Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Вулканизация растворимости

    До настоящего времени промышленное использование циклопентадиенильных соединений было довольно ограниченным они применяются лишь в качестве катализаторов вулканизации растворимых в органических растворителях силиконовых водоотталкивающих композиций , антидетонационных средств (в виде алки-лированных соединений) и для катализа реакций гидрирования Ч [c.166]

    Пороги коагуляции латексов БНК зависят от содержания акрилонитрила и эмульгатора в системе полимеризации. Необходимая устойчивость латексов к механическим воздействиям достигается при содержании эмульгатора 3 ч. (масс.) на 100 ч. (масс.) мономеров. При этом расход для коагуляции хлорида натрия весьма высок. Применение солей двухвалентных металлов (Са", Mg ) способствует образованию нерастворимых в воде, но растворимых в полимере солей эмульгатора, замедляющих вулканизацию резиновых смесей из БНК- [c.360]


    По своему химическому существу и по характеру влияния на технические свойства конечных продуктов реакция образования кислородных мостиков между молекулами смолы во время окисления битумов напоминает процесс вулканизации каучука серой. И в том и в другом случае идет образование трехмерных структур, в результате чего продукт становится более твердым, менее растворимым, менее мягким и химически более стойким. В зависимости от глубины этого процесса можно получить технические битумы со свойствами, варьирующими в весьма широких пределах — от полужидких текучих продуктов до твердых хрупких асфальтенов. Сравнительно небольшое количество кислорода остается связанным в окисленном битуме, большая же часть его идет на образование летучих продуктов окисления (вода, окись и двуокись углерода, органические кислородсодержащие соединения). Характер распределения кислорода в продуктах окисления гудрона и крекинг-остатка (при 275° С) на разных стадиях процесса приведен на рис. 20. Окислительная дегидрогенизация сырья, сопровождающаяся образованием воды, является основной реакцией, потребляющей в случае окисления гудрона 90% в начальной стадии и 69% в конечной общего расхода кислорода. Доля других кислородсодержащих соединений в потреблении кислорода значительно возрастает к концу процесса (31% для гудрона и 42% для крекинг-остатка), когда интенсивность окислительной дегидрогенизации постепенно ослабляется [46]. [c.135]

    СКН растворимы в метилкетоне, ацетоне, толуоле, бензоле, этилацетате, хлороформе и практически нерастворимы в алифатических углеводородах и спиртах. С увеличением содержания акрило-нитрила растворимость каучуков в ароматических углеводородах повышается. Выпускают нитрильные каучуки следующих марок СКН-18, СКН-26, СКН-40. Цифра означает процентное содержание акрилонитрила. Вулканизацию резин из СКН проводят при температуре 143 °С в течение 50-60 мин. [c.16]

    Реакции сшивания ненасыщенных эластомеров серой и серой с ускорителями представляют большой практический интерес, так как на них основан процесс вулканизации этих эластомеров, являющийся завершающим и наиболее ответственным этапом технологии производства практически всех резиновых изделий. Его результатом является переход растворимой, пластичной, механически непрочной резиновой композиции в нерастворимое состояние с проявлением высокого комплекса механических свойств высокоэластичных материалов, у которых в уникальном виде сочетаются большие обратимые деформации с высокой прочностью и долговечностью (см. ч. 2). [c.303]


    Вулканизация — сшивание различных цепей полимера. Чаще всего вулканизируют каучук с целью повышения прочности, эластичности, снижения растворимости. При обработке серой в процессе вулканизации происходит сшивание дисульфидными мостиками в трехмерную сетчатую структуру различных цепей полимера за счет некоторых двойных связей  [c.261]

    Значительное содержание влаги и летучих веществ в ингредиентах приводит к образованию пор и пузырей в резиновой смеси при ее обработке и в процессе вулканизации вследствие усиленного выделения паров воды и летучих веществ под действием повышенных температур. Свободные минеральные кислоты и растворимые в воде минеральные соли неблагоприятно влияют на сопротивление резины старению, а также снижают активность органических ускорителей вулканизации. [c.125]

