намного сложнее, чем теория химических катализаторов.  [c.134]

    Интересно будет рассмотреть некоторые примеры имитации подобных уникальных свойств ферментов, как катализаторов, путем создания управ-ляемых молекул, хотя это направление молекулярного дизайна пока еще находится в зачаточном состоянии. Конформационная подвижность полиэфирных цепей лигандов позволяет рассматривать их как подходящую основу для введения в нее химически активных групп- переключателей , воздействуя на которые можно осуществлять организацию (или дезорганизацию) связывающего сайта лиганда. [c.482]


    ФЕРМЕНТЫ КАК КАТАЛИЗАТОРЫ ХИМИЧЕСКИХ РЕАКЦИИ [c.115]

    Перечисленные выше каталитические особенности ферментов, которые находят свое естественное объяснение в рамках представлений химической кинетики, в определенной степени присущи и обычным химическим катализаторам. Однако в случае ферментов они наиболее отчетливо выражены и, главное, действуют в совокупности. [c.552]

    Специфичность действия ферментов предохраняет организм от засорения побочными продуктами. Другая особенность ферментов, которой химические катализаторы обладают лишь в редких случаях, состоит в специфичности действия. Воздействию подвергается только одно или несколько соединений (субстратов), с которыми протекает только один тип реакций. Отсутствие побочных реакций или побочных продуктов—это отражение того факта, что неконтролируемое загрязнение живой клетки недопустимо. Отсюда следует вывод, что использования в промышленных целях заслуживает не только каталитическая эффективность, но также (а возможно, и в большей мере) специфичность ферментов. [c.274]

    Ферменты являются катализаторами биологических реакций. Их каталитическая эффективность часто совершенно удивительна и в сочетании со специфичностью к субстрату позволяет организму выбрать для данной конкретной молекулы только один единственный путь метаболизма из многочисленных возможных химических реакций, в которые может вступать эта молекула и продукты ее превращений. Специфичность фермента к определенному субстрату может иметь структурную или стереохимическую природу. Структурная специфичность может быть либо достаточно отчетливо выраженной, либо, напротив, она может быть относительно широкой как, например, это показано для гидролитических ферментов пищеварительной системы. Стереоспецифичность является характерной особенностью ферментативно катализируемых реакций, в ко- [c.24]

    Активность фермента как катализатора одной определенной химической реакции находится в зависимости от специфического белка, связанного с пиридоксаль-5а-фосфатом, а также от структуры компонентов, в частности аминокислоты, участвующих в реакции [196]. [c.362]

    Существуют вещества различной химической природы, способные тормозить протекание биохимических реакций, в которых фермент является катализатором II, 22]. Торможение может быть как обратимым, так и необратимым. Ингибиторы, соответственно, делят на обратимые и необратимые. При воздействии обратимых ингибиторов активность фермента можно восстановить путем удаления ингибитора, например, с использованием селективных мембран или диализа. При действии же необратимых ингибиторов активность фермента не восстанавливается. [c.205]

    Примеров каталитической активации — множество. Тысячи химических реакций в организме протекают в результате активации реагентов при образовании комплексов с биологическими катализаторами — ферментами. Химическая активация, как правило, не требует значительного повышения температур. [c.162]

    К группе ферментов принадлежит большое число различных биокатализаторов, ускоряющих и контролирующих биохимические реакции. Многие ферменты проявляют высокую избирательность действия по отношению к определенным молекулам или молекулярным структурам. Это свойство никогда не достижимо в случае химических катализаторов. [c.299]

    Использование ферментов. Ферменты (биологические катализаторы) во многом отличаются от обычных химических реагентов. Как правило, они проявляют каталитическую активность по отношению лишь к небольшому числу процессов и веществ, поэтому отличаются большой, иногда уникальной, селективностью. Каталитическая активность ферментов обычно очень высока, поэтому для аналитических целей используют лишь весьма небольшие их количества и концентрации. Однако активность ферментов сама по себе зависит от многих факторов источника, из которого выделен препарат, времени и условий его хранения, очистки, условий использования. [c.217]