    Величина максимума набухания зависит от природы каучука, его предшествующей обработки и от природы растворителя. Неполярные каучуки — натуральный каучук, СКБ, СКС, бутилкаучук — набухают и хорошо растворяются в неполярных растворителях, полярные каучуки — хлоропреновый, СКН — в полярных растворителях. Предварительная механическая обработка каучука, а также другие условия, приводящие к его деструкции, повышают растворимость каучука. Особенно сильно механическая пластикация влияет на характер набухания и на скорость растворения натурального каучука. Вулканизация всех каучуков приводит к практической потере растворимости и к значительному понижению степени набухания. Степень набухания вулканизатов в растворителях является показателем их стойкости к действию растворителей. [c.317]

    К неорганическим ускорителям относятся некоторые амфотер-ные оксиды, оксиды и гидроксиды щелочноземельных металлов. Однако все они нерастворимы в каучуках и плохо диспергируются в них. Поэтому неорганические ускорители используют вместе с органическими кислотами (стеариновой, олеиновой) или смешиваю с канифолью в результате получаются соли, растворимые в каучуке. После открытия органических ускорителей эти оксиды стали применять как активаторы вулканизации. [c.52]

    Большую сложность представляет изучение процессов вулканизации в смесях полимеров. Методом ЯМР получены данные по распределению по поверхности саженаполненных вулканизатов микрообластей с различной подвижностью протонов, что связано с различиями в степени вулканизации [31]. Например, для вулканизатов смеси натурального каучука с каучуком СКД характерна гетерогенность подвижности протонов, обусловленная различной степенью сшивания микрофаз вследствие различий в диффузии и растворимости вулканизующих агентов. [c.275]

    Для получения полимера достаточной молекулярной массы из смеси изобутилена с небольшим количеством изопрена требуется более низкая температура, чем при полимеризации одного изобутилена. Поэтому молярное содержание изопреновых звеньев в бутилкаучуке составляет всего 0,6—3,0%- Однако этого количества достаточно для его вулканизации. Более 99% звеньев изопрена присоединены в положении 1,4 и распределены статистически, доля присоединений в положении 1,2 н 3,4 составляет менее 1% (на изопрен). Исследователи предполагают, что молекулы полиизобутиленов и бутилкаучука не имеют разветвлений или поперечных связей, что подтверждается также полной растворимостью полимера. [c.194]

    Вулканизация резиновых смесей является заключительной технологической операцией, в результате которой образуются вулканизаты, обладающие повышенными прочностными свойствами, высокой эластичностью, твердостью, износостойкостью и другими эксплуатационными свойствами. Пластичность, клейкость и растворимость в растворителях — свойства, присущие сырым резиновым смесям,— в вулканизатах практически не проявляются. При этом, как правило, изделию придаются заданные конфигурация и размеры. [c.45]

    С повыщением температуры и степени вулканизации растворимость серы в каучуке значительно повышается. В натуральном каучуке в процессе смешения при температуре 55—65 °С растворимость ее достигает 3—4% от массы каучука. При изготовлении мягкой резины, где содержание серы обычно не превышает 3%, в процессе смешения резиновой смеси вся сера может раствориться в каучуке. При температуре вулканизации растворимость серы достигает 10%. При охлаждении резиновой смеси могут образоваться пересыщенные растворы, из которых, благодаря диффузии, избыток серы частично выкристаллизовывается на поверхность резиновой смеси. Такую кристаллизацию серы на поверхности резиновой смеси или вулканизата называют выцветанием серы. Кристаллизация серы на поверхности резиновых невулканизованных деталей снижает клейкость, что вызывает затруднения при сборке резиновых изделий. Уменьшение выцветания серы наблюдается при 1) введении в резиновую смесь некоторых мягчителей (стеариновой кислоты и сосновой смолы), очевидно, потому, что эти мягчители являются диспергаторами серы, спо- [c.129]


    Изучено влияние олигоэфир акрилатов (ОЭА) на прочностные характеристики вулканизатов СКЛ в зависимости от содержания и природы ОЭА. Показано, что максимальная прочность вулканизатов практически совпадает с пределом растворимости ОЭА в СКД при температуре вулканизации. Растворимость ОЭА при обычной температуре в 2—3 раза ниже, чем при температуре вулканизации. Полагают, что высокодисперсные частицы полйэфиракрилатов с узким распределением по размерам, обеспечивающие экстремальные изменения прочности вулканизатов, возникают при выделении гетерофазы из истинного раствора ОЭА в каучуке (в процессе инициированной трехмерной привитой полимеризации каучуков при помощи ОЭА) [92]. [c.122]

    Для этих полимеров, имеющих практически фиксированную микроструктуру, определяющую роль с точки зрения технологических свойств невулканизованных смесей и физико-механических свойств резин играют такие параметры, как ММР и геометрическое строение полимерных цепей — степень и характер их разветвленности. Эти параметры зависят от типа каталитической системы, ее физико-химических свойств (в частности, растворимости) и условий проведения процесса полимеризации. В случае растворимых (гомогенных или близких к ним) каталитических систем образуются линейные и статистически разветвленные полимеры. В случае гетерогенных систем возможно образование микрогеля специфического строения (см. рис. 1) С точки зрения общих представлений о технологических свойствах резиновых смесей и процесса вулканизации строение растворных микрогелей является более благоприятным, чем строение микрогеля эмульсионной полимеризации. [c.59]

    Каучук спас изобретатель Чарлз Гудьир. Нет, он не был химиком, но оказался очень упорным человеком. Гудьир потратил на опыты несколько лет жизни и все свои деньги. Над ним смеялись Если вы увидите человека в резиновом пальто, резиновых ботинках, резиновом цилиндре и резиновым кошельком в кармане, а в кошельке — ни единого цента, то можете не сомневаться—это Гудьир . Но он продолжал опыты, смешивая каучук со всяким веществом, которое только попадалось ему на глаза. И в 1839 году он все-таки нашел способ лечения каучука. Это была вулканизация — обработка каучука теплом с добавлением небольшого количества серы. В результате вулканизации повышаются прочность, твердость, эластичность, тепло- и морозостойкость каучука, снижается его растворимость в органических растворителях. Словом, это уже другой материал. [c.122]

    Исключительная способность растворять жиры, масла и смолы обусловливает техническое применение сероуглерода в качестве растворителя. Кроме того, сероуглерод используется для получения четыреххлористого углерода (стр. 282), роданистых соединений и тиомоче-вины, для вулканизации каучука и в качестве яда для борьбы с вредителями растений. Однако наибольшее применение сероуглерод нашел в производстве искусственного шелка—вискозы. Получение вискозного шелка из целлюлозы основано на общей реакции взаимодействия сероуглерода со спиртами. Сероуглерод в ирнсутствгш щелочей соединяется со спиртами, причем образуются к с анто генат ы, соли эфиров д и т и о у г о л ь н о й кислоты, которые легко растворимы в воде  [c.285]

    Реакции с серой. Взаимодействие натурального и синтетических каучуков с серой имеет большое промышленное значение. Эта реакция широко известна под названием процесса вулканизации. В результате вулканизации материал приобретает эластичность, увеличивается его прочность, особенно прочность при растяжении и истирании, уменьи асчся растворимость и пластичность. Такого эффекта можно достигнуть, действуя на полиолефины не только серой, но и многими другими веществами. Поэтому в последние годы понятие о реакции вулканизации полиолефинов стало более широким. Под образованием вулканизатов подразумевают любой процесс, е результате которого полимеры приобретают эластичность и большую прочность и происходит уменьшение растворимости и пластичности полимеров. [c.244]

    Хорошая растворимость третичных аминов в масле позволяет добавлять их к смазочным маслам и пеногасителям. Третичные амины можно пр име1нять как активаторы ускорителей вулканизации каучука, изготовленные на основе тиазола и тиурама. Они представляют значительный интерес в качестве отверждаюших добавок к эпоксидным смолам, а также как катализаторы в производстве изоцианатных пен01пласт0в. [c.176]

    Взаимодействие натурального и синтетических каучуков с серой (вулканизация) имеет большое промышленное значение. В результате вулканизации материал приобретает эластичность, увеличивается его прочность, особенно при растяжении и истирании, уменьшаются растворимость и пластичность. Такого эффекта можно достигнуть при действии на полидиены не только серы, по и ряда других веществ или физических агентов. Поэтому в последние годы понятие о реакции вулканизации полидиенов стало более щироким. Под образованием вулканизатов подразумевают любой процесс превращения линейного по лимера в редкосетчатый. [c.115]