    Среди каталитических методов высокую чувствительность и селективность имеют ферментативные методы, основанные на использовании реакций, катализируемых ферментами — биологическими катализаторами, ускоряющими химические процессы в живых организмах (см. разд. 9.4). Часто в этих случаях используют ферментные электроды (см. гл. 10). [c.109]

    Ферменты, так же как и химические катализаторы неорганической природы, катализируют только энергетически выгодные реакции, не изменяют направления реакции и не расходуются в процессе реакции. Вместе с тем ферменты обладают рядом свойств, отличающих их от химических катализаторов  [c.62]

    Ферменты в течение многих лет применяются в различных областях практической деятельности человека в кожевенной, пищевой, текстильной, фармацевтической и других отраслях промышленности, а также в медицине, сельском хозяйстве, химическом синтезе. Эффективность действия ферментов многократно выше по сравнению с химическими катализаторами, однако их промышленное применение затруднено из-за неустойчивости при хранении и температурных воздействиях. Кроме того, многократное применение ферментов практически невозможно в связи с технологическими трудностями их отделения от продуктов реакции. [c.84]


    Достижения биогехнологии позволяют в принципе превратить солнечную энергию, запасенную в биомассе растений, в исходное сырье для химической промышленности. Надо еще учесть, что в настоящее время мы находимся в самом начале развития этой области науки и техники. Тем не менее уже имеются примеры успешного использования ферментов (биохимических катализаторов с высокой избирательностью действия) для получения ряда веществ. Сейчас методами биотехнологии в широких масштабах получают шесть важных химических соединений, включая этанол и уксусную кислоту. Они, конечно, сейчас болс е дороги, чем получаемые из нефти. Но со временем цена нефти растет, а биотехнологические способы становятся более конкурентоспособными. Весьма вероятно, в недалеком будущем основой большой химии будут нефть, уголь и биомасса. Конкретный вклад каждого из источников будет опред, 1яться экономической ситуацией в каждой конкретной стране. [c.229]

    При катализе ферментами химической реакции может реализоваться любой из вышеприведенных механизмов катализа. Например, имидазольное кольцо остатка гистидина в ферменте а-химотрипсии (разд. 4.4) способно играть роль обгдеосновного катализатора, тогда как в ферменте щелочная фосфатаза тот л<е остаток может действовать в качестве нуклеофильного катализатора. Действительно, ферменты — это сложные катализаторы, в ходе действия которых реализуется несколько механизмов. Именно благодаря успешному сочетанию разных каталитических процессов скорость катализируемой реакции повышается в Ю раз (по сравнению со скоростью некатализируемой реакции). Более того, именно такая комбинация факторов приводит к специфическому катализу. [c.195]

    На стыке молекулярной биологии с физической и физико-органической химией возникла еще одна не менее важная задача — создать сравнительно простые каталитические системы, в которых использовали< ь бы принципы действия активных центров, работающих в ферментах. Подобного рода исследования обогащают физико-органическую химию познанием нетрадиционцых путей (механизмов), позволяющих ускорять или в общем случае регулировать скорости химических реакций. Изучение механизмов молекулярной биологии, в частности движущих сил ферментативного катализа, поможет найти пути создания избирательных химических катализаторов с управляемыми свойствами [7, 8]. В то же время анализ как общих закономерностей, так и различий, наблюдаемых в ферментативных и модельных системах, можно рассматривать как качественно новую ступень углубленного изучения самих ферментов. Иными словами, подобного рода исследования в области молекулярной химической бионики должны способствовать формированию новых взглядов на природу ферментативного катализа. [c.3]

    Каталитическая активность. По активности биологические катализаторы в миллионы раз превосходят активность химических катализаторов. Даже лучший из неорганических катализаторов — атомная платина — уступает, например, ферменту каталазе по ак-тивиости в расчеге на 1 активный центр в тысячи раз. О скорости ферментативных реакций можно судить по следующему примеру  [c.166]