    Каучуки, вулканизованные только в смеси с вулканизующими агентами, не обладают необходимыми для различных целей жесткостью, сопротивлением растяжению, истиранию и надрыву. Эти свойства можно придать каучуку, добавляя в резиновую смесь так называемые наполнители. Они обычно бывают двух типов инертные наполнители (глина, мел и др.), которые почти не оказывают влияния на физические свойства резины, но облегчают переработку резиновой смеси, цусиливающие наполнители (обычно сажа), которые улучшают перечисленные выше свойства вулканизованного каучука. С целью предупреждения старения каучука, т. е. потери каучуком эластичности и других ценных свойств, в резиновую смесь вводят различные стабилизаторы — антиокислители (например, фенил-(5-нафтил-амин). Чтобы ускорить процесс вулканизации, в резиновую смесь вводят небольшие количества органических соединений, которые называют ускорителями (меркап-тобензтиазол, дифеинлгуанидин и др.). Оказалось, что для наиболее эффективного использования ускорителей вулканизации необходимо присутствие некоторых других химических веществ (обычно окисей металлов), называемых активаторами. В свою очередь действие активаторов наиболее эффективно в присутствии растворимых в каучуке мыл (солей жирных кислот), которые могут образовываться в процессе вулканизации. [c.422]

    В.П. применяют для получения орг. и неорг. пероксидов, пербората и перкарбоната Na как окислитель в ракетных топливах при получении эпоксидов, гидрохинона, пирокатехина, этиленгликоля, глицернна, ускорителей вулканизации группы тиурама и др. для отбеливания масел, жиров, меха, кожи, текстильных материалов, бумаги для очистки германиевых и кремниевых полупроводниковых материалов (путем перевода нерастворимых в воде примесей в растворимые) при извлечении металлов из руд [напр., окислением UO2 (нерастворимая форма) до UO4 (раств. в воде)] как дезинфицирующее ср-во для обезвреживания бытовых и индустриальных сточных вод в медицине как источник О2 в подводных лодках входит в состав реактива [c.402]

    Помимо технического интереса исследование массопроницаемости полимерных материалов имеет весьма суш,ественное научное значение. Изучение массопроницаемости полимеров, а также диффузии и растворимости газов и паров в полимерах, позволяет судить о структуре полимерных материалов и характере теплового движения макромолекул. Массоперенос газов и паров играет существенную роль в разработке теории таких важных процессов как окислительное старение полимеров, вулканизация, полимеризация, поликонденсация и др. Большое значение имеет перенос газов и паров для биологии, медицины, геологии и других наук. [c.4]

    Одновременно повышается температура стеклования и уменьшается растворимость полимеров. Структурирование полимеров широко используется в технике при вулканизации каучуков, термоотверждении смол, дублении белковых соединений (например, кожи), окислительном отверждении масел. Большое значение имеют так- ке про11ессы структурирования, протекающие при термоокислительном и фотохимическом старении полимеров. Во всех перечисленных примерах процессы образования поперечных сшивок оказывают весьма существенное влияние на газо- и паропроницаемость как промежуточных, так и конечных продуктов структурирования. [c.92]

    Сшивание полимеров по реакции с низкомолекулярными полифупкциональными всшесгвами нашло наибольшее распространение на практике для превращения линейных полимеров в ipex-мерные продукты. Наглядным примером реакции сшивания является вулканизация натурального и синтетического каучуков, в частности серой, и превращение их в резину. Макромолекулы каучука при взаимодейств.тл с серой образуют поперечные связи, и каучук теряет растворимость и тер- [c.103]

    В работах [207—209] указывается на В оэможность ассоциации пол(Иаульфидных (поперечных связей в серных вулканлзатах неполярных каучуков. Процессы ассоциации (поперечных связей облегчаются тем, что в (Качестве вулканизующих агентов обычно используются (Полярные вещества, (плохо растворимые или вообще нерастворимые в каучуке. При этом вулканизация Л ротекает как. гетерогенный топохимический Процесс и, следовательно, опреде- [c.84]

    Влияние растворимых солей никеля должно быть подобно действию солей кобальта в смеси. Реакции одинаковы, но протекают они с разной скоростью. В случае никеля не создается помех вулканизующей системе смеси. Соли никеля более стабильны, поэтому ионы NP или образуются не так легко, как Со , но в случае образования они обладают аналогичным замедляющим действием. Ионы Ni /Ni легче диффундируют в решетке оксида цинка, поэтому для насыщения слоя оксида цинка требуется более высокая концентрация этих ионов. Образующийся при вулканизации сульфид никеля NixS дает более го- [c.231]

    Ультраускорители в начале процесса вулканизации проявляют высокую активность и приводят к подвулканизации резиновых смесей, а в основном периоде процесса они быстро дезактивируются и часто вызьгеают реверсию, уменьшая плато вулканизации [55]. Другам недостатком ультраускорителей является их плохая растворимость в эластомерах. [c.14]

    Ускорители класса тиурамов, наряду с плохой растворимостью в эластомерах и выцветанием на поверхность заготовок, кристаллизуются в объеме резин при хранении [75], что ухудшает их прочностные и усталостные свойства. Устранение этого нежелательного явления возможно при уменьшении дозировки тиурама до величины его предельной растворимости в эластомерах [5]. Между тем, содержгиние тиурамных ускорителей в серных вулканизующих системах значительно превышает эти предельные величины [76]. Резиновые смеси с тиурамными ускорителями характеризуются недостаточным периодом подвулканизации. Б связи с этим весьма актуальным для тиурамных ускорителей, наряду с улучшением их растворимости и диспергирования в резиновых смесях, является увеличение индукционного периода вулканизации. [c.16]

    Приведенные данные свидетельствуют, что основным способом модификации кристаллических ускорителей является их комбинировсшие друг с другом с достижением проявления синергического эффекта в резиновых смесях, заключающегося в повышении растворимости компонентов в каучуках и )шеньшении их выцветания из резиновых смесей и резин, в возрастании скорости вулканизации и улучшении физикомеханических свойств вулканизатов. [c.26]

    Пигмешы — тонкодисперсные окрашенные порошки, не растворимые в воде и пленкообразующих веществах, с которыми при растирании образуют дисперсии, называемые красками. Наиболее широко применяют минеральные пигменты на основе оксидов и солей металлов. Основными характеристиками пигментов явл5потся цвет, укрывистость, интенсивность окраски, форма и размер частиц, смачиваемость, мас-лоемкость, удельный и насыпной вес, антикоррозионные свойства, устойчивость к атмосферным воздействиям, свету, теплу, химическая стойкость. Многие из перечисленных характеристик присущи и минеральным пигментам. Помимо лакокрасочной промышленности пигменты применяют в производстве резины, бумаги, линолеума, керамики, цемента, стекла, стеклянных эмалей, пластмасс, косметики и др. В различных областях к пигментам предъявляются свои требования. Так, для резины требуются очень тонкодисперсные, высокоактивные пигменты, активирующие процесс вулканизации. Для керамики, стекла и эмалей — термостойкие и способные хорошо диффундировать в расплавах. Для пластмасс — термостойкие пигменты, способные совмещаться с полимерами, и т.д. [460]. [c.316]

    Известно что вследствие различной растворимости и скорости диффузии серы в полимерах распределение ее в многофазных системах неравномерно. Увеличение разности в плотностях энергии когезин компонентов приво- дит к возрастанию концентрации серы в одном из полимеров. Время хранения смесей влияет на распределение серы и физико-механические свойства вулканиза-тов 1 2. При длительном хранении на поверхности образца, а т акже на межфазной границе образуются кристаллы серы, котор]ь1е ухудшают прочностное показатели вулканизатов. Предварительное вальцевание смесей полимеров перед вулканизацией полностью не устраняет отмеченный недостаток. Введение в состав смесИ третьего полимера, имеющего среднюю величину параметра б и Ь об-ствующего уменьшению размера частиц в дисперсной фазе., благоприятно влияет на равномерность расгьределения компоф ов вулканизующей системы. , [c.26]

    Из приведенных данных видно, что в процессе вальцевания происходит Деструкция- полиизобутилена, хотя чистый полиизобутилен при данной температуре не деструктируется и часть смолы связывается с полиизобутиленом, образуя модифицированный растворимый полимер, а некоторое количество полиизобутилёна в результате взаимодействия со смолой превращается в модифицированный продукт, отличающийся, по механическим свойствам от исходных компонентов (рис. 48). В работах по вулканизации каучуков алкилфеноло-формальдегидными смолами отмечено что полиизобутилен не реагирует со смолой и полученные продукты разделяются фракционированием. Способ термомеханиле- [c.106]


Смотреть страницы где упоминается термин Вулканизация растворимости: [c.78]    [c.383]    [c.308]    [c.130]    [c.142]    [c.145]    [c.18]    [c.175]    [c.14]    [c.17]    [c.21]    [c.24]    [c.85]    [c.26]   
Химия и физика каучука (1947) -- [ c.296 ]




ПОИСК







© 2024 chem21.info Реклама на сайте