    В формировании природных полимеров принимают участие соответствуюш,ие ферменты и катализаторы, которые обеспечивают направленное протекание реакций. В начальный период развития химии синтетических полимеров, когда еще не были най-дены совершенные катализаторы синтеза, получали полимеры с нерегулярной структурой, малой молекулярной массой и вследствие этого с низкими физико-механическими показателями. По мере развития этой отрасли химической науки и производства были разработаны способы получения пространственно и химически регулярных полимеров (стереоспецифическая полимеризация) из промышленнодоступных мономеров (этилен, пропилен, стирол и др.), что привело к громадному росту производства различных полимеров. Большинство этих полимеров в природе не существует, [c.13]

    Экспериментатьные исследования путей биосинтеза дают обширную информацию о химии этих процессов. Эти знания обеспечивают твердую основу для всей области бномиметических путей синтеза разнообразных природных соединений, которые используют стратегические принципы, разработанные Природой (см., например, синтез морфина, разд. 3.2.1). Однако, несмотря на многочисленные экспериментальные данные о механизме основных биохимических трансформаций, нам все еше слишком мало известно о способе действия фермента как катализатора. Был предложен целый ряд гипотез ддя объяснения замечательной способности ферментов осуществлять высоко эффективный и селективный катализ. Это было предметом многочисленных исследований по созданию специальных химических моделей ферментативного катализа (см, ниже). Кроме того, имеются еще более важные аспекты ферментативного катализа, а именно способность ферментов в нужный момент узнавать свой субстрат среди тысяч органических соединений, присутствующих в клетке, и регулируемость активности ферментов. Деятельность сотен и тысяч ферментов, одновременно оперируюшлх в любой живой системе", требует же -сткого управления с тем, чтобы в каждый данный момент и в каждом конкрет- [c.476]

    Биоактивность отдельных химических элементов. Экспериментально установлено, что в организме человека металлы составляют около 3 % (по массе). Это очень много. Если принять массу человека за 70 кг, то на долю металлов приходится 2,1 кг. По отдельным металлам масса распределяется следующим образом кальций (1700 г), калий (250 г), натрий (70 г), магний (42 г), железо (5 г), цинк (3 г). Остальное приходится на микроэлементы. Если концентрация элемента в организме превышает 10 %, то его считают макроэлементом. Микроэлементы находятся в организме в концентрациях 10 —10 %. Если концентрация элемента ниже 10 %, то его считают ультрамикроэлементом. Неорганические вещества в живом организме находятся в различных формах. Большинство ионов металлов образуют соединения с биологическими объектами. Уже сегодня установлено, что многие ферменты (биологические катализаторы)- содержат ионы металлов. Например, марганец входит в состав 12 различных ферментов, железо — в 70, медь — в 30, а цинк — более чем в 100. Естественно, что недостаток этих элементов должен сказаться на содержании соответствующих ферментов, а значит, и на нормальном функционировании организма. Таким образом, соли металлов совершенно необходимы для нормального функционирования живых организмов. Это подтвердили и опыты по бессолевой диете, которая применялась для кормления подопытных животных. Для этой цели многократным промыванием водой из пищи удаляли соли. Оказа ]ось, что питание такой пищей приводило к гибели животных. [c.168]

    Широкое примеиеиие химических катализаторов в кинетических методах в настоящее время, приведшее к их значительному развитию, основано на том, что скорость каталитической реакции прямо пропорциональна концентрации катализатора. Поэтому становится возможным разрабатывать высокочувствительные методы определения металлов и неметаллов, облада1ощих каталитическими свойствами. Высокая чувствительность этих методов обусловлена тем, что катализатор не расходуется в процессе реакции, а принимает в ней участие циклическим образом. Другие катализаторы (например, ферменты) обладают высокой чувствительностью по своей природе. [c.337]

    Свойствам ферментов — белковых катализаторов — посвящена обширная литература, и новичку в этой области 1М0жет даже в голову не прийти поставить ряд простых, но чрезвычайно важных вопросов. Как мы узнаем, что летка набита ферментам,и Как устанавливаем, что данный белок представляет собой фермент Ответить на эти вопросы можно так ферменты опознают только по их способности катализировать химические реакции. Поэтому для многих биохимиков одной из повседневных операций является определение каталитической активности ферментов. Выделить и получить в очищенном виде эти удивительные молекулы можно только при тщательном измерении скорости катализируемых ими реакций. [c.5]

    Ферменты - биологаческие катализаторы белковой природы, ускоряющие химические реакции, необходимые для жизнедеятельности организмов. Для ферментативного катализа характерны высокая субстратная специфичность (в ряде случаев стереоспецифичность), селективность по отношению к определенным связям субстрата и способность к тонкому регулированию активности под действием эффекторов (активаторов и ингибиторов). [c.549]

    Белки — непременные участники всех процессов жизнедеятельности. Белки- бержекгьг катализируют все химические, электрохимические и механохимические процессы в клетках и в организмах. Важнейшей функцией белков можно считать ферментативную. Специализированные ферменты служат катализаторами всех метаболических реакций, репликации ДНК, транскрипции текста ДНК в текст мРНК, трансляции этого текста прп биосинтезе белка. Белки являются и регуляторами генетических функций нуклеиновых кислот. Регуляторные ферменты, называемые аллостерическими (гл. 6), обеспечивают обратные связи в метаболических цепях. [c.87]

    Валли и Вильямс формулируют положение, полностью согласующееся со всем сказанным в предыдущих разделах Ферменты являются катализаторами не потому, что они содержат необычные химические группы, а скорее потому, что [c.413]

    Ферменты природного происхождения, являясь катализаторами биохимических реакций, отличаются от обычных химических катализаторов высокой специфичностью, в силу которой действуют строго на одно вещество (субстрат) или очень небольшое число близких по химической структуре веществ. Данная особенность обеспечивается уникальной структурой активных центров ферментов, определяющих эффективность связывания только со своим субстратом и исключающих связывание других веществ. Классическим постулатом энзимологии является стерическое соответствие структуры молекулы субстрата структуре активного центра фермента, то есть каждый фермент подходит к субстрату, как ключ к отпираемому замку. В то же время степень специфичности ферментов варьирует. Принято различать абсолютную, абсолютную групповую, относительную групповую и оптическую виды специфичности. Абсолютная предусматривает только сродство к одному субстрату, не взаимодействуя даже с родственными по структуре субстратами. Примером может служить фермент уреаза (карбамидаминогидролаза), катализирующая гидролиз мочевины. Этот фермент был выделен в ГНЦЛС из семян столовых арбузов доказана его специфичность, изучены основные биохимические свойства [18, 19]. [c.163]

    Известны микроорганизмы, которые ежедневно могут химически перерабатывать такие количества веществ, которые превышают их собственный вес более чем в 1000 раз. Эти микроорганизмы, по своей активности значительно превосходящие неорганические катализаторы, практически используются для переработки отходов, например мусора, фекалия, древесной массы и компоста, и получения из иих полезных веществ, таких, как окись углерода и метан. Поэтому кажется вполне возможным использовать такие отходы в сочетании с подходящими микроорганизмами или ферментами для непосредственного получения электрической энергии электрохимическим методом. Такие элементы были впервые созданы Сислером в Геологическом управлении США, Как показано на фиг. 7 [44], элемент состоит из двух частей — анодной (слева) и катодной (справа), связанных между собой диффузионным мостиком Г, проводящим ионы. Сосуд с помещенным в него инертным анодом Б через штуцер наполняется смесью морской воды с органическими веществатли, служащими топливом, и соответствующими бактериями или ферментами, являющимися катализатором. Сосуд с инертным катодом Д наполняется морской водой н кислородом. Мостик Г, который разделяет химически и связывает электрически электроды [c.49]


Библиография для Ферменты химические катализаторы: [c.27]   
Смотреть страницы где упоминается термин Ферменты химические катализаторы: [c.198]    [c.200]    [c.724]    [c.200]    [c.176]    [c.200]    [c.21]    [c.98]   
Химия для всех (1973) -- [ c.27 ]




ПОИСК







© 2025 chem21.info Реклама на сайте